Universal operations on Hochschild cplx on alg over props

(partly j.w. Westerland)

\[A : \text{dg-alg} \quad (\text{could be } A_{\Sigma} \text{-alg}) \]

\[C^*(A, A) = \bigoplus_{n \geq 1} A^\otimes_n \quad (\text{or reduced ver } \bigoplus_{n=0} A^\otimes_{\Sigma}) \]

with \[d = d_A + d_A \]

Operations \[C^*(A, A) \otimes n \to C^*(A, A) \otimes m \]

linear maps, also consider degrees.

the space of operations becomes a chain cplx

by \[(d_{\text{op}})(x) = y(dx) + dy(x) \]

sign (cancellation \(6 \text{oper.} x \otimes C^*(A, A) \otimes n \to C^*(A, A) \otimes m \)

is a chain map.

Questions 1) What's the cplx of "all" natural operations?

2) how does "extra structure" (e.g., Frobenius, comm)

give structures on \[C^*(A, A) \]

3) where is the cap product?

4) what about graph cplxes?

PROP = "category of operations"

category with \(\text{obj set } N \). \(\text{Mor}(n, m) = \text{operations} \)

with \(n \) input, \(m \) output.

composition \(\text{compos. of operations} \)

sum (mon.str.): juxtaposition of ops. \(n' \leq m \)
Example: category of punctured surfaces.

\[\text{Mor}(n, m) = \mathbb{E} \text{ top. types of surf. w/ n+m bdry comp.s} \]

* associative alg \(\Rightarrow M \in \text{Mor}(2, 1) \).

\[\text{Mor}(n, m) = \mathbb{E}\text{n(_)}_m \]

PROP with multiplications = **PROP w/ specified**

\[m \in \text{Mor}(2, 1) \]

Theorem 1: \(P: \text{PROP with multiplication } M \in P(2, 1) \)

If \(A \) is a \(P \)-alg. (i.e. \(\exists P(n, m) \otimes A \otimes n \rightarrow A \otimes m \)

chain map. compat w/ str. in \(P \)), then

\(\text{C}*(A, A) \) w.r.t. \(M \) is a "Hoch(P)" alg.,

i.e. \(\exists \text{Hoch}(P)(n, m) \otimes \text{C}*(A, A) \otimes n \rightarrow \text{C}*(A, A) \otimes m \)

where \(\text{Hoch}(P)(n, m) = \bigoplus_{j_1, \ldots, j_n, k_1, \ldots, k_m} P(j_1 + \cdots + j_n, k_1 + \cdots + k_m) \)

with \(d = d_P + b + \cdots + b^{[*]i} \) from \(M \) acting on "input"

from \(M \) acting on "output".

Hoch(P) is the opx of all operations made out of

* operations from \(P \) (e.g. mult., inverting units, etc.)

* permuting the \(A \)'s.
More precisely,
\[C^*(A, A) \otimes \mathbb{N} \quad \overset{\varphi_A}{\longrightarrow} \quad C^*(A, A) \otimes \mathbb{N} \]

is given by
\[\varphi_A = \{ (\varphi_A)_{j_1, \ldots, j_n} : A^{\otimes j_1 + \cdots + j_n} \otimes k_{j_1 + \cdots + j_n} \} \]

Thm 2. \(\mathcal{P}_\text{Alg} := \text{Fun} \otimes (\mathcal{P}, \text{dgVect}) \xrightarrow{C^*} \text{dgVect} \rightarrow \text{Fun} \otimes (\mathcal{P}, \text{dgVect}) \)

\[\text{such that } \text{Hoch}(\mathcal{P})(n, m) = \text{Hom}\left(C^n, C^m \right) \text{Fun}(\text{Func}^{-1}, \text{dg}) \]

Do we understand
\[\text{Hom}_{\text{Fun}(\text{Func}^{-1}, \text{dg})} \left(C^n, C^m \right) \xrightarrow{C^*} \text{Hom}_{\text{Func}(\text{Func}} \otimes \text{dg}) \left(C^n, C^m \right) \]

Thm 3. With the "completion"
\[\mathcal{P}(n, m) = \text{Hom}(\mathbb{N} \otimes \mathbb{N}) \]

\[\text{Hom}(C(-,-) \otimes \mathbb{N}, C(-,-) \otimes \mathbb{N}) = \text{Hoch}(\mathcal{P})(n, m) \]

Example / application

1) Unital associative algs.: we have \(B : C^*(A, A) \to C^*(A, A) \)

Fact. \(\text{Hoch}(\text{Ass}) \) is generated by \(B \) and \(\text{id} \).

Cap product
\[C^*(A, A) \otimes C^*(A, A) \xrightarrow{\cap} C^*(A, A) \]

this def's a map
\[C^*(A, A) \to \text{Hoch}(\text{End}(A))(1, 1) \]

\(\text{End}(A)(n, m) = \text{Hom}(A^{\otimes n}, A^{\otimes m}) \).
(suite) 2) symmetric Frobenius algebras.

Correct PROP: surfaces with intervals in ∂Y.

\[(\text{isoclasses of trivalent}) \text{ ribbon graphs} \ n + m \text{ legs} = P. \]

\[\text{PreHoch} (P) = \bigoplus P_{G, k_1 + \ldots + k_m} \otimes k_1 \otimes \ldots \otimes k_m \]

dege shift by $k_p - 1$

\[l_k \leftrightarrow \tilde{\gamma}_k \]

Present PreHoch (P) by graph elements of Hochschild diff

Kontsevich-Soibelman: \exists "cylinder cplx" $C_x / *$

$C_x^k \oplus C_* (A, A)^{\otimes k} \to \text{Hoch} (\text{End}(A))(1, 1)$

ξ, ξ, ψ, ψ