RYSZARD 4

N^1 M_c C M_c N^1 C N^1 M_0 C N^1 M_1 C

PRINCIPAL GRAPH

DUAL PRINCIPAL GRAPH

N - N BIMODULES

ROTATION \rightarrow \oplus L(M)

N + M - BIMODULES

M - N - BIMODULES

M - M - BIMODULES

PRINCIPAL GRAPH: Finite Graph by Finite Depth Assumption

FACT: Index of NCM

= Norm of Principal Graph

Operator = Biggest Eigenvalue

(= Norm of Incidence Matrix of the Graph)

COROLLARY: [M:N]

\[\frac{1}{4} \cos^2 \frac{\pi}{n} \sum_{i=1}^{n} \left(4_i \right) \]

even dots

\[n \]

because norm of a \underline{MxN} matrix

with positive integer coeff
\[M_{2+1} = \langle M_2, e_{2+1} \rangle \]

The projections \(e_1, e_2, e_3 \ldots \) satisfy that \(e_i e_j = e_j e_i \) if \(|i - j| > 1\)
and \(e_y e_3 e_y = \frac{1}{[M:N]} e_y, \quad e_3 e_y e_3 = \frac{1}{[M:N]} e_3 \)

\(\Rightarrow\) Form a temporary subalgebra.

Can also consider the relative commutant
\[M_2 \cap M_n \subseteq M_2 \cap M_{n+1} \quad \text{more general}. \]

\[\downarrow U \quad \downarrow U \]

\[M_{2+1} \cap M_n \subseteq M_{2+1} \cap M_{n+1} \quad \text{more general}. \]

As diagram of finite dimensional algebra.

And the diagram of conditional expectations commute.

From such commuting squares \(A_2 \leftrightarrow A_3 \)
can construct subfactors \(A_0 \leftrightarrow A_1 \)
(constructing such squares is not easy).
Example of NAG: (G finite)

\[C \subset C(G) \subset C(G) \times G \subset (C(G) \times G) \times G \subset \cdots \]

\[B(l^2(G)) \quad C(G) \otimes B(l^2(G)) \]

\[\xrightarrow{\sim} \quad C^*(G) \quad \xrightarrow{\sim} \quad B(l^2(G)) \]

\[\xrightarrow{\sim} \quad C \quad \xrightarrow{\sim} \quad C(G) \]

\[\text{Commuting Square} \]

\[\text{LP with the Expectations} \]

\[\sum (\phi_\cdot)^*(\psi_\cdot) \]

\[\int \phi_\cdot (\psi_\cdot) \]

\[\int \phi_{\cdot e} (\psi_\cdot) \]

\[\int \psi_\cdot \phi_{\cdot e} \]

\[N \subset \text{NAG} \subset \text{NAG} \times G \subset \text{NAG} \times G \times G \subset \cdots \]

\[\#G \quad \text{N-M} \quad (\text{of the form NAG}) \]

\[\sim \quad (\#G)^2 = \frac{\sum (\dim \pi)^2}{\pi} \]

\[\text{Multiplicities} \]

\[\sum \text{dim of Reps of } G \]

\[\text{(Irreducible Reps of } G \text{)} \]
1. **N-N-Bimodule**

 \[\Rightarrow \text{Finite Tensor Category:} \]
 \[X \otimes Y = \oplus X_i \otimes m_i \]

 Branding: In general, \(\text{N-N} \neq \text{N-N} \times \text{N-N} \), but...

 N.C.M. \(\Rightarrow \)

 Asymptotic Inclusion

 Replace by

 \[M_0 U (M_0 \cap M_0) \rightarrow M_{\infty} \]

 Also finite index

 \[M_{\infty} = \bigcup_i M_i \]

 Now

 \[\text{N-N-Bimodule} \}

 \[\text{N-M-Bimodules} \}

 \[\text{Braided Tensor Category} \]

 \[[\text{Ocneanu}] \]

 Turaev-Viro Invariant from such categories

 New:

 Associate N-N-Bimodule to each \(x \cdot y \)

 and interwinners on each face

 \[\text{by} \quad X \otimes X \rightarrow X \cdot X \]

 For \(T \in \text{End}(X) \), \(T^* \text{End}(X) \)

 \[T \parallel_{2}^2 = \parallel (T^* T) \]

 Get 4 interwinners that can be composed \(\Rightarrow \) interwinners form Hilbert space.

 To give a self interwiner of a single bimodule \(\Rightarrow \) a number \(x \in \mathbb{C} \)

 \(\text{6j-Symbol} \)

 \[\Rightarrow \sum \text{IT} (6j\text{-Symbol}) = \text{3-MPD Invariant} \]
Need the

context of blindness to have
certain properties for this to work...