Statements

Many triangulated odd-dimensional spheres

Francisco Santos, U. Cantabria, Spain. http://personales.unican.es/santosf

DCAT Workshop, Copenhaguen, November 10, 2014

¹joint with Eran Nevo, Stedman Wilson, arXiv:1408.3501

For $d, n \in \mathbb{N}$, let

 $s_d(n) := \#$ combinatorially different simplicial d-spheres with n vertices

For $d, n \in \mathbb{N}$, let

 $s_d(n) := \#$ combinatorially different simplicial d-spheres with n vertices

Question

What is the asymptotic growth of $s_d(n)$ when $n \to \infty$ (for fixed, but arbitrary, d)?

For $d, n \in \mathbb{N}$, let

 $s_d(n) := \#$ combinatorially different simplicial d-spheres with n vertices

Question

What is the asymptotic growth of $s_d(n)$ when $n \to \infty$ (for fixed, but arbitrary, d)?

Previous upper and lower bounds:

For $d, n \in \mathbb{N}$, let

 $s_d(n) := \#$ combinatorially different simplicial d-spheres with n vertices

Question

What is the asymptotic growth of $s_d(n)$ when $n \to \infty$ (for fixed, but arbitrary, d)?

Previous upper and lower bounds:

• $\log s_d(n) < O(n^{\lceil d/2 \rceil} \log n)$ (follows from the upper bound theorem).

For $d, n \in \mathbb{N}$. let

 $s_d(n) := \#$ combinatorially different simplicial d-spheres with n vertices

Question

What is the asymptotic growth of $s_d(n)$ when $n \to \infty$ (for fixed, but arbitrary, d)?

Previous upper and lower bounds:

- $\log s_d(n) < O(n^{\lceil d/2 \rceil} \log n)$ (follows from the upper bound theorem).
- $\log s_d(n) > \Omega(n^{\lfloor d/2 \rfloor})$ (Kalai 1988).

Statements

Introduction

For $d, n \in \mathbb{N}$. let

 $s_d(n) := \#$ combinatorially different simplicial d-spheres with n vertices

Question

What is the asymptotic growth of $s_d(n)$ when $n \to \infty$ (for fixed, but arbitrary, d)?

Previous upper and lower bounds:

- $\log s_d(n) \leq O(n^{\lceil d/2 \rceil} \log n)$ (follows from the upper bound theorem).
- $\log s_d(n) > \Omega(n^{\lfloor d/2 \rfloor})$ (Kalai 1988).
- $\log s_3(n) \ge \Omega(n^{5/4})$ (Pfeifle-Ziegler, 2004).

Many odd spheres

In even dimension, Kalai's lower bound almost matches the UBT bound (differ by only a log n factor).

Many odd spheres

In even dimension, Kalai's lower bound almost matches the UBT bound (differ by only a $\log n$ factor). But in odd dimension d = 2k - 1 they give

$$\Omega(n^{k-1}) \le \log s_{2k-1}(n) \le O(n^k \log n).$$

Many odd spheres

In even dimension, Kalai's lower bound almost matches the UBT bound (differ by only a $\log n$ factor). But in odd dimension d = 2k - 1 they give

$$\Omega(n^{k-1}) \le \log s_{2k-1}(n) \le O(n^k \log n).$$

We improve the lower bound to:

Theorem 1

$$\log s_{2k-1}(n) \ge \Omega(n^k)$$

Many geodesic odd spheres

```
It is well known (Alon, Goodman-Pollack 1986) that
\log p_d(n) = \Theta(n \log n), (fr d \ge 3) where
```

$$p_d(n) := \# simplicial convex (d + 1)-polytopes with n vertices = \# simplicial polytopal d-spheres with n vertices$$

Many geodesic odd spheres

```
It is well known (Alon, Goodman-Pollack 1986) that
\log p_d(n) = \Theta(n \log n), (fr d > 3) where
```

$$p_d(n) := \# \text{simplicial convex } (d+1) \text{-polytopes with } n \text{ vertices}$$

= $\# \text{simplicial } polytopal \ d \text{-spheres with } n \text{ vertices}$

We here consider

$$g_d(n) := \# simplicial star-convex (d+1)-polytopes with n vertices $= \# simplicial geodesic d-spheres with n vertices$$$

Many geodesic odd spheres

It is well known (Alon, Goodman-Pollack 1986) that $\log p_d(n) = \Theta(n \log n)$, (fr d > 3) where

$$p_d(n) := \# \text{simplicial convex } (d+1) \text{-polytopes with } n \text{ vertices}$$

$$= \# \text{simplicial } polytopal \text{ } d \text{-spheres with } n \text{ vertices}$$

We here consider

$$g_d(n) := \# \text{simplicial star-convex } (d+1) \text{-polytopes with } n \text{ vertices}$$
 $= \# \text{simplicial } geodesic d \text{-spheres with } n \text{ vertices}$

Theorem 2

$$\Omega(n^{k-1+\frac{1}{k}}) \le \log g_{2k-1}(n) \le O(n^k)$$

Statements 0000 Introduction

The case d = 3

For
$$d = 3$$
 ($k = 2$) we get

$$\Omega(n^{\frac{3}{2}}) \leq g_3(n) \leq O(n^2), \qquad \Omega(n^2) \leq s_3(n) \leq O(n^2 \log n).$$

Statements 000 Introduction

The case d=3

For
$$d = 3$$
 ($k = 2$) we get

$$\Omega(n^{\frac{3}{2}}) \leq g_3(n) \leq O(n^2), \qquad \Omega(n^2) \leq s_3(n) \leq O(n^2 \log n).$$

Remarks:

• Our lower bound for g_3 is better than the previous best lower bound for s_3 .

The case d=3

For d = 3 (k = 2) we get

$$\Omega(n^{\frac{3}{2}}) \leq g_3(n) \leq O(n^2), \qquad \Omega(n^2) \leq s_3(n) \leq O(n^2 \log n).$$

Remarks:

- Our lower bound for g_3 is better than the previous best lower bound for s_3 .
- As a byproduct / intermediate step we construct

Cyclic polytopes

Statements

Introduction

For d = 3 (k = 2) we get

$$\Omega(n^{\frac{3}{2}}) \leq g_3(n) \leq O(n^2), \qquad \Omega(n^2) \leq s_3(n) \leq O(n^2 \log n).$$

Remarks:

- Our lower bound for g_3 is better than the previous best lower bound for s_3 .
- As a byproduct / intermediate step we construct
 - polyhedral 3-spheres (resp. simplicial 4-polytopes) with $\Omega(n^2)$ (resp. $\Omega(n^{3/2})$) facets that are not simplices.

The case d=3

For d=3 (k=2) we get

$$\Omega(n^{\frac{3}{2}}) \leq g_3(n) \leq O(n^2), \qquad \Omega(n^2) \leq s_3(n) \leq O(n^2 \log n).$$

Remarks:

- Our lower bound for g₃ is better than the previous best lower bound for s_3 .
- As a byproduct / intermediate step we construct
 - polyhedral 3-spheres (resp. simplicial 4-polytopes) with $\Omega(n^2)$ (resp. $\Omega(n^{3/2})$) facets that are not simplices.
 - simplicial 3-spheres (resp. simplicial 4-polytopes) with $\Omega(n^2)$ (resp. $\Omega(n^{3/2})$) edges of degree three.

The case d = 3

For d = 3 (k = 2) we get

$$\Omega(n^{\frac{3}{2}}) \leq g_3(n) \leq O(n^2), \qquad \Omega(n^2) \leq s_3(n) \leq O(n^2 \log n).$$

Remarks:

- Our lower bound for g₃ is better than the previous best lower bound for s₃.
- As a byproduct / intermediate step we construct
 - polyhedral 3-spheres (resp. simplicial 4-polytopes) with $\Omega(n^2)$ (resp. $\Omega(n^{3/2})$) facets that are not simplices,
 - simplicial 3-spheres (resp. simplicial 4-polytopes) with $\Omega(n^2)$ (resp. $\Omega(n^{3/2})$) edges of degree three.

This answers questions of Erickson and Ziegler.

Statements

Let \mathcal{T} be a 3-dim ball or sphere with n vertices and $\Theta(n^2)$ tetrahedra.

Statements

Let \mathcal{T} be a 3-dim ball or sphere with n vertices and $\Theta(n^2)$ tetrahedra. Let B_1, \ldots, B_k be $\Theta(n)$ disjoint balls in \mathcal{T} , each consisting of $\Theta(n)$ tetrahedra.

Statements

Let \mathcal{T} be a 3-dim ball or sphere with n vertices and $\Theta(n^2)$ tetrahedra. Let B_1, \ldots, B_k be $\Theta(n)$ disjoint balls in \mathcal{T} , each consisting of $\Theta(n)$ tetrahedra. Suppose that:

The interior of each B_i can be retriangulated (using $\Theta(1)$ extra vertices if you want) in $2^{\alpha(n)}$ different ways

Statements

Let \mathcal{T} be a 3-dim ball or sphere with n vertices and $\Theta(n^2)$ tetrahedra. Let B_1, \ldots, B_k be $\Theta(n)$ disjoint balls in \mathcal{T} , each consisting of $\Theta(n)$ tetrahedra. Suppose that:

The interior of each B_i can be retriangulated (using $\Theta(1)$ extra vertices if you want) in $2^{\alpha(n)}$ different ways ... and the triangulations of different B_i 's have disjoint interiors.

Statements

Let \mathcal{T} be a 3-dim ball or sphere with n vertices and $\Theta(n^2)$ tetrahedra. Let B_1, \ldots, B_k be $\Theta(n)$ disjoint balls in \mathcal{T} , each consisting of $\Theta(n)$ tetrahedra. Suppose that:

The interior of each B_i can be retriangulated (using $\Theta(1)$ extra vertices if you want) in $2^{\alpha(n)}$ different ways ... and the triangulations of different B_i 's have disjoint interiors.

Then \mathcal{T} can be retriangulated in $2^{n\alpha(n)}$ ways.

Statements

Let \mathcal{T} be a 3-dim ball or sphere with n vertices and $\Theta(n^2)$ tetrahedra. Let B_1, \ldots, B_k be $\Theta(n)$ disjoint balls in \mathcal{T} , each consisting of $\Theta(n)$ tetrahedra. Suppose that:

The interior of each B_i can be retriangulated (using $\Theta(1)$ extra vertices if you want) in $2^{\alpha(n)}$ different ways ... and the triangulations of different B_i 's have disjoint interiors.

Then \mathcal{T} can be retriangulated in $2^{n\alpha(n)}$ ways.

For arbitrary 3-spheres we manage to do this with $\alpha(n) \in \Theta(n)$. For geodesic 3-spheres we do this with $\alpha(n) \in \Theta(\sqrt{n})$.

The join of two paths

Let
$$a_1, \ldots, a_n \in \ell_a := \{(t, 0, 1) : t \in \mathbb{R}\}$$
 and $b_1, \ldots, b_m \in \ell_b := \{(0, t, -1) : t \in \mathbb{R}\}$ and let $A = \{a_i\}_{i \in [n]} \cup \{b_j\}_{j \in [m]}$.

The join of two paths

Statements

Let
$$a_1, \ldots, a_n \in \ell_a := \{(t, 0, 1) : t \in \mathbb{R}\}$$
 and $b_1, \ldots, b_m \in \ell_b := \{(0, t, -1) : t \in \mathbb{R}\}$ and let $A = \{a_i\}_{i \in [n]} \cup \{b_i\}_{i \in [m]}$.

The only triangulation of A is the join of two paths:

$$\mathcal{T} = \{a_i a_{i+1} b_j b_{j+1} : i = 1, \dots, n-1, \ j = 1, \dots, m-1\}.$$

The join of two paths

Statements

Let
$$a_1, \ldots, a_n \in \ell_a := \{(t, 0, 1) : t \in \mathbb{R}\}$$
 and $b_1, \ldots, b_m \in \ell_b := \{(0, t, -1) : t \in \mathbb{R}\}$ and let $A = \{a_i\}_{i \in [n]} \cup \{b_j\}_{j \in [m]}$.

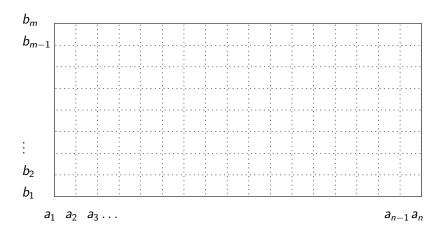
The only triangulation of A is the join of two paths:

$$\mathcal{T} = \{a_i a_{i+1} b_j b_{j+1} : i = 1, \dots, n-1, \ j = 1, \dots, m-1\}.$$

The combinatorics of $\mathcal T$ is very nicely encoded in an $[n-1] \times [m-1]$ grid, so that every subset of tetrahedra in \mathcal{T} corresponds to a subset of $[n-1] \times [m-1]$.

Grid

Statements



Grid convexity

Lemma

Let $B \subset [n-1] \times [m-1]$ and \mathcal{T}_B the corresponding subcomplex of \mathcal{T} .

Grid convexity

Statements

Lemma

Let $B \subset [n-1] \times [m-1]$ and \mathcal{T}_B the corresponding subcomplex of \mathcal{T} .

lacktriangledown | \mathcal{T}_B | is a topological 3-ball (and shellable) if and only if B is grid-unimodal (B is strongly connected and $B \cap (\{i\} \times [m-1])$ and $B \cap ([n-1] \times \{j\})$ are connected (that is, intervals), $\forall i, j$).

Grid convexity

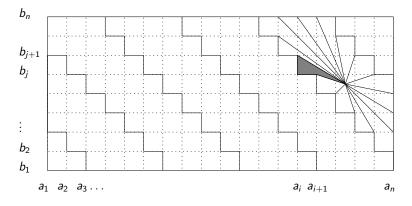
Lemma

Let $B \subset [n-1] \times [m-1]$ and \mathcal{T}_B the corresponding subcomplex of \mathcal{T} .

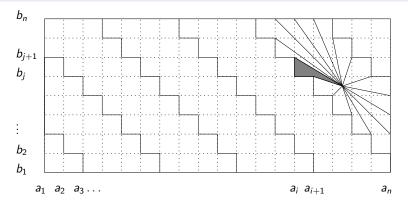
- lacktriangledown | \mathcal{T}_B | is a topological 3-ball (and shellable) if and only if B is grid-unimodal (B is strongly connected and $B \cap (\{i\} \times [m-1])$ and $B \cap ([n-1] \times \{j\})$ are connected (that is, intervals), $\forall i, j$).
- $|\mathcal{T}_B|$ is star convex from every point (equivalently, from some point) in the interior of the tetrahedron $T_{ii} \subset T_B$ if and only if $\forall (i', j') \in B$ we have $[i, i'] \times [j, j'] \subset B$.

Cyclic polytopes

Construction 1: $2^{\Omega(n^2)}$ 3-spheres



Construction 1: $2^{\Omega(n^2)}$ 3-spheres

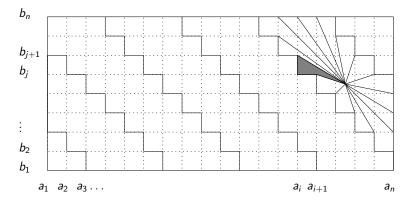


Theorem

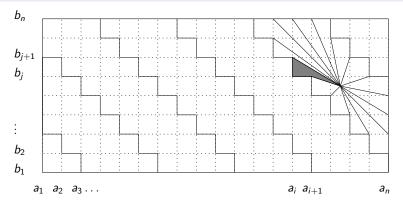
There is a polyhedral 3-sphere with $5n/2 \pm O(1)$ vertices having $n^2/2 \pm O(N)$ bipyramids (refutes [Erickson 1999])

Construction 1: $2^{\Omega(n^2)}$ 3-spheres

Statements

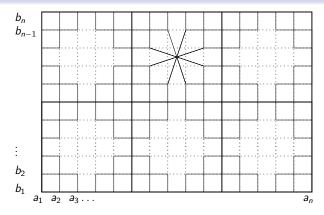


Construction 1: $2^{\Omega(n^2)}$ 3-spheres

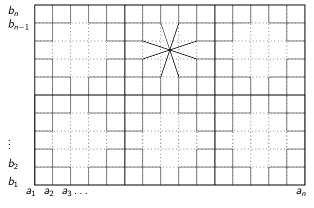


Corollary

There are at least $2^{(\frac{2N^2}{25}\pm O(N))}\sim 1.0570^{N^2}$ triangulations of the 3-sphere with N vertices.

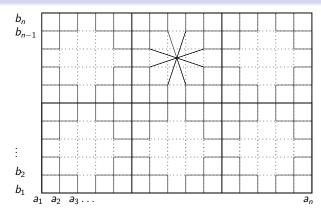


Cyclic polytopes



Let n = m = kl + 1and divide the $[n-1] \times [n-1]$ grid into l^2 subgrids of size $k \times k$

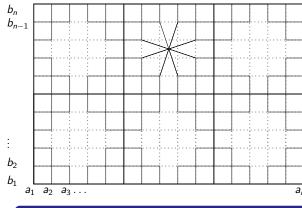
The "aztec diamond" in each subgrid is a star-convex ball that can be subdivided into 2k - 2 bipyramids.



Let n = m = kl + 1and divide the $[n-1] \times [n-1]$ grid into l^2 subgrids of size $k \times k$

The "aztec diamond" in each subgrid is a star-convex ball that can be subdivided into 2k-2 bipyramids.

Letting k = I:



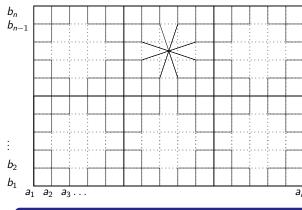
Let n = m = kl + 1and divide the $[n-1] \times [n-1]$ grid into l^2 subgrids of size $k \times k$.

The "aztec diamond" in each subgrid is a star-convex ball that can be subdivided into 2k - 2 bipyramids.

Letting k = I:

Theorem

There is a geodesic 3-sphere with $3n \pm O(1)$ vertices consisting of $n^2/2 \pm O(n)$ tetrahedra and $2n^{3/2} \pm O(n)$ bipyramids.



Let n = m = kl + 1and divide the $[n-1] \times [n-1]$ grid into l^2 subgrids of size $k \times k$.

The "aztec diamond" in each subgrid is a star-convex ball that can be subdivided into 2k-2 bipyramids.

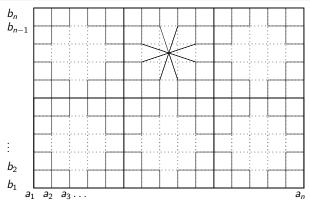
Letting k = I:

Corollary

There are at least $2^{2(N/3)^{3/2}-O(N)}$ geodesic triangulations of the 3-sphere with N vertices.

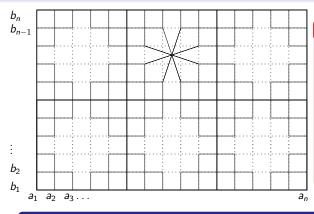
Statements

Construction 2: $2^{\Omega(n^{3/2})}$ geodesic 3-spheres



Remark

The geodesic polyhedral 3-sphere obtained from the aztec diamonds is regular (a.k.a. weighted Delaunay), which means it is part of a polytopal 3-sphere.



Remark

The geodesic polyhedral 3-sphere obtained from the aztec diamonds is regular (a.k.a. weighted Delaunay), which means it is part of a polytopal 3-sphere.

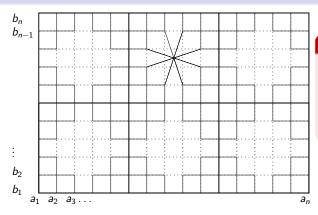
Corollary

Statements

There are 4-polytopes with N vertices having $2(N/3)^{3/2} - O(N)$ facets that are not simplices.

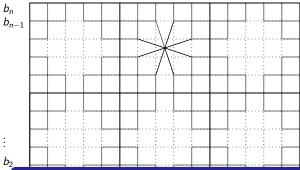
Statements

Construction 2: $2^{\Omega(n^{3/2})}$ geodesic 3-spheres



Remark

The triangulation of it obtained refining every bipyramid into 3 tetrahedra is also regular.

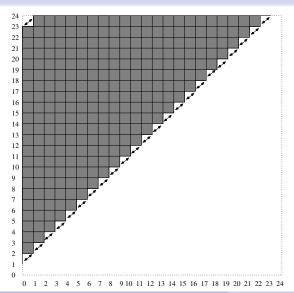


Remark

The triangulation of it obtained refining every bipyramid into 3 tetrahedra is also regular.

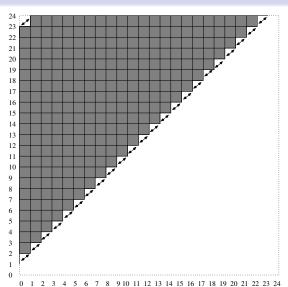
b Corollary

There are simplicial 4-polytopes with N vertices having $2(N/3)^{3/2} - O(N)$ edges of degree 3 (or, there are simple 4-polytopes with N vertices having $2(N/3)^{3/2} - O(N)$ triangular 2-faces). (Answers a question by Ziegler)

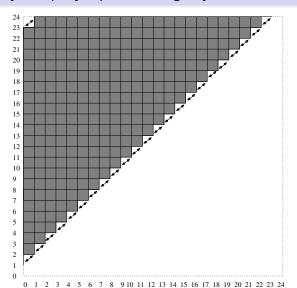


Construction 1 works basically the same if instead of the join of two paths one uses cyclic 4-polytopes

Cyclic polytopes



Construction 1 works basically the same if instead of the join of two paths one uses cyclic 4-polytopes (deleted join of cycle).

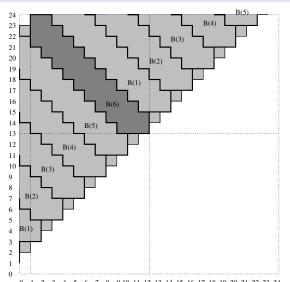


Construction 1 works basically the same if instead of the join of two paths one uses cyclic 4-polytopes (deleted join of cycle).

Corollary

Cyclic polytopes

There are at least $2^{(\frac{4N^2}{25}\pm O(N))}\sim 1.117^{N^2}$ triangulations of the 3-sphere with N vertices.



Construction 1 works basically the same if instead of the join of two paths one uses cyclic 4-polytopes (deleted join of cycle).

Corollary

There are at least $2^{(\frac{4N^2}{25}\pm O(N))}\sim 1.117^{N^2}$ triangulations of the 3-sphere with N vertices.

Statements

More or less the same ideas work in higher odd dimension 2k-1, taking the join of k paths instead of 2.

$\mathsf{Theorem}$

There are at least $2^{\left(\frac{2}{3k^{k+1}}\right)N^k}$ PL (2k-1)-spheres on N vertices.

Theorem

There are $2^{\frac{2}{(k-1)!(k+1)^k}N^{k-1+\frac{1}{k}}}$ geodesic triangulations of the (2k-1)-sphere.

Higher d

The end

The end

Statements

THANK YOU