Groups of local characteristic p

U. Meierfrankenfeld

Masterclass on Classification Problems in Groups and Fusion Systems June 10-14, 2013
Definition

Let G be a group and p a prime.

- A p-local subgroup of G is the normalizer of a non-trivial p-subgroup of G.
- G has characteristic p if $C_G(O_p(G)) \leq O_p(G)$.
- G has local characteristic p if p divides $|G|$ and all p-local subgroups of G have local characteristic p.
Notation

From now on p is prime, G is a finite \mathcal{K}_p-group of local characteristic p with $O_p(G) = 1$ and S is a Sylow p-subgroup of G.

Goal

Understand and classify the finite groups of local characteristic p with $O_p(G) = 1$.

Disclaimer

For p odd we do not expect to be able to achieve a complete classification. Some groups with a relatively small p-local structure will remain unclassified.
Definition

Let L be a finite group. A p-reduced normal subgroup of L is an elementary abelian normal p-subgroup Y of L with $O_p(L/C_L(Y)) = 1$.

Y_L is the largest p-reduced normal subgroup of L.

Notation

tC is a maximal p-local subgroup of G with $N_G(\Omega_1 Z(S)) \leq tC$ and $E = O^p\left(F^*_p(C_t(Y_t))\right)$

Definition

A finite group L is p-minimal if a Sylow p-subgroup of L is contained in a unique maximal subgroup of L but is not normal in L.
Theorem (The Small World Theorem)

One of the following holds:

1. S is contained in a unique maximal p-local subgroup of G.
2. E is contained in at least two maximal p-local subgroups of G.
3. There exists a p-local subgroup M of G with $S \leq M$ and $Y_M \nsubseteq Q$.
4. There exists a p-minimal subgroup P of G with $S \leq P$ such that $Y_P \leq Q$ and $\langle Y^E_P \rangle$ is not abelian.
5. There exist p-minimal subgroups P_1 and P_2 of G with $S \leq P_1 \cap P_2$, $O_p(P_i) \neq 1$, $P_1 \leq ES$ and $O_p(\langle P_1, P_2 \rangle) = 1$.
6. If P is a p-minimal subgroup of G with $S \leq P$ and $P \not\leq \tilde{C}$, then $O^p(P) \sim q^2SL_2(q)'$, where q is a power of p.
7. $p = 3$ or 5 and there exist p-local subgroups M_1 and M_2 of G such that $S \leq M_1 \cap M_2$, $O_p(\langle M_1, M_2 \rangle) = 1$ and, for $i = 1, 2$, $M_i \sim p^{3+3}SL_3(p)$.
If \tilde{C} is the unique maximal p-local subgroup of G containing S, then either \tilde{C} is a strongly p-embedded subgroup of G or one can apply the local CGT-theorem to obtain a p-local subgroup of a very restricted structure. But we currently do not know whether this information will be enough to identify G. To avoid this problem we will assume from now on that S is contained in at least two maximal p-local subgroups of G.
We now distinguish two cases:

\(\neg E!\) There exist two distinct maximal \(p\)-local subgroups \(M_1\) and \(M_2\) with \(E \leq M_1 \cap M_2\).

\(E!\) \(\tilde{C}\) is the unique maximal subgroup \(p\)-local subgroup of \(G\) containing \(E\).

In the \(\neg E!\) we choose suitable subgroups \(L_1\) and \(L_2\) with

\[E \leq L_1 \cap L_2 \quad \text{and} \quad O_p(\langle L_1, L_2 \rangle) = 1. \]

We then use the amalgam method to determine the structure of \(L_1\) and \(L_2\). Given \(L_1\) and \(L_2\) one should be able to identify \(G\) up to isomorphism.
The $E!$-case

Definition

A p-subgroup Q of G is called large, if $C_G(Q) \leq Q$, and

$$N_G(A) \leq N_G(Q) \text{ for all } 1 \neq A \leq C_G(Q)$$

Lemma

*Suppose E lies in a unique maximal p-local subgroup of G, then $O_p(\tilde{C})$ is a large p-subgroup of G,***
Theorem (Structure Theorem)

Let Q be a large p-subgroup of G and M be a p-local subgroup of G with $Q \leq S \leq G$ and $Q \nmid M$. Put $M^\circ = \langle Q^M \rangle$, $\overline{M} = M/C_M(Y_M)$ and $I = [Y_M, M^\circ]$.

Suppose that $Y_M \leq Q$. Then one of the following holds.

1. $\overline{M}^\circ \cong SL_n(q), Sp_{2n}(q)$ or $Sp_4(2)'$ and I is the corresponding natural module.

2. There exists a normal subgroup K of \overline{M} such that
 - $K = K_1 \times \cdots \times K_r$, $K_i \cong Sl_2(q)$ and
 - $Y_M = V_1 \times \cdots \times V_r$

 where $V_i := [Y_M, K_i]$ is a natural K_i-module.

3. Q permutes the K_i’s transitively.

4. There exists a p-local subgroup M^* of G with $M \leq M^*$ and M^* fulfills the previous case.
Suppose that $Y_M \not\subseteq Q$. Then one of the following holds:

- There exists a normal subgroup K of \overline{M} such that $K = K_1 \circ K_2$ with $K_i \cong SL_{m_i}(q)$, $Y_M \cong V_1 \otimes V_2$ where V_i is a natural module for K_i and \overline{M}° is one of K_1, K_2 or $K_1 \circ K_2$.

- $(\overline{M}^\circ, p, I)$ is as given in the following table:

<table>
<thead>
<tr>
<th>\overline{M}°</th>
<th>p</th>
<th>I</th>
<th>\overline{M}°</th>
<th>p</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>$SL_n(q)$</td>
<td>p</td>
<td>nat</td>
<td>$O_4^+(2)$</td>
<td>2</td>
<td>nat</td>
</tr>
<tr>
<td>$SL_n(q)$</td>
<td>p</td>
<td>$\wedge^2(nat)$</td>
<td>$\Omega_{10}^\pm(q)$</td>
<td>2</td>
<td>spin</td>
</tr>
<tr>
<td>$SL_n(q)$</td>
<td>p</td>
<td>$S^2(nat)$</td>
<td>$E_6(q)$</td>
<td>p</td>
<td>q^{27}</td>
</tr>
<tr>
<td>$SL_n(q^2)$</td>
<td>p</td>
<td>nat \otimes natq</td>
<td>M_{11}</td>
<td>3</td>
<td>3^5</td>
</tr>
<tr>
<td>$3 \text{ Alt}(6), 3 \text{ Sym}(6)$</td>
<td>2</td>
<td>2^6</td>
<td>$2M_{12}$</td>
<td>3</td>
<td>3^6</td>
</tr>
<tr>
<td>$\Gamma SL_2(4), \Gamma GL_2(4)$</td>
<td>2</td>
<td>nat</td>
<td>M_{22}</td>
<td>2</td>
<td>2^{10}</td>
</tr>
<tr>
<td>$Sp_{2n}(q)$</td>
<td>2</td>
<td>nat</td>
<td>M_{24}</td>
<td>2</td>
<td>2^{11}</td>
</tr>
<tr>
<td>$\Omega_n^\pm(q)$</td>
<td>p</td>
<td>nat</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Theorem (The H-Structure Theorem)

Suppose that Q is a large p-subgroup of G and let M be a p-local subgroup of G with $Q \leq S \leq G$ and $Y_M \not\leq Q$. Then there exists $H \leq G$ such that $M^\circ S \leq H$, $O_p(H) = 1$ and H has the same residual type as one of the following groups:

- A group of Lie-type in characteristic p.
- For $p = 2$: $M_{24}, He, Co_2, Fi_{22}, Co_1, J_4, Fi_{24}, Suz, B, M, U_4(3)$ or $G_2(3)$.
- For $p = 3$: Fi_{24}, Co_3, Co_1 or M.
Let $Q = O_p(\tilde{C})$. For $L \leq G$ put $L^\circ = \langle Q^g \mid g \in G, Q^g \leq L \rangle$. In view of the H-structure theorem we assume from now on that $Y_M \leq Q$ for all p-local subgroups M of G with $S \leq M$.

Theorem (The P!-Theorem)

Let $P \leq G$ such that

(*) $S \leq P \leq G$, P is p-minimal, $O_p(P) \neq 1$ and $Q \ntriangleleft P$.

Put $P^* := P^\circ O_p(P)$ and $Z_0 := \Omega_1 Z(S \cap P^*)$. Then

- Y_P is a natural $SL_2(p^m)$-module for P^*.
- Z_0 is normal in \tilde{C}.
- Either P is unique with respect to (*) or $P^* \sim q^2 SL_2(q)$.

Suppose that there exists more than one subgroup \tilde{P} of G such that $S \leq \tilde{P}$, \tilde{P} is p-minimal, $\tilde{P} \not\subseteq N_G(P^\circ)$ and $O_p(M) \neq 1$, where $M = \langle P, \tilde{P} \rangle$. Then $p = 3$ or 5 and $M^\circ \sim p^{3+3^*} SL_3(p)$ for any such \tilde{P}.
Theorem (The Rank 2 Theorem)

Suppose there exists p-minimal subgroups P_1 and P_2 of G with $S \leq P_1 \cap P_2$, $P_1 \leq ES$, $O_p(P_i) \neq 1$ and $O_p(\langle P_1, P_2 \rangle) = 1$. Then one of the following holds:

- (P_1, P_2) is a weak BN-pair.
- The structure of P_1 and P_2 is as in one of the following groups.
 - For $p = 2$: $U_4(3).2^e$, $G_2(3).2^e$, $D_4(3).2^e$, $HS.2^e$, F_3, $F_5.2^e$ or Ru.
 - For $p = 3$: $D_4(3^n).3^e$, Fi_{23}, F_2.
 - For $p = 5$: F_2.
 - For $p = 7$: F_1.

Copenhagen, June 10th, 2013
Theorem (The Isolated Subgroup Theorem)

Let H be a finite group, $T \in \text{Syl}_p(L)$ and P^* be p-minimal subgroup of H with $T \leq P^*$. Put $K = \langle O^p(P^*)^H \rangle$ and

$$L = \langle R \mid T \leq R \leq H, \text{R is p-minimal, R} \neq P^* \rangle.$$

Suppose that $O_p(L) \nsubseteq O_p(P^*)$ and P^* is narrow. Then $K/O_p(K)$ is quasisimple.

Corollary

Put $K = \langle O^p(\tilde{P})\tilde{C} \rangle$. Then $K/O_p(K)$ is quasisimple.