Nordic Mathematical Team Contest 2016 A Challenge for University Students across the Nordic Countries 28th September - 2nd October

The Contest

- The NMTC is open to all Nordic undergraduate students, at most in their fifth year of study.
- Teams may consist of up to five students.
- Participation is free, but registration in advance is required.
- Problems are posted online at the opening of the contest.
- During five days, the team makes a collaborative effort to solve the problems.
- The team's joint solution is submitted online and will then be marked by the Jury.
- Full rules, along with old problem sets, may be found on the webpage.

The Problems

- The contest comprises io-I2 problems, of varying levels of difficulty.
- Topics are usually chosen from algebra, linear algebra, univariate and multivariate calculus and probability theory.
- More advanced topics may occasionally occur, e.g. some abstract algebra, point-set topology, combinatorics, number theory and logic.
- Books and journal articles may be consulted and referred to in the solutions, but no external humans may be involved in the process.
- The use of computers is generally discouraged and is never strictly necessary to solve the problems. (A computer may be assigned to perform a long and tedious calculation, but the algorithm should be included in the solution and verifiable by a human.)

Timeline

Registration. An email, containing the name, university and year of study of each team member, should be sent to the Jury Chairman Qimh Xantcha (qimh@math.su.se) no later than the 25th September. Registration is required.
Problems. The problems will be posted on the webpage at iz.oo CET on the 28th September.
Solutions. Solutions (pdf-format is preferable) should be submitted to Qimh Xantcha no later than 23.59 CET on the 2nd October.

Results. Ranking of the teams, including the names of the members of the three top-scoring teams, will be posted on the webpage within two weeks.

Sample Problem 1 (2008)

- Does there exist a convex polyhedron (in \mathbf{R}^{3}) with 5 vertices and io edges?
- Does there exist a convex polychoron (in \mathbf{R}^{4}) with 6 vertices and 12 edges?

Sample Problem 2 (2009)

Define a_{n} by the equation

$$
2^{2} \cdot 4^{4} \cdot 6^{6} \cdots \cdot(2 n)^{2 n}=\left(n a_{n}\right)^{n^{2}}
$$

Find the limit $\lim _{n \rightarrow \infty} a_{n}$.

Sample Problem 3 (2010)

Wonder Island is inhabited by Hedgehogs. Each Hedgehog consists of three equal segments having a common endpoint, with all three angles between them equal to 120°. Given that all Hedgehogs are lying flat on the island and no two of them touch one another, prove that there is a countable number of Hedgehogs on Wonder Island.

The Jury

- Dimitrios Askitis, Copenhagen University (dimitrios@math.ku.dk)
- Samuel Edwards, Uppsala University (samuel. edwards@math.uu.se)
- Freja Elbro, Copenhagen University (freja@math.ku.dk)
- Anne-Maria Ernvall-Hytönen, Åbo Akademi (aernvall@abo.fi)
- Eugenia Malinnikova, NTNU (eugenia.malinnikova@math.ntnu.no)
- Joni Teräväinen, Turku University (joni.p.teravainen@gmail.com)
- Qimh Richey Xantcha (chairman), Stockholm University (qimh@math.su.se)

We welcome new Jury members, especially representatives from Norway and Iceland. Preferably, you should be a Ph.D. student or post-doctor. You are encouraged to send us an email and tell us about your background.
http://www.math.ku.dk/english/nmc

