Lévy Processes in Finance
Summer school Sandbjerg

Jan Kallsen
TU München/CAU Kiel

August 9–12, 2007
Outline

1. Mathematical finance
2. Stochastic calculus
3. Applications to finance
1 Mathematical finance
2 Stochastic calculus
3 Applications to finance
Price processes and trading strategies

- **securities price process** \(S = (S_0(t), \ldots, S_d(t))_{t \in [0, T]} \)
 - \(\mathbb{R}^{d+1} \)-valued semimartingale on \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0, T]}, P)\)
 - \(S_i(t) \) is price of security \(i \) at time \(t \)
 - Example:
 - Bond: \(S_0(t) = e^{rt} \)
 - Stock: \(S_1(t) = S_1(0)e^{L(t)} \) with Lévy process \(L \)

- **trading strategy** or portfolio \(\varphi = (\varphi_0(t), \ldots, \varphi_d(t))_{t \in [0, T]} \)
 - \(\mathbb{R}^{d+1} \)-valued predictable process
 - \(\varphi_i(t) \) is number of shares of security \(i \) at time \(t \)
 - value process \(V_{\varphi}(t) := \varphi(t)^\top S(t) = \sum_{i=0}^{d} \varphi_i(t)^\top S_i(t) \)
 - \(\varphi \) is self financing if \(S \)-integrable and \(V_{\varphi} = V_{\varphi}(0) + \varphi \cdot S \)
Discounting
for simplified bookkeeping

- Idea: express prices in multiples of **numeraire** security S_0.
 - Assume $S_0, (S_0)_- > 0$.
- discounted price process $\hat{S} := \frac{1}{S_0} S = (1, \frac{S_1}{S_0}, \ldots, \frac{S_d}{S_0})$
- discounted value process $\hat{V}_\varphi := \frac{V_\varphi}{S_0} = \varphi^\top \hat{S}$
- Example: for $S_0(t) = e^{rt}$ we have
 $\hat{S}(t) = e^{-rt} S(t)$ and $\hat{V}_\varphi(t) = e^{-rt} V_\varphi(t)$.
- Lemma:
 φ self financing $\iff \varphi$ \hat{S}-integrable and $\hat{V}_\varphi = \hat{V}_\varphi(0) + \varphi \cdot \hat{S}$
- Lemma: For $(\hat{S}_1, \ldots, \hat{S}_d)$-integrable $(\varphi_1, \ldots, \varphi_d)$ and $\nu \in \mathbb{R}$
 ex. unique φ_0 such that $\varphi = (\varphi_0, \ldots, \varphi_d)$ self financing with $V_\varphi(0) = \nu$.
- Consequence: do not worry about self financability and φ_0.
Arbitrage and consequences

An admissible self financing strategy φ is an arbitrage if $V_\varphi(0) = 0$, $V_\varphi(T) \geq 0$, $P(V_\varphi(T) > 0) > 0$.

- Without admissibility constraint Black-Scholes model is not arbitrage free.
- We take careless engineering point of view here. Precise statements are difficult.

Rule (law of one price)

Let φ, ψ be admissible strategies in an arbitrage-free market. If $V_\varphi(T) = V_\psi(T)$, then $V_\varphi = V_\psi$.

Rule (fundamental theorem of asset pricing, FTAP)

The market is arbitrage free \iff there exists some equivalent martingale measure (EMM) Q (i.e. $Q \sim P$ is probability measure and \hat{S} is Q-martingale).
Derivatives

- **European option**: \mathcal{F}_T-measurable random variable X
 - X stands for payoff at time T.
 - Examples:
 - European call $X = (S_1(T) - K)^+$ or put $X = (K - S_1(T))^+$
 - Lookback call $X = (\sup_{t \in [0, T]} S_1(t) - K)^+$
 - Discounted payoff is $\hat{X} := \frac{X}{S_0(T)}$.

- Futures and American options are more involved.

- What is a reasonable price for the option at time $t < T$?

- We distinguish **liquidly traded** and **over-the-counter** options.
Consider underlyings S_0, S_1 (given processes) and derivative price process S_2 with $S_2(T) = X$ (yet to be determined).

The FTAP implies:

\[\text{no arbitrage } \implies \hat{S}_2(t) = E_Q(\hat{X}|\mathcal{F}_t) \text{ for some EMM } Q \]

Rule

S_2 does not depend on the chosen EMM Q \iff X is attainable (i.e. $X = V_{\varphi}(T)$ for some admissible strategy φ).

Corollary (second fundamental theorem of asset pricing)

An arbitrage free market is complete (i.e. any option is attainable) \iff there exists only one EMM.

Most models involving non-Gaussian Lévy processes are incomplete.
Problem of incompleteness

for liquidly traded options

- Problem: range of possible prices typically too large
 - e.g. trivial arbitrage bounds for European call in geometric Lévy model for standard Lévy processes (VG, NIG, . . .)
 - Away from Black-Scholes case arbitrage theory does not yield useful information.

- Approach 1:
 - consider some derivatives as underlyings, e.g. vanilla options
 - get fewer EMM’s, hence tighter price bounds for other derivatives
 - Problem: how to get reasonable and arbitrage free model for new underlyings?
 - Approach seems rather cumbersome.

- Approach 2 (**martingale modelling**):
 - model prices directly under market’s pricing measure
 - used in practice
Martingale modelling
for liquidly traded options

- Choose parametric class of models for underlyings S_0, S_1 under market’s EMM Q.
 - e.g. $S_0(t) = e^{rt}$, $S_1(t) = S_1(0)e^{L(t)}$ with variance-gamma Lévy process L

- Consider martingale constraint, i.e. \hat{S}^1 Q-martingale.
 - here: restrict variance-gamma parameters such that $E(e^{L(1)-r}) = 1$

- Determine remaining parameters by calibration to observed prices of liquid options at $t = 0$.
 - choose parameters such that discounted observed price $= E_Q($discounted payoff$)$
 for all observed vanilla options
 - use e.g. least squares procedure if more options than parameters

- Use model e.g. for pricing of new non-liquidly traded derivatives.
Question: is the parametric class of models appropriate?
 ▶ Statistical tests are useless because they concern real world probabilities \(P \).

Answer: inconsistencies may indicate inappropriate class or model.
 ▶ e.g. no choice of parameters leads to reasonable fit of observed option prices
 ▶ or recalibration leads to heavily time-varying models

However: Entirely different classes may produce reasonable fit, but differ substantially for further e.g. path-dependent options (model risk).
Two different situations:

- only interested in valuation of new options
 - modelling under pricing measure Q suffices, physical measure P not needed
- real-world probabilities needed as well (e.g. for value at risk assessments etc.)
 - model dynamics of S_0, S_1 under both P and Q
 - choose typically same parametric class under both P and Q
 - e.g. $S_1(T) = S_1(0)e^{L(t)}$, L VG Lévy process under P and Q
 - determine P-parameters by estimation using stock price data, Q-parameters by calibration using option prices
 - OBS! condition $Q \sim P$ leads to constraints on possible parameters
Situation:

- Underlyings S_0, S_1 liquidly traded, but not the option
- Client wants to buy option X from bank at time $t = 0$
- Reasonable prices π?

$\pi \leq \pi_{\text{high}} := \inf\{\pi \in \mathbb{R} : \exists \ \text{adm. } \varphi \text{ with } V_0(\varphi) = \pi \text{ and } V_\varphi(T) \geq X\}$

- Justification: otherwise client can do better by investing in such superhedge φ

$\pi \leq \pi_{\text{low}} := \sup\{\pi \in \mathbb{R} : \exists \ \text{adm. } \varphi \text{ with } V_0(\varphi) = \pi \text{ and } V_\varphi(T) \leq X\}$

- Justification: otherwise bank should sell such subhedge φ rather than option

How to determine $\pi_{\text{high}}, \pi_{\text{low}}$?
Individual pricing
of over-the-counter derivatives (ct’d)

Rule (superhedging)

\[
\hat{\pi}_{\text{high}} := \frac{\pi_{\text{high}}}{S_0(0)} = \sup \{ E_Q(\hat{X}) : Q \text{ EMM for } S_0, S_1 \}
\]

\[
\hat{\pi}_{\text{low}} := \frac{\pi_{\text{high}}}{S_0(0)} = \inf \{ E_Q(\hat{X}) : Q \text{ EMM for } S_0, S_1 \}
\]

- Price bounds coincide with price interval for liquid options.
- hence same problem as before: range of prices too large
- alternatives:
 - pricing based on quadratic hedging
 - utility indifference pricing
Quadratic hedging
and pricing over-the-counter derivatives

- **quadratic hedging of option X:**
 - minimize expected squared hedging error
 \[
 \varepsilon^2(\varphi) := E((\hat{V}_\varphi(T) - \hat{X})^2)
 \]
 over all admissible strategies φ
 - optimal strategy φ^*, minimal hedging error $\varepsilon^2 := \varepsilon^2(\varphi^*)$
 - $\hat{V}_{\varphi^*}(T)$ is orthogonal projection in L^2 of \hat{X} on \{\hat{V}_\varphi(T) : \varphi \text{ admissible strategy}\}.$

- **application to over-the-counter trade**
 - charge e.g. $\pi = V_{\varphi^*}(0) + \lambda \varepsilon^2$ as option’s premium
 - use $V_{\varphi^*}(0)$ to buy hedging strategy φ^*.
 - take multiple of ε^2 as compensation for unhedgeable risk (parameter λ stands for risk aversion)

- **How to determine φ^*, $V_{\varphi^*}(0)$, ε^2?**
Theorem (quadratic hedging)

Assumption: \(\hat{S} \) is martingale (general case is more involved).
Then

\[
V_{\varphi^*}(0) = E(\hat{X})
\]

\[
\varphi^*(t) = \frac{d\langle \hat{V}, \hat{S}_1 \rangle(t)}{d\langle \hat{S}_1, \hat{S}_1 \rangle(t)}
\]

\[
\varepsilon^2 = E\left(\langle \hat{V}, \hat{V} \rangle(T) - (\varphi^*)^2 \cdot \langle \hat{S}_1, \hat{S}_1 \rangle(T)\right)
\]

with \(\hat{V}(t) := E(\hat{X}|\mathcal{F}_t) \).

- How to determine angle brackets \(\langle \hat{V}, \hat{S}_1 \rangle \) etc.?
Utility indifference pricing of over-the-counter derivatives

- Problem of approach via quadratic hedging:
 gains are penalized, hence economically questionable

- Alternative:
 increasing utility functions and indifference pricing

- Idea:
 sell option only if this is profitable for the bank (i.e. utility rises)
Expected utility maximization

- fix increasing, strictly concave utility function \(u \).
- Examples:
 - \(u(x) = \frac{x^{1-p}}{1-p} \) for \(p \in (0, \infty) \setminus \{1\} \)
 - \(u(x) = \log(x) \) (behaves like \(p = 1 \) above)
 - \(u(x) = 1 - e^{-px} \) for \(p > 0 \)
- maximize expected utility \(E(u(\hat{V}_\varphi(T))) \) over all admissible strategies \(\varphi \) with fixed initial value \(V_\varphi(0) = v \)
- solution approaches:
 - dynamic programming
 - martingale methods (here)

Rule (dual characterization)

\(\varphi \) admissible strategy such that
\[
\frac{dQ}{dP} = \frac{u'(\hat{V}_\varphi(T))}{E(u'(\hat{V}_\varphi(T)))} \text{ density of EMM}
\]
\[\implies \varphi \text{ is optimal.}\]
Utility indifference pricing
of over-the-counter derivatives

Question:
- underlyings S_0, S_1 liquidly traded, but not the option
- client wants to buy option X from bank at time $t = 0$
- reasonable prices π for the bank?

Answer:
- utility of bank without option trade:
 $U_0 := \sup\{E(u(\hat{V}_\varphi(T))) : \varphi \text{ adm. with } V_0(\varphi) = v\}$
- utility of bank with option trade:
 $U_X(\pi) := \sup\{E(u(\hat{V}_\varphi(T) + \hat{\pi} - \hat{X})) : \varphi \text{ adm. with } V_0(\varphi) = v\}$
- require $U_X(\pi) > U_0$ (trade raises bank’s utility)
- utility indifference price: limiting price with $U_X(\pi) = U_0$
- reasonable prices are those above indifference price

Problem: utility indifference prices are hard to compute

Alternative:
compute approximate solution for small number of options
Approximate utility indifference pricing of over-the-counter derivatives

Notation:

- \(\pi(n) \): utility indifference price per unit of \(X \) for \(n \) options
- \(\varphi(n) \): optimal strategy for \(n \) sold options, i.e. for \(U_{nX}(n\pi(n)) \)

Goal: approximate \(\pi(n), \varphi(n) \) for small \(n \)

Expansion:

\[
\hat{\pi}(n) = \hat{\pi}(0) + n\delta + o(n)
\]
\[
\varphi(n) = \varphi^* + n\eta + o(n)
\]

Interpretation:

- \(\pi(0) \): limiting price for very small number of options
- \(\delta \): risk premium per option that is to be sold
- \(\varphi^* \): optimal strategy for pure investment problem without options
- \(\eta \): hedging strategy per option

How to determine \(\pi(0), \delta, \eta \)?
Approximate utility indifference pricing
for exponential utility

Rule

Consider \(u(x) = 1 - e^{-px} \).
Let \(\varphi^*, Q \) be optimal pair from dual characterisation.
Define \(\hat{V}(t) := E_Q(\hat{X} | \mathcal{F}_t) \). Then

\[
\hat{\pi}(0) = \hat{V}(0) = E_Q(\hat{X}),
\]

\[
\delta = \frac{p}{2} E_Q \left(\langle \hat{V}, \hat{V} \rangle^Q(T) - \eta^2 \cdot \langle \hat{S}_1, \hat{S}_1 \rangle^Q(T) \right),
\]

\[
\eta(t) = \frac{d \langle \hat{V}, \hat{S}_1 \rangle^Q(t)}{d \langle \hat{S}_1, \hat{S}_1 \rangle^Q(t)}.
\]

- \(Q \) is the minimal entropy martingale measure.
- \(\delta, \eta \) solve quadratic hedging problem for \(X \) under \(Q \).
- Slightly more involved results hold for power/logarithmic utility with additional numeraire change.
Integral transform methods
for pricing and hedging in general

Consider e.g. $X = (S_1(T) - K)^+$. We have encountered objects like:

- $\hat{V}(t) = E(\hat{X}|\mathcal{F}_t)$,
- $\varphi(t) = \frac{d\langle \hat{V}, \hat{S}_1 \rangle(t)}{d\langle \hat{S}_1, \hat{S}_1 \rangle(t)}$,
- $\varepsilon^2 = E\left(\langle \hat{V}, \hat{V} \rangle(T) - \varphi^2 \cdot \langle \hat{S}_1, \hat{S}_1 \rangle(T)\right)$.

How to compute them?

- Typically no closed-form solution available.
- Often available: closed-form solutions for $\hat{X} = \hat{S}_1(T)^z$, $z \in \mathbb{C}$.
- E.g. $E(\hat{X}) = E(\hat{S}_1(T)^z) = e^{-zrT}E(\exp(zL(T)))$, i.e. extended characteristic function of $L(T)$ for $S_1 = S_1e^L$.
Idea: use integral representation

\[\hat{X} = \int_{R-i\infty}^{R+i\infty} \hat{S}_1(T)^z \ell(z) dz \]

with explicitly given \(\ell(z), R \).

Linearity yields

- \(\hat{V}(t) = \int_{R-i\infty}^{R+i\infty} \hat{V}_z(t) \ell(z) dz \) with \(\hat{V}_z(t) := E(\hat{S}_1(T)^z | \mathcal{F}_t) \),
- \(\varphi(t) = \int_{R-i\infty}^{R+i\infty} \varphi_z(t) \ell(z) dz \) with \(\varphi_z(t) := \frac{d \langle \hat{V}_z, \hat{S}_1 \rangle(t)}{d \langle \hat{S}_1, \hat{S}_1 \rangle(t)} \),
- \(\varepsilon^2 = \int_{R-i\infty}^{R+i\infty} \int_{R-i\infty}^{R+i\infty} \varepsilon_{yz}^2 \ell(y) \ell(z) dy dz \) with
 \(\varepsilon_{yz}^2 = E \left(\langle \hat{V}_y, \hat{V}_z \rangle(T) - \varphi_y \varphi_z \cdot \langle \hat{S}_1, \hat{S}_1 \rangle(T) \right) \).

determine \(\ell(z) \) via inverse Laplace transform

- for \(\hat{X} = (\hat{S}_1(T) - K)^+ \) we have \(\ell(z) = \frac{K^{1-z}}{z(z-1)}, R > 1 \)
- for \(\hat{X} = (K - \hat{S}_1(T))^+ \) we have \(\ell(z) = \frac{K^{1-z}}{z(z-1)}, R < 0 \)
Outline

1. Mathematical finance
2. Stochastic calculus
3. Applications to finance
Basic concepts
of the general theory of stochastic processes

filtration \((\mathcal{F}_t)_{t \in \mathbb{R}_+}\)
process \(X = (X(t))_{t \in \mathbb{R}_+}\)
càdlàg: right-continuous with left-hand limits \(X_\cdot = (X(t^-))_{t \in \mathbb{R}_+}\)
of finite variation: difference of two increasing processes
adaptedness: \(X(t) \mathcal{F}_t\)-measurable for all \(t\)
predictability: slightly stronger than “\(X(t) \mathcal{F}_{t-}\)-measurable for all \(t\)”
stopping time: random time \(\tau\) with \(\{\tau \leq t\} \in \mathcal{F}_t\)
stopped process \(X^\tau = (X(\tau \wedge t))_{t \in \mathbb{R}_+}\) with stopping time \(\tau\)
martingale: \(E(X(t)|\mathcal{F}_s) = X(s)\) for \(s \leq t\)
submartingale: \(E(X(t)|\mathcal{F}_s) \geq X(s)\) for \(s \leq t\)
supermartingale: \(E(X(t)|\mathcal{F}_s) \leq X(s)\) for \(s \leq t\)
density process: \(Z(t) = E\left(\frac{dQ}{dP}|\mathcal{F}_t\right) = \frac{dQ}{dP}|\mathcal{F}_t\)
localized classes \(\mathcal{C}_{loc}\) (local martingales etc.): \(X^{\tau_n} \in \mathcal{C}\) for all \(n\)
special semimartingale: \(X = X(0) + M^X + A^X\) with predictable \(A^X\)
compensator: finite variation process \(A^X\) in above decomposition
semimartingale: \(X = X(0) + M + A\) with adapted \(A\)
Lévy processes

Definition

- processes of constant growth in stochastic sense
- random counterpart of linear functions
- continuous-time counterpart of random walks

Definition (Lévy process)

adapted càdlàg process X with $X(0) = 0$, $X(t) - X(s)$ independent of \mathcal{F}_s (independent increments), $\mathcal{L}(X(t) - X(s))$ depends only on $t - s$ (stationary increments)

Examples:

- linear function $X(t) = bt$
- Brownian motion with drift $X(t) = \mu t + \sigma W(t)$
- Poisson process
- compound Poisson process $X(t) = \sum_{i=1}^{N(t)} Y_i$
Theorem (Lévy-Khintchine formula)

Characteristic function is \(\varphi_{X(t)}(u) = E(e^{iu^T X(t)}) = \exp(t \psi(u)) \) with characteristic exponent

\[
\psi(u) = iu^T b^h - \frac{1}{2} u^T cu + \int (e^{iu^T x} - 1 - iu^T h(x))K(dx)
\]

and Lévy-Khintchine triplet \((b^h, c, K)\).

\(h \) denotes some truncation function as e.g. \(h(x) = x1\{|x| \leq 1\} \).

Interpretation:

- Drift coefficient \(b \) stands for linear function.
- Diffusion coefficient \(c \) stands for Brownian motion.
- Lévy measure \(K \) stands for jumps.

\[
b^h = \tilde{b}^h + \int (\tilde{h}(x) - h(x))K(dx)
\]
Lévy processes
Moments

- p-th moments exist if $K|_{\{|x|>1\}}$ has p-th moments.
- $E(X(t)) = b^h t = -i \psi'(0) t$ for $h(x) = x$ (i.e. $h = \text{id}$)
- $\text{Var}(X(t)) = (c + \int x^2 K(dx)) t = -\psi''(0) t$ for dimension $d = 1$
- p-th exponential moments exist if
 $K|_{\{|x|>1\}}$ has p-th exponential moments.
- $E(e^{\rho^T X(t)}) = \exp(t(\rho^T b^h + \frac{1}{2} \rho^T c \rho + \int (e^{\rho^T x} - 1 - \rho^T h(x)) K(dx)))$, which equals $\exp(t \psi(-i \rho))$ if ψ has analytic extension.
- X is (local) martingale iff $E(X(1)) = 0$.
- e^X is (local) martingale iff $E(e^{X(1)}) = 1$.

Lévy processes
Path properties

- \(X \) has differentiable paths \(\iff c = 0, K = 0 \)
 \(\iff X \) is linear function.

- \(X \) has continuous paths \(\iff K = 0 \)
 \(\iff X \) is Brownian motion with drift.

- \(X \) is piecewise constant \(\iff c = 0, K(\mathbb{R}) < \infty, b^0 = 0 \)
 \(\iff X \) is compound Poisson process.

- \(X \) has finitely many jumps on \([0, t]\) \(\iff K(\mathbb{R}) < \infty \)

- \(X \) is of finite variation \(\iff c = 0, \int_{|x| \leq 1} |x|K(dx) < \infty \)
Theorem (Lévy-Itô decomposition)

Let X have finite expectation and triplet (b^{id}, c, K).

\[
X(t) = b^{id} t + \sqrt{c} W(t) + \lim_{\varepsilon \to 0} \left(\sum_{s \leq t} \Delta X(s) 1_{\{|\Delta X(s)| > \varepsilon\}} - \int x 1_{\{|\Delta X(s)| > \varepsilon\}} K(dx) s \right)
\]

\[
= b^{id} t + \sqrt{c} W(t) + \int_{[0,t] \times \mathbb{R}} x (\mu^X - \nu^X)(d(s, x))
\]

with random measure of jumps of X

\[
\mu^X([0, t] \times B) := \#\{(s, x) \in [0, t] \times B : \Delta X(s) = x \neq 0\}
\]

and compensated random measure of jumps of X

\[
\nu^X([0, t] \times B) := K(B)t.
\]
Lévy processes in finance
for modelling of stock prices etc.

- Brownian motions with drift
 - most important and the only continuous Lévy processes
 - density, characteristic exponent, Lévy-Khintchine triplet known in closed form
 - 2 parameters
 - all exponential moments exist

- stable Lévy motions
 - the only self-similar Lévy processes
 - either Brownian motion or pure jump
 - characteristic exponent, Lévy-Khintchine triplet known in closed form
 - 4 parameters
 - infinite variance (except for Brownian motion)
Lévy processes in finance
for modelling of stock prices etc. (ct’d)

- **Merton model**
 - Brownian motion + drift + Gaussian jumps
 - finitely many jumps on $[0, t]$
 - characteristic exponent, Lévy-Khintchine triplet known in closed form
 - 5 parameters
 - all exponential moments exist

- **Kou model**
 - Brownian motion + drift + exponential jumps
 - finitely many jumps on $[0, t]$
 - characteristic exponent, Lévy-Khintchine triplet known in closed form
 - 6 parameters
 - some exponential moments exist
Lévy processes in finance
for modelling of stock prices etc. (ct’d)

- variance gamma (VG) processes
 - pure jump Lévy process
 - infinitely many jumps on $[0, t]$ but of finite variation
 - density, characteristic exponent, Lévy-Khintchine triplet known in closed form
 - 4 parameters
 - some exponential moments exist

- normal inverse Gaussian (NIG) processes
 - pure jump Lévy process
 - of infinite variation
 - density, characteristic exponent, Lévy-Khintchine triplet known in closed form
 - 4 parameters
 - some exponential moments exist

- etc.
Quadratic variation

and friends

- **quadratic variation** of semimartingale X:

$$[X, X](t) = \lim_{\sup \, |t_i - t_{i-1}| \to 0} \sum_{i \geq 1} (X(t_i \wedge t) - X(t_{i-1} \wedge t))^2$$

- covariation of X and Y:

$$[X, Y] = \frac{1}{4} ([X + Y, X + Y] - [X - Y, X - Y])$$

- Example: X Lévy process with triplet (b^h, c, K)

 - $[X, X]$ is Lévy process.
 - Triplet of $[X, X]$ is $(c, 0, \tilde{K})$ relative to $\tilde{h} = 0$, where $\tilde{K}(B) = \int 1_B(x^2)K(dx)$.

- **predictable quadratic variation** of X:

$$\langle X, X \rangle = A^{[X, X]}$$ (compensator of $[X, X]$)

- predictable covariation of X, Y: $\langle X, Y \rangle = A^{[X, Y]}$

- Example: X Lévy process with finite variance

 - $\langle X, X \rangle$ is linear function.
 - $\langle X, X \rangle(t) = \text{Var}(X(t))$
Continuous martingale part
of a semimartingale

- Local martingales X, Y are orthogonal if XY local martingale.
- Local martingale X is purely discontinuous if orthogonal to all continuous local martingales.
- X local martingale \Rightarrow
 there is unique decomposition $X = X(0) + X^c + X^d$ with
 X^c continuous, X^d purely discontinuous, $X^c(0) = 0 = X^d(0)$.
- $X = X(0) + M + A$ semimartingale \Rightarrow
 continuous martingale part $X^c := M^c$ does not depend on decomposition of X
- $[X, Y](t) = \langle X^c, Y^c \rangle(t) + \sum_{s \leq t} \Delta X_s \Delta Y_s$
- X Lévy process with Lévy-Itô decomposition
 $X(t) = b^{id}t + \sqrt{c}W(t) + \int_{[0,t] \times \mathbb{R}} x(\mu^X - \nu^X)(d(s, x))$
 $\Rightarrow X^c = \sqrt{c}W$
Stochastic integral

Heuristics

- Informal “definition”:
 - \(\varphi \) predictable process
 - \(X \) semimartingale
 - \(\varphi \cdot X(t) \approx \lim_{\sup |t_i - t_{i-1}| \to 0} \sum_{i \geq 1} \varphi(t_{i-1})(X(t_i \land t) - X(t_{i-1} \land t)) \)
 - alternative notation: \(\int_0^t \varphi(s)dX(s) = \varphi \cdot X(t) \)
 - \(\varphi \cdot X(t) := \sum_{i=1}^{d} \varphi_i(t) \cdot X_i(t) \) for \(\mathbb{R}^d \)-valued \(\varphi, X \)

- Interpretation:
 - \(\varphi \) trading strategy
 - \(X \) stock price process
 - \(\varphi \cdot X(t) = \int_0^t \varphi(s)dX(s) \) gains due to price changes
Stochastic integral
Properties

- $\varphi \cdot X$ is linear in φ and X
- $\varphi \cdot (\psi \cdot X) = (\varphi \psi) \cdot X$
- $[\varphi \cdot X, Y] = \varphi \cdot [X, Y]$
- $\langle \varphi \cdot X, Y \rangle = \varphi \cdot \langle X, Y \rangle$
- $\Delta (\varphi \cdot X) = \varphi \cdot \Delta X$
- $(\varphi \cdot X)^T = \varphi \cdot X^T$
- $(\varphi \cdot X)^c = \varphi \cdot X^c$
- X sigma-martingale $\Rightarrow \varphi \cdot X$ sigma-martingale
 (slightly more general than local martingale)
- **Integration by parts:**
 $XY = X(0)Y(0) + X_- \cdot Y + Y_- \cdot X + [X, Y]
Theorem (Itô’s formula)

Let X semimartingale in \mathbb{R}^d and $f : \mathbb{R}^d \to \mathbb{R}$ of class C^2.

\[
f(X(t)) = f(X(0)) + Df(X_-) \cdot X(t) + \frac{1}{2} \sum_{i,j=1}^{d} D_{ij} f(X_-) \cdot \langle X^c_i, X^c_j \rangle(t) \\
+ \sum_{s \leq t} \left(f(X(s)) - f(X(s-)) - Df(X(s-))^\top \Delta X(s) \right)
\]

For $d = 1$:

\[
f(X(t)) = f(X(0)) + f'(X_-) \cdot X(t) + \frac{1}{2} f''(X_-) \cdot \langle X^c, X^c \rangle(t) \\
+ \sum_{s \leq t} \left(f(X(s)) - f(X(s-)) - f'(X(s-)) \Delta X(s) \right).
\]
Random measures
and their integration

- recall random measure of jumps of semimartingale X:
 $\mu^X([0, t] \times B) := \#\{ (s, x) \in [0, t] \times B : \Delta X(s) = x \neq 0 \}$
- random measure here means: measure on $\mathbb{R}_+ \times \mathbb{R}^d$ for fixed ω
- integral process $\xi \ast \mu$
 - $\xi : \Omega \times \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R}$ in some sense predictable function
 - μ random measure
 - $\xi \ast \mu(t) := \int_{[0,t] \times \mathbb{R}^d} \xi(s, x) \mu(d(s, x))$ pathwise integral
 - For $\mu = \mu^X$ we have $\xi \ast \mu^X(t) = \sum_{s \leq t} \xi(s, \Delta X(s)) 1_{\{\Delta X(s) \neq 0\}}$.
- compensator ν^X of μ^X:
 the in some sense predictable random measure such that $\xi \ast \mu - \xi \ast \nu$ local martingale for most predictable ξ
- stochastic integral $\xi \ast (\mu^X - \nu^X)$:
 extension of $\xi \ast \mu^X - \xi \ast \nu^X$ to some ξ where this is not defined
Random measures
Properties

- X Lévy process with triplet $(b^h, c, K) \Rightarrow \nu^X(d(t, x)) = K(dx)dt$
- $\xi \ast \mu$ and $\xi \ast (\mu^X - \nu^X)$ are linear in ξ.
- $\varphi \cdot (\xi \ast \mu) = (\varphi \psi) \ast \mu$
- $\varphi \cdot (\xi \ast (\mu^X - \nu^X)) = (\varphi \psi) \ast (\mu^X - \nu^X)$
- $\xi \ast (\mu^X - \nu^X)$ is local martingale, typically (but not always) with jumps
 $\Delta(\xi \ast (\mu^X - \nu^X))(t) = \xi(t, \Delta X(t))1_{\{\Delta X(t)\neq 0\}}$
- $\langle \eta \ast (\mu^X - \nu^X), \xi \ast (\mu^X - \nu^X) \rangle = (\eta \xi) \ast \nu^X$
- Itô’s formula:

\[
f(X(t)) = f(X(0)) + f'(X_-) \cdot X(t) + \frac{1}{2} f''(X_-) \cdot \langle X^c, X^c \rangle(t) + (f(X_- + x) - f(X_-) - f'(X_-)x) \ast \mu^X(t)\]

- X special semimartingale:

\[
X = X(0) + A^X + X^c + x \ast (\mu^X - \nu^X)\
\]

generalizes Lévy-Itô decomposition
The solution $\mathcal{E}(X)$ to $Z = 1 + Z_- \cdot X$ is called Doléans exponential or stochastic exponential of X.

Solution for $\Delta X > -1$:

$$\mathcal{E}(X) = \exp \left(X(t) - X(0) - \frac{1}{2} \langle X^c, X^c \rangle(t) \right. \left. + \sum_{s \leq t} \left(\log(1 + \Delta X(s)) - \Delta X(s) \right) \right)$$

Yor’s formula:

$$\mathcal{E}(X)\mathcal{E}(Y) = \mathcal{E}(X + Y + [X, Y])$$
Idea: constant *relative* rather than absolute growth
 - more appropriate e.g. for stock prices

geometric Lévy process:
- $\mathbb{R} \setminus \{0\}$-valued semimartingale with $X(0) = 1$
- $\frac{X(t)}{X(s)}$ independent of \mathcal{F}_s
- $\mathcal{L}(\frac{X(t)}{X(s)})$ depends only on $t - s$

equivalence for positive X:
- X is a geometric Lévy process.
- $X = e^L$ for some Lévy process L.
- $X = \mathcal{E}(\tilde{L})$ for some Lévy process \tilde{L}.

moreover:
- can relate triplets of L and \tilde{L}
- multivariate analogue exists
Semimartingale characteristics as local Lévy-Khintchine triplets

- **Local dynamics of functions and processes**

<table>
<thead>
<tr>
<th></th>
<th>Deterministic Functions</th>
<th>Stochastic Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant growth</td>
<td>Linear function $X(t) = bt$ [slope b]</td>
<td>Lévy process $X(t)$ [triplet (b^h, c, K)]</td>
</tr>
<tr>
<td>General case</td>
<td>Function $X(t)$ [local slope $b(t) = \frac{dX(t)}{dt}$]</td>
<td>Semimartingale $X(t)$ [local triplet $(b^h, c, K)(\omega, t)$]</td>
</tr>
</tbody>
</table>

- **Goal:** Definition of local triplet $(b^h, c, K)(\omega, t)$

- **Interpretation:**
 - Semimartingale X resembles locally around t
 - A Lévy process with triplet $(b^h, c, K)(\omega, t)$.

```
Lemma: \( X \) Lévy process with triplet \((b^h, c, K)\) \(\Rightarrow\)

\[
M(t) := e^{iu^\top X(t)} - \int_0^t e^{iu^\top X(s^-)}\psi(u)\,ds
\]
is local martingale for any \( u \in \mathbb{R}^d \), where \( \psi(u) \) characteristic exponent of \((b^h, c, K)\).

**Definition (differential characteristics)**

A predictable triplet \((b^h, c, K)(\omega, t)\) is called **differential characteristics** or **local triplet** of semimartingale \( X \) if

\[
M(t) := e^{iu^\top X(t)} - \int_0^t e^{iu^\top X(s^-)}\psi(s, u)\,ds
\]
is a local martingale for any \( u \),

where \( \psi(t, u) := iu^\top b^h(t) - \frac{1}{2} u^\top c(t) u + \int (e^{iu^\top x} - 1 - iu^\top h(x))K(t, dx) \) denotes the characteristic exponent of \((b^h, c, K)(\omega, t)\).

**dependence on truncation function:**

\[
b^{\tilde{h}}(t) = b^h(t) + \int (\tilde{h}(x) - h(x))K(t, dx)
\]
Semimartingale characteristics

Alternative characterization

- $X$ semimartingale with local triplet $(b^h, c, K)$. Define
  - $X^h := X - (x - h(x)) \ast \mu^X$
  - $A^{X^h}$ compensator of $X^h$
    (i.e. $X^h - A^{X^h}$ local martingale)
  - $\nu^X$ compensator of measure of jumps of $X$

Then

\[
A^{X^h}(t) = \int_0^t b^h(s) ds,
\]
\[
\langle X_i^c, X_j^c \rangle = \int_0^t c_{ij}(s) ds,
\]
\[
\nu^X([0, t] \times dx) = \int_0^t K(s, dx) ds.
\]
Semimartingale characteristics
Rules

Lemma (Lévy processes)

\( X \) is a Lévy process \( \iff \) local triplet of \( X \) does not depend on \((\omega, t)\).

Lemma (stochastic integrals)

Let \((b^h, c, K)\) be the local triplet of \( X \). Then \( \varphi \cdot X \) has local triplet

\[
\begin{align*}
\tilde{b}^h(t) &= \varphi(t)^\top b^h(t) + \int \left( \tilde{h}(\varphi(t)x) - \varphi(t)h(x) \right) K(t, dx), \\
\tilde{c}(t) &= \varphi(t)c(t)\varphi(t)^\top, \\
\tilde{K}(t, B) &= \int 1_B(\varphi(t)x)K(t, dx).
\end{align*}
\]
Lemma ($C^2$-functions)

Let $(b^h, c, K)$ be the local triplet of $X$ and $f : \mathbb{R}^d \to \mathbb{R}^n$ of class $C^2$. Then $f(X)$ has local triplet

\[
\tilde{b}^h_i(t) = Df_i(X(t-))^\top b^h(t) + \frac{1}{2} \sum_{k,l=1}^{d} D_{kl} f_i(X(t-)) c_{kl}(t) \\
+ \int \left( \tilde{h}_i \left( f(X(t-)) + x \right) - f(X(t-)) \right) - Df_i(X(t-))^\top h(x) \right) F(t, dx),
\]

\[
\tilde{c}_{ij}(t) = \sum_{k,l=1}^{d} D_{k} f_i(X(t-)) c_{kl}(t) D_{l} f_j(X(t-)),
\]

\[
\tilde{K}_t(B) = \int 1_B(f(X(t-)) + x) - f(X(t-)) \right) K_t(dx).
\]
Lemma (change of measure)

Let \((b^h, c, K)\) be the local triplet of \(X\). Suppose that \(Q \sim P\) has density process \(E(\varphi \cdot X^c + \psi \ast (\mu^X - \nu^X))\). Then \(X\) has \(Q\)-local triplet

\[
\begin{align*}
\tilde{b}^h(t) &= b^h(t) + \varphi(t)^\top c(t) + \int h(x)\psi(t, x)K(t, dx), \\
\tilde{c}(t) &= c(t), \\
\tilde{K}(t)(B) &= \int 1_B(x)(1 + \psi(t, x))K(t)(dx).
\end{align*}
\]

Lemma (predictable covariation)

Let \((b^h, c, K)\) be the local triplet of \(X\). Then

\[
d\langle X_i, X_j \rangle(t) = (c_{ij}(t) + \int x_i x_j K(t, dx)) \, dt.
\]
Outline

1. Mathematical finance
2. Stochastic calculus
3. Applications to finance
Option pricing in geometric Lévy model
Integral transform method

- **Model:**
  - $S_0(t) = e^{rt}, \ S_1(t) = S_1(0)e^{L(t)}$ with Lévy process $L$
  - $\psi$ characteristic exponent of $L$ under pricing measure $Q$
  - $\hat{S}_1$ $Q$-martingale (i.e. $\psi(-i) = r$)
  - recall that we need $\hat{V}_z(t)$

- **Solution:**
  $$\hat{V}_z(t) = \hat{S}_1(t)^{z} \exp((T-t)(\psi(-iz) - rz))$$

- **Price of European call at $t$:**
  $$S_1(t) \int_{R-i\infty}^{R+i\infty} \left( \frac{K}{S_1(t)} \right)^{1-z} \frac{e^{(T-t)(\psi(-iz) - r)}}{2\pi iz(z-1)} \, dz$$
Utility maximization in geometric Lévy model
Power and logarithmic utility

Model:
- $S_0(t) = e^{rt}$, $S_1(t) = S_1(0)e^{L(t)}$ with Lévy process $L$
- initial endowment $\nu$
- utility function $u(x) = \frac{x^{1-p}}{1-p}$ or $u(x) = \log(x)$
- maximize $E(u(V_\varphi(T)))$ over admissible $\varphi$

Solution:
- $\varphi^*(t) = \gamma \frac{V_{\varphi^*}(t-)}{S_1(t-)}$ with $\gamma \in \mathbb{R}$
- $\hat{V}_{\varphi^*}(t) = \nu S_1(\gamma(\hat{S}_1)^{-1} \cdot \hat{S}_1)$
- Density process of EMM $Q$ from dual characterization is $Z(t) = e^{-\alpha(T-t)} \frac{u'(\hat{V}_{\varphi^*}(t))}{E(u'(\hat{V}_{\varphi^*}(t)))}$ with $\alpha \in \mathbb{R}$.
- $\gamma$ is determined as root from an equation.
- $\alpha$ is known in terms of $\gamma$.

Properties of the solution:
- Fixed fraction of current wealth is invested in the stock.
- Value of the optimal strategy is geometric Lévy process.
- Density process of $Q$ is geometric Lévy process.
- $S_1$ is geometric Lévy process under $Q$ as well.
Utility maximization in geometric Lévy model

Exponential utility

- **Model:**
  - \( S_0(t) = e^{rt}, \ S_1(t) = S_1(0)e^{L(t)} \) with Lévy process \( L \)
  - initial endowment \( \nu \)
  - utility function \( u(x) = 1 - e^{-px} \)
  - maximize \( E(u(\hat{V}_\varphi(T))) \) over admissible \( \varphi \)

- **Solution:**
  - \( \varphi^*(t) = \frac{\gamma}{\hat{S}_1(t-)} \) with \( \gamma \in \mathbb{R} \)
  - \( \hat{V}_{\varphi^*}(t) = \nu + \gamma(\hat{S}_1)^{-1} \cdot \hat{S}_1 \)
  - Density process of EMM \( Q \) from dual characterization is
    \[ Z(t) = e^{-\alpha(T-t)} \frac{u'(\hat{V}_{\varphi^*}(t))}{E(u'(\hat{V}_{\varphi^*}(t)))} \] with \( \alpha \in \mathbb{R} \).
  - \( \gamma \) is determined as root from an equation.
  - \( \alpha \) is known in terms of \( \gamma \).

- **Properties of the solution:**
  - Fixed discounted amount of money is invested in the stock.
  - Value of the optimal strategy is Lévy process + \( \nu \).
  - Density process of \( Q \) is geometric Lévy process.
  - \( S_1 \) is geometric Lévy process under \( Q \) as well.
Quadratic hedging in geometric Lévy model
Martingale case

Model:
- \( S_0(t) = e^{rt} \), \( S_1(t) = S_1(0)e^{L(t)} \) with Lévy process \( L \)
- \( \psi \) characteristic exponent of \( L \)
- \( \hat{S}_1 \) martingale (i.e. \( \psi(-i) = r \))
- recall that we need \( \hat{V}_z(t) \), \( \varphi_z(t) \), \( \varepsilon_{yz}^2 \)

Solution:
- \( \hat{V}_z(t) = \hat{S}_1(t)^z \exp((T-t)(\psi(-iz) - rz)) \)
- \( \varphi_z(t) = \frac{\hat{V}_z(t-)}{\hat{S}_1(t-)} \frac{\psi(-i(z+1)) - \psi(-iz) - r}{\psi(-2i) - 2r} \)
- \[
\varepsilon_{yz}^2 = S_1(0)^y+z(e^{\kappa(y+z)T} - e^{(\kappa(y) + \kappa(z))T})
\times \left(1 - \frac{\kappa(y+1) - \kappa(y))(\kappa(z+1) - \kappa(z))}{\kappa(2)(\kappa(y+z) - \kappa(y) - \kappa(z))}\right)
\]
- with \( \kappa(z) := \psi(-iz) - rz \)
- can now apply results to approximate indifference pricing