André 8

Computing the invariants

\[S^3: \]

\[\begin{array}{ccc}
1 & \rightarrow & 1 \\
& & \cdot \frac{1}{p}
\end{array} \]

\[S^1 \times S^2: \]

\[\begin{array}{ccc}
1 & \rightarrow & \frac{\Sigma}{p}
\end{array} \]

\[\begin{array}{ccc}
\Sigma \frac{d_i}{p} & \rightarrow & \Sigma \frac{d_i}{p}
\end{array} \]

\[\Sigma \frac{d_i}{p} = p \rightarrow 1 \]

Solid torus ("outside torus")

Solid torus ("inside torus")

\[\Rightarrow \text{ Form } S^1 \times S^2 \text{ together.} \]

Rem.: \[(S^2 S^2) (M) = Z (M \times S^2) \] is a 1d-TQFT

\[(S^2 S^2) (pt) = Z (S^2) = 1 \]

\[(S^2 S^2) (S^1 S^2) = \dim \left(\frac{Z}{S^2} (pt) \right) = 1 \]

\[\uparrow \]

Because 1-dim TQFT

Hence we must have \[Z(S^2 \times S^2) = 1 \] and this is why we had to have \[\Sigma \frac{d_i}{p} = p \].
I^3: (Movie giving I^3: Turns I^2 submerged in the water, cover out and back in — we see the turns and its reflection)

$$\sum_{i \in P} \frac{d_i}{p} \to \sum_{i \in P} \Theta_i$$

$$\sum_{i \in P} \Theta_i$$

$$\sum_{i \in P} \frac{d_i}{p} \Theta_i$$

S^3 (again):

$$\sum_{i \in P} \Theta_i$$

$$\sum_{i \in P} \frac{d_i \Theta_i}{p}$$

This different computation gave a different answer than the first!

Reason: these 3-MFD invariants are in fact invariants of 3-MFD cobordant to a 4-MFD (ie. equipped with a bounding 4-MFD)
There is a 1-1 correspondence between sym. mon. functors $\text{Bord}_{1,2,3} \to \text{LinCat}$ s.t. $\mathcal{C} = \mathbb{Z}(S^2)$

(i.e. $\text{Bord}_{1,2,3} + \text{everything equipped with}$ $\text{boundary} \ 1$-mfd up to cobordism $\text{for the} \ 4$-mfd $\text{is simple, and pairs } (\mathcal{C}, p)$ $\text{where } \mathcal{C}$ is a modular tensor category and p is a square root of Σd_i^2 for $d_i = d_i(\mathcal{C})$.

Def: A ribbon category is modular if the matrix

$$\begin{bmatrix}
C & \theta \times \theta \\
\theta & C
\end{bmatrix}$$

has non-zero determinant.

Cover from $\varnothing \rightarrow (0, 1) \rightarrow \varnothing$ can write it as a sequence of (non-invertible) simple monoids.

We get a matrix, which has to be invertible as the composed map is invertible.

Exercise**: $P = \sum_i d_i^2 \theta_i = p \cdot e$

Prove that!

If $p = pI$, the anomaly is trivial $\iff \text{Bord}_{1,2,3} \to \text{LinCat}$ function.
The local moves

\[\begin{align*}
\text{Rep}^{ss}(U_q \mathfrak{sl}(2))
\end{align*} \]

<table>
<thead>
<tr>
<th>(d_i)</th>
<th>(q^6 = 1)</th>
<th>(q^8 = 1)</th>
<th>(q^{10} = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p = \sqrt{\sum_i d_i^2})</td>
<td>(\sqrt{2})</td>
<td>2</td>
<td>(\sqrt{5} + 5)</td>
</tr>
<tr>
<td>(\frac{1}{2\pi} \text{ arg}(\Theta_i))</td>
<td>0, (\frac{1}{4})</td>
<td>0, (\frac{3}{16}, \frac{1}{2})</td>
<td>0, (\frac{3}{20}, \frac{2}{5}, \frac{3}{4})</td>
</tr>
<tr>
<td>(p_t = \sum_i d_i^2 \Theta_i)</td>
<td>1+i</td>
<td>2 (e^{\frac{2\pi i}{16}})</td>
<td>((\sqrt{5} + 5)), (e^{\frac{2\pi i}{40}})</td>
</tr>
</tbody>
</table>

"5L(2) level k": \(q^{2(k+2)} = 1 \), \(d_i = [i+1]_q \); \(\Theta_i = q^{\frac{1}{2}i^2+i} \); \(p_t = p \cdot e^{\frac{2\pi i}{8(k+2)}} \)