de Rham complex.

Let A be a commutative ring and B a comm. A-algebra, i.e. a ring homom. $A \rightarrow B$. The universal A-linear derivation of B into a B-module is written

$$B \xrightarrow{d} \Omega^1_{B/A}$$

Explicitly,

$$\Omega^1_{B/A} = \frac{B \otimes A B}{\langle xyez - xeyz + zxye \rangle}$$

with $d(y) = \text{class of } 1 \otimes y$, hence,

$$x \partial y = \text{class of } xey.$$ Note

$$\Omega^1_{B/A} \xrightarrow{\partial} \mathrm{HH}_1(B/A)$$

$$x \partial y \mapsto \text{class of } xey.$$

Ex: If $B = A[T_i; 1 \leq i \leq n]$, then $\Omega^1_{B/A}$ is a free B-module on basis $\{dT_i; 1 \leq i \leq n\}$.

In general, if B/A is smooth, then $\Omega^1_{B/A}$ is a $\mathcal{D}_{B/A}$-free B-module.
Form de Rham complex as follows

$$\Omega^0_{B/A} = \Lambda^0 B \to \Omega^1_{B/A} \to \Omega^2_{B/A} \to \cdots$$

with differential

$$d : \Omega^n_{B/A} \to \Omega^{n+1}_{B/A}$$

given by

$$d(x_0 dx_1 \cdots dx_n) = dx_0 dx_1 \cdots dx_n.$$

The map

$$B \to \Omega^1_{B/A}$$

is the universal multiplicative map from B to a CDGA $/ A$. Define de Rham cohomology by

$$H^*_{dR}(B/A) = H^*(\Omega^*_{B/A}).$$

Remark: If B/C is smooth, then

$$H^*_{dR}(B/C)$$

is canonically isomorphic to analytic de Rham cohomology of the complex manifold, defined by B.
In characteristic p, interesting things happen:

Thus (Cartier isom., '57) let R be a smooth algebra over a perfect field k of char. $p > 0$. Then the "inverse Cartier operator"

$$
\sigma_{R/k}^{-1} \cong \text{H}^n_{et}(R/k)
$$

$x, y_1, ..., y_n \rightarrow x^p, y_1^{p^{-1}}, ..., y_n^{p^{-1}}$

is well-defined and an isom.

Prove well-defined. To prove isom., do so for $R = k[T_1, ..., T_d]$ by case, and conclude isom. for R/k smooth by étale descent.

Rmk. To make isom., one of R-mod., let R act on RHS by $r \cdot w = r^p \cdot w$.

Relation to $L y_p$; (let $k = \mathbb{F}_p$)

Let \tilde{R}/\mathbb{Z}_p be smooth with $\tilde{R}/p\tilde{R} = \mathbb{Z}_p$ and let $\phi: \tilde{R} \rightarrow \tilde{R}$ be a \mathbb{Z}_p-algebra map s.t.

$\phi(x) \equiv x^p$ modulo $p\tilde{R}$. Then
$\Phi(dy) = \partial (\tilde{\phi}(y)) = \partial(y^p + px)$

$= py^{p-1}dy + px \in p \Omega \mathbb{E}/\mathbb{Z}_p$

So

$\Phi_n(\tilde{\Omega} \mathbb{E}/\mathbb{Z}_p) < p^n \Omega \mathbb{E}/\mathbb{Z}_p$

and hence,

$\Phi_n(\tilde{\Omega} \mathbb{E}/\mathbb{Z}_p) \subset \eta_p \Omega \mathbb{E}/\mathbb{Z}_p$

This fits in comm. diagram

\[
\begin{array}{ccc}
\Omega \mathbb{E}/\mathbb{Z}_p & \overset{\Phi}{\to} & \eta_p \Omega \mathbb{E}/\mathbb{Z}_p \\
\downarrow & & \downarrow \\
\Omega \mathbb{E}/\mathbb{Z}_p / p & \to & (\eta_p \Omega \mathbb{E}/\mathbb{Z}_p) / p \\
\downarrow & & \downarrow \cong \\
\Omega \mathbb{E}/\mathbb{F}_p & \to & \left[H_{dR} (\mathbb{E}/\mathbb{F}_p), \text{Bock}_p \right]
\end{array}
\]

and the Cartier isom. is an isom. of complexes as indicated. It follows that

$\Phi_n(\tilde{\Omega} \mathbb{E}/\mathbb{Z}_p) \subset \eta_p \Omega \mathbb{E}/\mathbb{Z}_p$

is a quasi-isomorphism.
Witt vectors: For every ring A and $1 \leq r \leq \infty$, there is a ring

$$W_r(A)$$

such that

1. As a set

$$W_r(A) = A \times \cdots \times A$$

2. The natural "ghost" map

$$W_r(A) \xrightarrow{gh} A^r$$

$$(a_0, \ldots, a_{r-1}) \mapsto (a_0, a_0p, a_0p^2, \ldots)$$

is a ring homomorphism. Here $\mathbb{R}^+H_\mathbb{Z}$ is product ring A^r.

Remark. If A has no p-torsion, then gh is injective, and

$$\mathbb{F}_p A^r \subset gh(W_r(A)) \subset A^r.$$

Ex: $W_r(\mathbb{F}_p) = \mathbb{Z}/p^r \mathbb{Z}$ and

$$W(\mathbb{F}_p) := W_0(\mathbb{F}_p) = \mathbb{Z}/p \mathbb{Z}.$$
There are two ring homomorphisms
\[W_{r+1}(A) \rightarrow W_r(A) \]
called "restriction" and "Frobenius" and defined by
\[R(a_0, \ldots, a_r) = (a_0, \ldots, a_{r-1}) \]
\[F(a_0, \ldots, a_r) = (a_0^p, \ldots, a_r^p) \]
where the formula for F assumes \(p = 0 \) in \(A \). General formulas for \(F \) are more complicated.

Additive "Verschiebung" map
\[W_r(A) \rightarrow W_{r+1}(A) \]
\[(a_0, \ldots, a_{r-1}) \rightarrow (0, a_0, \ldots, a_{r-1}) \]
satisfying "projection formula"
\[a, V(b) = V(F(a), b) \]
and mult. "Teichmüller" map
\[A \rightarrow W_r(A) \]
\[a \mapsto (a, 0, \ldots, 0) \]
Ex For every ring A, the map

$$
\bigoplus_{l \in \mathbb{N}} W_r(A) \oplus \bigoplus_{l \in \mathbb{N}} W_{r+v_p(l)}(A) \xrightarrow{\cdot [T]} W_r(A[T])
$$

given on t'th component in top sum by

$$
\alpha \mapsto \alpha \cdot [T]^r
$$

and on t'th component in bottom sum by

$$
\alpha \mapsto v^{-v_p(t)} \left(\alpha \cdot [T]_{r+v_p(l)} \right)
$$

is an isomorphism. Can work out (complicated) formulas for R, F, V, and $F-1r$.

Def. A relative F-V-procomplex or Witt (pro)complex for $A \to B$ is the data of

$$(W^r, R, F, V, \tau_r) \quad r \geq 1$$

displayed as

$$\begin{align*}
W^3(B) & \to W^3_3 \to W^2_3 \to W^1_3 \to W^0_3 \\
W^3(B) & \to W^3_2 \to W^2_2 \to W^1_2 \to W^0_2 \\
W^3(B) & \to W^3_1 \to W^2_1 \to W^1_1 \to W^0_1
\end{align*}$$

where

- W^r is a CDGA / $W^r(A)$
- R is a map of dg rings
- F is a map of graded rings
- V is a map of graded ab. gps.
- τ_r ring homom. compatible w. R, F, and V.

\[\begin{align*}
\text{s.t.,} \\
RF &= FR, \quad RV = VR, \\
FV &= p \\
Fd \, \lambda_{r+1}(Ibl) &= \lambda_r(Ibl)^{p-1} \, d \lambda_r(Ibl)
\end{align*} \]

where \(b \in B. \]

Def/cstr. (L-2, H-M, I, H 2015)

There exists an initial object among relative Witt complexes for \(A \rightarrow B. \) It is written

\[(W_r - \Omega_{B/A}, R, F, V, \lambda_r)_{r \geq 1} \]

and called the relative DRW complex. \(\forall \]

\[\text{Rank } W_1 - \Omega_{B/A} = \Omega_{B/A}. \]