A survey of weak amenability

Alain Valette

Copenhague, June 24, 2016

References:

- U. Haagerup, An Example of a Non Nuclear C*-Algebra,

which has the Metric Approximation Property, Invent. Math. 50, pp. 279-293 (1978/79).

- M. Cowling and U. Haagerup, Completely bounded multipliers of the Fourier algebra of a simple Lie group of rank one,

Invent. Math. 96, pp. 507-549 (1989)

-U. Haagerup, Group C^* -Algebras without the Completely Bounded Approximation Property, Journal of Lie Theory 26, pp. 861-887 (2016)

1 Definitions

G: a locally compact group, 2nd countable. Recall (Leptin):

G is amenable if and only if there exists a sequence of positive definite, compactly supported functions converging to 1 uniformly on compacts subsets.

This can be generalized in the two following ways:

Definition 1.1. G has the Haagerup property (or: is a-(T)menable) if there exists a sequence of continuous positive definite functions on G, vanishing at infinity, converging to 1 uniformly on compact sets.

Definition 1.2. G is weakly amenable (or: has the completely

bounded approximation property CBAP) if there exists a sequence $(\phi_n)_{n>0}$ of continuous, compactly supported functions on G, converging to 1 uniformly on compact sets, with

$$\sup_{n} \|\phi_n\|_{M_0A(G)} < +\infty.$$

Here $\|.\|_{M_0A(G)}$ is the completely bounded norm on the space $M_0A(G)$ of completely bounded multipliers of the Fourier algebra A(G). The Cowling-Haagerup constant is the best possible Λ with $\sup_n \|\phi_n\|_{M_0A(G)} \leq \Lambda$.

2 Examples of weakly amenable groups

- amenable groups
 - closed subgroups of SO(n, 1) (de Cannière-Haagerup 1984) and SU(n, 1) (Cowling 1985) (e.g. free groups)
- Coxeter groups, and more generally groups acting properly on finite-dimensional CAT(0) cubical complexes (Guentner-Higson 2010)

In all those cases $\Lambda(G)=1$. They also have the Haagerup property.

3 More examples

- G=Sp(n,1) $(n\geq 2),$ with $\Lambda(G)=2n-1;$ and $G=F_{4(-20)},$ with $\Lambda(G)=21$ (Cowling-Haagerup 1989)
- hyperbolic groups (Ozawa 2007)

Some of those groups do not have the Haagerup property, because they have Kazhdan's property (T).

4 Properties of weak amenability

- For G discrete: can be read off from $C_r^*(G)$ and vN(G).
- For discrete groups: invariant under measure equivalence.
- If Γ is a lattice in G, then $\Lambda(\Gamma) = \Lambda(G)$. (Cowling-Haagerup 1989)

Theorem 4.1. If N is a closed, amenable subgroup in a weakly amenable group G, then there exists a $N \rtimes G$ -invariant state on $L^{\infty}(N)$ (Ozawa 2010)

Consequence of last result:

Corollary 4.2. $\mathbb{Z}^2 \rtimes SL_2(\mathbb{Z})$ is not weakly amenable (Haagerup

1986) **Proof:** Assume by contradiction that $\mathbb{Z}^2 \rtimes SL_2(\mathbb{Z})$ is weakly

amenable. Let ϕ be a $\mathbb{Z}^2 \times SL_2(\mathbb{Z})$ -invariant state on $\ell^{\infty}(\mathbb{Z}^2)$.

Decompose \mathbb{Z}^2 into $SL_2(\mathbb{Z})$ -orbits and observe that each non

trivial orbit is of the form $SL_2(\mathbf{Z})/A$, with A an abelian subgroup of $SL_2(\mathbf{Z})$. By non-amenability of $SL_2(\mathbf{Z})$, the state ϕ is zero on any non-trivial orbit, so ϕ is evaluation at (0,0),

which is of course not \mathbb{Z}^2 -invariant. Corollary 4.3. $SL_3(\mathbf{R})$ is not weakly amenable (Haagerup 1986).

Compare with Uffe's original proof below.

	_		
Property	a-(T)-men	Weak amenability	Remarks
Closed subgroups	Yes	$\Lambda(H) \le \Lambda(G)$	
Products	Yes	$\Lambda(G_1 \times G_2) = \Lambda(G_1)\Lambda(G_2)$	

Yes

Jolissaint 2001

Antolin-P

Dreesen 2013

 $\Lambda(G_1 * G_2) = 1$

Ricard-Xu 2006

Reckwerdt 2015

Only for $\Lambda = 1$

SAME

OPEN IN GENER

Property	a-(T)-m

Property	a-(T)-me

Free products

Graph products

Permanence properties

6 Cowling's question

Disproved in 2007:

Based on experimental evidence, around 1998, M. Cowling conjectured that: the class of Haagerup groups coincides with the class of CMAP groups, i.e. $\Lambda = 1$.

Theorem 6.1. 1. Haagerup property is stable under wreath products (Cornulier-Stalder-V)

- 2. If $\Lambda \neq \{1\}$ and Γ is non-amenable, then $\Lambda \wr \Gamma$ is not weakly amenable (Ozawa-Popa).
- So $C_2 \wr \mathbf{F}_2$ is an example of a not weakly amenable group with the Haagerup property.
- However: Cowling's conjecture holds for interesting subclasses:
 - closed subgroups of SO(n,1) and SU(n,1);
 - groups acting properly on finite-dimensional CAT(0) cubical complexes (Guentner-Higson).

A finitely generated group G is a generalized Baumslag-Solitar of rank n if it admits a co-compact action on some tree, such that vertex and edge stabilizers are isomorphic to \mathbf{Z}^n . Such a

group admits a canonical homomorphism $hol: G \to GL_n(\mathbf{R})$, the holonomy representation.

Theorem 6.2. (Cornulier-V, 2013) For a generalized Baumslag-Solitar group G of rank n, TFAE:

- 1. $\overline{hol(G)}$ is amenable;
 - 2. G has the Haagerup property;
- 3. G is weakly amenable.

In that case: $\Lambda(G) = 1$.

Observations:

- There is no known direct connection between the two properties. In all cases, it is an *a posteriori* observation that a given class of groups satisfy both properties.
- It seems that the discrepancy is related to some lack of finiteness condition.

Conjecture 1. For groups admitting a finite-dimensional \underline{EG} (= classifying space of proper actions): Haagerup property is equivalent to weak amenability with $\Lambda = 1$

7 A proof of weak amenability

Theorem 7.1. (R. Szwarc, 1991) Let G be a group acting properly on a locally finite tree T. Then $\Lambda(G) = 1$.

Examples: free groups, $SL_2(\mathbf{Q}_p),...$

- Main steps in the proof:
- (Bozejko, Fendler, Gilbert) Let $\phi: G \to \mathbb{C}$ be a continuous function. If there exists continuous, bounded functions $u, v: G \to \mathcal{H}$ such that $\phi(y^{-1}x) = \langle u(x)|v(y)\rangle$ then $\phi \in M_0A(G)$. In particular, for π a uniformly bounded representation of G, coefficients of π belong to $M_0A(G)$.
 - (Pytlik-Szwarc 1986, Szwarc 1991, V. 1996) Let D be the open unit disk in \mathbb{C} . Fix a base-vertex $v_0 \in T$. There exists an analytic family $(\pi_z)_{z\in D}$ of uniformly bounded representations of G on $\ell^2(T)$ such that:

- - - cient of π_{γ_r} .

 $\frac{e}{2}(n+1)$

- For $n \in \mathbb{N}$, take $f(z) = \frac{z^{-(n+1)}}{2\pi i}$. Then $\chi_n(g) = \frac{1}{2\pi i} \int_{\gamma_n} z^{d(gv_0,v_0)} z^{-(n+1)} dz$
 - is the characteristic function of the sphere $\{g \in G : g \in G \}$

1. $\langle \pi_z(g)\delta_{v_0}|\delta_{v_0}\rangle = z^{d(gv_0,v_0)};$

tary for $t \in]-1,1[$;

3. $\sup_{g \in G} \|\pi_z(g)\| \le \frac{2|1-z^2|}{1-|z|}$.

 $d(gv_0, v_0) = n$. Optimizing over r, get $\|\chi_n\|_{M_0A(G)} \le$

of γ_r , the function $\phi(g) = \int_{\gamma_r} z^{d(gv_0,v_0)} f(g) dz$ is a coeffi-

2. π_0 is the permutation representation, and π_t is uni-

- Let γ_r be the circle of radius r in D, set $\pi_{\gamma_r} = \int_{\gamma_r}^{\oplus} \pi_z |dz|$. Then, for any function f holomorphic on a neighborhood

- positive-definite. BUT: not compactly supported! To fix

$$\|\phi_t\|$$

 $\|\phi_t - \phi_{t,n}\|_{M_0 A(G)} = \|\sum_{k=n+1}^{\infty} t^k \chi_k\|_{M_0 A(G)} \le \frac{e}{2} \sum_{k=n+1}^{\infty} f^k(k+1)$

that goes to 0 for $n \to \infty$.

that, set $\phi_{t,n} = \sum_{k=0}^{n} t^k \chi_k$. Then

• Set $\phi_t(q) = t^{d(gv_0,v_0)}$. For $t \to 1$, it converges to 1 uni-

formly on compact sets, and $\|\phi_t\|_{M_0A(G)} = 1$ as ϕ_t is

8 Recent developments

A weaker notion than weak amenability was introduced by Haagerup and Kraus (1994):

A locally compact group G has the Approximation Property (AP) if there is a sequence $(\phi_n)_{n>0}$ in A(G) such that $\phi_n \to 1$ in the $\sigma(M_0A(G), M_0(A(G))_*)$ -topology, where $M_0(A(G))_*$ denotes the natural predual of $M_0A(G)$.

Haagerup and Kraus:

- If Γ is a lattice in G, Γ has AP if and only if G has AP.
- (unlike Haagerup property and weak amenability) AP is stable under extensions (so: $\mathbb{Z}^2 \rtimes SL_2(\mathbb{Z})$ has AP).

Establishing a conjecture of Haagerup and Kraus: a simple Lie group of rank at least 2, does not have AP (Lafforgue and de la Salle 2011, Haagerup and de Laat 2013 and 2016).