"Symmetry" acting on observables acting on fields.

ELECTROMAGNETIC FIELD E, B

Invariants under the symmetries.

\[N \xrightarrow{\text{VN-Act}} M \xrightarrow{\text{VN-Act}} \text{(soon will restrict to III-factors) \ldots} \]

Idea: The interplay between N and M should allow to recover the symmetries of (some kind of symmetries).

\[\text{Group, Quantum Group, ...} \]

Example: \(N \xrightarrow{\text{VN-Act}} G \text{ Finite Group, } G \rightarrow \text{Out}(\text{N}) \)

\[N \times G = N[G]\text{ Group Ring} \]

\[N' \text{ M}_0 \quad N' \text{ M}_0 = CI \]

Question: Can we recognize G from the inclusion?
Given \(G \) acts on \((C(G), \Delta) \), where \(\Delta \) is the coproduct, and \(\alpha \) is the coaction.

Coaction of \(G \) on an Algebra \(A \):

\[
\begin{align*}
\Delta: A &\rightarrow A \otimes C(G) \\
\text{id} \otimes \Delta: A \otimes C(G) \otimes C(G)
\end{align*}
\]

Example: \(G \) finite, \(C(G) \), \(\Delta: C(G) \rightarrow C(G \times G) \)

\[\Delta f(g, h) = f(gh)\]

Suppose \(G \to \text{Aut}(A) \)

\[
\Delta: A \rightarrow A \otimes C(G)
\]

Dual: \((C^*(G), \hat{\Delta}) \)

Example: \(C^*(G) = \text{Group Algebra} \)

\[
\Delta: s_g \mapsto s_g \otimes s_g
\]

So \(G \mapsto (C(G), (\mu, \Delta)) \)

Coaction \((C^*(G), (\hat{\mu}, \hat{\Delta})) \)

Have that \(C(G) \) acts on \(C^*(G) \):

\[
C(G) \rightarrow (C(G) \otimes C(G))
\]

\[
\text{(and coacts on itself)}
\]
Action of $C^*(G) \iff$ Coaction of $C(G)$

For a Hopf algebra, this is a definition of the action of the Hopf algebra on something, namely by a coaction of the dual coalgebra.

$A \overset{\delta}{\rightarrow} A \otimes C(G)$

$H \otimes \ell^2(G)$

G (Quantum) Group

$A \times G := S(A) (\otimes C^*(G))$

(Acts on $H \otimes \ell^2(G)$)

A unitary $W : \ell^2(G) \otimes \ell^2(G) \otimes \ell^2(G)$

Computing with the arrow of A on the first.

Two factors and "implement the coproduct on the $C^*(G)$ action, (?)

$l^2(G) \otimes l^2(G) = l^2(G, l^2(G))$

$W : f \rightarrow \lambda f$

$\langle W f, gh \rangle = f(g, g'h)$
\[A \xrightarrow{\gamma} C^*(G) \]

\[A \times G \rightarrow A \times G \otimes C^*(G) \quad \text{coaction} \]

Because \(G \) acts by outer automorphisms, \(\mathcal{N}' \cap M_0 = C_1 \) (centralizer of \(N \) inside \(M_0 \)).

Then

\[N' \cap M_1 = C^*(\hat{G}) \]

\[N' \cap M_2 = \overline{C(G) C^*(G)} = \mathcal{B}(l^2(G)) \]

\[M_0' \cap M_2 = C^*(C^*(G)) \]

\[\rightarrow \text{got } C^*(G) \text{ and } C^*(G) \text{ out of the sequence} \]