A complete characterization of connected Lie groups without the Approximation Property

joint with K happen & devil

- A C*-algebra A has the operator approximation property (OAP) if
 \[T : \text{id} \to \text{Ask} \text{ bounded operator such that} \]
 \[\Gamma : \text{discrete group} \quad \text{Ca}^* \text{nucleus} \Rightarrow \text{Ca}^* \text{nucleus (OAP)} \Rightarrow \text{Ca}^* \text{exact} \]
 \[\text{exact} \Rightarrow \Gamma \text{ has AP} \Rightarrow \Gamma \text{ exact} \]

- Completely bounded (Fourier) multipliers
 \[G : \text{locally compact group} \]
 \[\mathcal{L}^1(G) \text{ left-regular representation on } L^2(G) \]
 \[\mathcal{L}(G) \text{ compact abelian algebra} = \{ \mathcal{I} : G \in G \} \]
 \[G : C \text{ continuous i.e. completely bounded multiplier} \text{ } C \text{ (Fourier multiplier)} \]
 \[\text{if } M : \mathcal{I} \rightarrow (G) \mathcal{I} \text{ extends to a completely bounded normal map on } L^1(G). \]
 \[\mathcal{L}(G) = C \text{-multiplier on } G \]
 \[\text{with } \| M \|_\text{cb} = \| M \|_G \]
 \[\mathcal{L}(G) \text{ is a dual Banach space} \]
 \[\text{if } f \in L^1(G), \text{ new norm } \| f \|_G = \sup \left\{ \| f \|_{\mathcal{L}^1(G)} : \| M \|_G \leq 1 \right\} \]
 \[\text{then } Q(G) = L^1(G) \text{ satisfies } Q(G)^* \cong \mathcal{L}(G) \]

Definition: (Heoane & Huns '94)

G has the Approximation Property (AP) if

\[\exists \text{ net } c_i \in \mathcal{L}(G) \text{ such that } c_i \to 1 \text{ weak}^* \]

Theorem: (Heoane & Huns) For Γ discrete group, Then:

1. Γ has the AP
2. $\text{Ca}^*(\Gamma)$ has the OAP
3. G has the AP (if $\Gamma' \subseteq G$ is a lattice)
Examples of groups with the AP
- compact groups, amenable groups, weakly amenable groups,
 \(Z^2 \times SL(2, \mathbb{Z}), \mathbb{R}^2 \times SL(1, \mathbb{R}) \)
- AP passes to closed subgroups and extension

Theorem (Lafforgue & de La Salle 2011)
\(SL(3, \mathbb{R}) \) does not have the AP.
Hence \(C(SL(3, \mathbb{Z})) \) is exact without the OAP.

- **Simple Lie groups** (e.g. \(SL(n, \mathbb{R}) \))
 - after compact subgroup
 - Iwasawa decomposition: \(G = KAN \)

 \[G = SL(2, \mathbb{R}), \quad K = SO(2), \quad A = \{ \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} \mid a > 0 \}, \quad N = \{ \begin{bmatrix} 1 & z \\ 0 & 1 \end{bmatrix} \mid z \in \mathbb{R} \} \]

 - real rank of \(G = \dim A \)
 - Structure of simple Lie groups:
 \(G \) has real rank at least 2 \(\iff \) \(G \) has closed subgroup \(K \) \(\cong \) \(SL(2, \mathbb{R}) \) or \(Sp(2, \mathbb{R}) \).

Theorem (Heckey & de Laat 2012)
\(Sp(2, \mathbb{R}) \) does not have the AP.

Corollary A simple Lie group \(G \) with finite center has the AP
\(\iff \) \(G \) has real rank 0 or 1.
Heckey-de Laat (2013) \(Sp(2, \mathbb{R}) \) has no AP.

- **Non-simple Lie groups**
 \(G = \) connected Lie group
 - Levi decomposition: \(G = RS \)

Question: \(SL(3, \mathbb{R}) \hookrightarrow G \) is homo.
Does \(G \) fail to have the AP? 2

\(R \): closed normal solvable subgroup
\(S \): semi-simple Lie group
i.e. \(S \cong S_1 \times \ldots \times S_n \) with each \(S_i \) simple locally compact.

\(S \) need not be closed.
An obstruction to the AP

- A mean on $L^\infty(G)$ is a state $m: L^\infty(G) \to C$
- $L^\infty(G)$ admits left-invariant mean $\iff G$ is amenable

However, $B_2(G)$ always admits a left-invariant mean $m: B_2(G) \to C$
Moreover, m is unique!

Definition G has property (T^*) if $m: B_2(G) \to C$ is w^*-continuous.

Proposition If G has the AP and (T^*), then G is compact.

Proof: If G is non-compact and $\omega \in B_2(G) \cap C_c(G)$ then $m(\omega) = 0$.
But $m(1) = 1$. \Box

Proposition: If $\pi: G \to H$ homomorphism and G has (T^*), then $\pi(G)$ has (T^*).

Theorem: $SL(3, \mathbb{R})$ and $Sp(2, \mathbb{R})$ and $Sp(2, \mathbb{R})$ have property (T^*).

Remark: Property $(T^*) \implies$ Property (T)

- So far, no examples of infinite discrete group with (T^*).
- Question: Does $SL(3, \mathbb{Z})$ have (T^*).

Main Theorem $G =$ connected Lie group with Levi decomposition $G = RS$

TFAE:
1. G has AP
2. S has AP
3. Each S_i has AP
4. Each S_i has real rank 0 or 1.
5. G does not have a Lie subgroup locally isomorphic to $SL(3, \mathbb{R})$ or $Sp(2, \mathbb{R})$
6. G has no non-compact closed subgroup with property (T^*).

Thm: A simple Lie group with finite center and real rank at least 2 has property (T^*).

Now (T) implies (T^*):

$B(G) =$ Fourier-Stieltjes algebra $= C^*(G)^*$ $B(G) \subseteq B_2(G)$
$B(G)$ has a unique invariant mean $m: B(G) \to C$

G has property $(T) \iff m$ is weak* continuous.