Goal: THH of smooth algebra over \mathbb{F}_p (or more generally over perfect field).

Thm (Bökstedt) $\text{THH}_* (\mathbb{F}_p) = \mathbb{F}_p [x]$.

Now let R be a smooth \mathbb{F}_p-algebra. Then (this does not use smoothness)

$$\text{THH}_1 (R) \xleftarrow{\sim} \text{HH}_1 (R/\mathbb{F}_p) \xleftarrow{\sim} \Sigma^1 \mathbb{F}_p / \mathbb{F}_p.$$

Using product structure, get

$$\Sigma^* \mathbb{F}_p / \mathbb{F}_p \longrightarrow \text{THH}_* (R),$$

compatible with differentials.

Thm (Hesselholt) The map of (differentially graded) rings

$$\Sigma^* \mathbb{F}_p / \mathbb{F}_p \otimes \text{THH}_* (\mathbb{F}_p) \longrightarrow \text{THH}_* (R)$$

is an isomorphism, for R/\mathbb{F}_p smooth.

So $\text{THH}_n (R) = \bigoplus \Sigma^{n-2i} \mathbb{F}_p / \mathbb{F}_p$. First new result is to upgrade this, to spectrum level result.
Thin (B-M-S II) There is a natural, decreasing filtration of \(\text{THH}(R) \) (in \(\text{Fun}(\mathbb{N}(\mathbb{N}), \mathbb{S}p) \)) such that

\[
\text{gr } \text{THH}(R) \cong \left(\mathbb{Z} \text{^i} \Sigma_{R/\mathbb{F}_p} \right) [2i]
\]

where \(\mathbb{Z} \text{^i} \Sigma_{R/\mathbb{F}_p} \) is the ax.

\[
R \xrightarrow{\Omega_{R/\mathbb{F}_p}} \Sigma_{R/\mathbb{F}_p} \xrightarrow{\Omega^i_{R/\mathbb{F}_p}} \ker(d) \xrightarrow{\sim} \]

Taking \(\pi_*^* \), this recovers calc. above, using Cartier isom.

\[
\Sigma^i_{R/\mathbb{F}_p} \xrightarrow{\sim} H^i \left(\Sigma_{R/\mathbb{F}_p} \right).
\]

Goal: Sketch proof and state generalizations.

Tools from homotopical algebra:

- For any alg. \(A/\mathbb{F}_p \), pick simp. resolution \(PE_1 \rightarrow A \) by degree-wise free \(\mathbb{F}_p \)-alg., i.e. cofibrant res. in \(\text{Alg}(\mathbb{F}_p) \) \(\text{Set} \), and consider the simplicial cochain complex

\[
\Omega_{PE_1/\mathbb{F}_p}
\]
Define:

- The i'th row is the "i'th power of the cotangent $\mathfrak{c}x"$, $\mathbb{L} i^i \mathfrak{A}/\mathcal{E}_p$

- The \oplus totalization of the diagram is "derived DR cohomology $\mathfrak{c}x"$, $\mathbb{d}R^i \mathfrak{A}/\mathcal{E}_p$

- Define increasing filtration

$$F^j \mathbb{d}R^i \mathfrak{A}/\mathcal{E}_p \subset \mathbb{d}R^i \mathfrak{A}/\mathcal{E}_p$$

by applying $i \leq j$ to each column.
Obs. 1:

\[\text{gr}_j \mathfrak{d} \mathcal{R}A/\mathbb{F}_p = H^j_{\text{dR}}(\mathcal{P}[j])[-j] \approx \Omega^j_{\mathcal{P}[j]/\mathbb{F}_p} [-j] = L^j_{A/\mathbb{F}_p} \]

Obs. 2: Give

\[\text{THH}(A) \overset{\sim}{\leftarrow} |\text{THH}(\mathcal{P}[j])| \]

a filtration with \(n \)th graded piece

\[\bigoplus_{i=0}^{n-2i} \Omega^i_{\mathcal{P}[j]/\mathbb{F}_p}[i] \]

by taking Postnikov filters in each simplicial degree.

Notation: Say that a functor \(F : \text{Ep-alg} \to \text{D}(\mathbb{Z}), \text{Sp}, \ldots \)

satisfies flat descent, if for any faithfully flat \(A \to B \), the map
$F(A) \rightarrow \dim F(B^{\bullet},F^{-1})$ \\
\[\Delta\]

is a weak equivalence.

By thm. of Bhatt, $L\Lambda^{1}/F$ satisfies flat descent. Combining this with observations, get

Cor For \mathcal{F}-algebras,

$THH(-)$ and $\text{Fil}^j\text{d}R^{1}/F$

satisfy flat descent.

Now let R^{1}/F be smooth. Construct new filter on $THH(R)$ as follows. Let

$R^{perf} = \colim (R^{p}\rightarrow R^{p})$.

Since R^{1}/F is smooth,

$R \rightarrow R^{perf}$

is faithfully flat. By cor.,

$THH(R) \rightarrow \dim THH(R^{perf},F^{-1})$ \\
\[\Delta\]
and define descending filtr. by
\[\text{Fil}^i \text{ThH}(R) = \lim_{\Delta} \Delta \geq 2i \text{ ThH}(R^p[t, \theta_R^{-1}]). \]

Key lemma. Let \(S \) be a perfect \(\mathbb{F} \)-algebra, and let \(I \subset S \) be an ideal gen. by a regular sequence. Then
\[\text{ThH}^i_{2i}(S/I) \cong \text{Fil}^i_1 dR(S/I)/IF_p \]
and the odd homotopy groups vanish.

Proof. Classical fact that \(\text{IL}^i(S/I)/IF_p \) is supported in deg. \(i \).
By obs. 2, this shows that the odd degree hitpy groups are zero. By obs. 1,
\[\text{Fil}^i_1 dR(S/I)/IF_p \]
is supported in degree 0.
Now obs. 1 + obs. 2 imply that LHS and RHS of 20 & in statement have same graded
pieces, so enough to construct a map

\[\text{Fil}_l \cdot \text{dR}(S/I)/\mathbb{F}_p \rightarrow \text{THH}_{2l}(S/I) \]

inducing this isom. Omitted. \[\]

\textbf{Proof (of thm. on page 2)}

First recall that

\[R \text{perf} \otimes_R R \text{perf} \]

has the form \(S/I \) in key lemma. E.g. for \(R = \mathbb{F}_p \llbracket x \rrbracket \),

\[R \text{perf} \otimes_R R \text{perf} = \mathbb{F}_p \llbracket x/y, y/p^l \rrbracket / (x-y) \]

So by key lemma,

\[\text{gr}_l \cdot \text{THH}(R) \]

\[\cong \lim_{\Delta} \text{HH}_{2l}(R \text{perf} \otimes_R R \text{perf}, \mathbb{F}_p) \llbracket 2^l \rrbracket \]

\[\cong \lim_{\Delta} \text{Fil}_l \cdot \text{dR} R \text{perf} \otimes_R R \text{perf}, \mathbb{F}_p \llbracket 2^l \rrbracket \]

\[\cong \text{Fil}_l \cdot \text{dR} R/\mathbb{F}_p \llbracket 2^l \rrbracket \]

\[\cong (2^l \cdot \mathbb{F}_p) \llbracket 2^l \rrbracket \]
where the next to last \(\simeq B \) is just descent for \(\\mathcal{F}^{1,1}_d, R^{-1}F_p' \) and where the last \(\simeq B \) is a consequence of \(R^{-1}F_p' \) being smooth.

Can repeat construction for \(\mathbb{THH}(-) \) replaced by

\[
TR^n(-; p), TP(-), TC^-(\cdot),
\]

\[
TC(-; p), \ldots
\]

to get similar filtrations. Note also that filtration on \(\mathbb{THH}(-) \) is not by \(\Pi \)-spectra.