Extremal problems on shadows and hypercuts in simplicial complexes

Yuval Peled, Hebrew University of Jerusalem Joint work with Nati Linial, Ilan Newman and Yuri Rabinovich

Generalizing graph-theoretic concepts

- Many basic concepts in graph theory have natural counterparts in the realm of high-dimensional simplicial complexes.
- We use the terminology of vertices, edges and faces for simplices of dimension 0,1 and 2 respectively. Let *n* be the size of the vertex set.
- Identify a face with its corresponding column in the standard $\binom{n}{2} \times \binom{n}{3}$ matrix form of ∂_2 , the boundary operator over some underlying field \mathbb{F} .
- A linearly independent set of faces is called *acyclic*.
- A 2-hypertree is a maximal acyclic set of faces. It is straightforward to see that every 2-hypertree is of size $\binom{n-1}{2}$. A 2-almost-hypertree is an acyclic set of size $\binom{n-1}{2} 1$.
- A 2-hypercut is a minimal set of faces that intersects with every 2-hypertree.
- The shadow SH(S) of a set S of faces consists of all the faces $\sigma \notin S$ that are in the $\mathbb F$ -linear span of S.

Perfect 2-hypercuts over Q

- We construct a perfect 2-hypercut over $\mathbb Q$ with n vertices for every prime $n \geq 5$ for which $\mathbb Z_n^*$ is generated by $\{-1,2\}$.
- Let $X = X_n$ be a 2-complex on vertex set \mathbb{Z}_n whose faces are arithmetic progressions of length 3 in \mathbb{Z}_n with difference not in $\{0, \pm 2^{-1}\}$.
- Theorem: X is an almost-hypertree and $SH(X) = \emptyset$.
- Corollary: The complement of X is a perfect 2-hypercut.
- Proof sketch:
 - 1. Split the edges and faces by the difference $d \in \mathbb{Z}_n^*$. Namely, Let $E_d = ((a, a+d))_{a=0}^{n-1}$ and $F_d = ((a, a+d, a+2d))_{a=0}^{n-1}$.
 - 2. Order the rows and columns of $\partial_2(X)$ by $E_1, E_2, E_4, ..., E_{2^{(n-3)/2}}$ and $F_1, F_2, F_4, ..., F_{2^{(n-5)/2}}.$ $\partial_2(X)$ takes the form

$$\partial_2(X) = \begin{pmatrix} I + Q & 0 & 0 & \dots \\ -I & I + Q^2 & 0 & \dots \\ 0 & -I & \ddots & \dots \\ 0 & 0 & \ddots & I + Q^{2^{\frac{n-1}{2}-2}} \\ 0 & 0 & \dots & -I \end{pmatrix}$$

Each entry is an $n \times n$ matrix, and Q is the permutation matrix of $b \mapsto b + 1 \mod n$. Indeed,

 $\partial(a, a+d, a+2d) = (a, a+d) + (a+d, a+2d) - (a, a+2d).$

 \checkmark X is an almost-hypertree.

3. Let $u \in \mathbb{Q}^{\binom{n}{2}}$ be defined by $u_e = 2^i$ when $e \in E_{2^i}$. Then for every face σ , $\langle u, \partial \sigma \rangle = 0 \iff \sigma \in X$.

 \checkmark X is shadowless.

Main questions

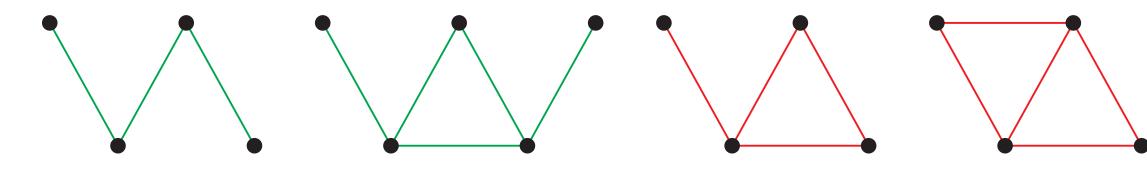
- Question I: How large can a 2-hypercut be?
- In graphs, no cut can have more than $\binom{n}{2} (n-1) + 1$ edges since every cut meets some tree in exactly one edge. However, this bound is far from the correct answer $\left|\frac{n^2}{4}\right|$.
- Similarly, every 2-hypercut meets some 2-hypertree in exactly one face. Hence, a 2-hypercut has at most $\binom{n}{3} \binom{n-1}{2} + 1$ faces. A 2-hypercut of this size is called *perfect*.

Question II: Do perfect 2-hypercuts exist?

- In graphs, the least size of the shadow of a forest with two connected components is $\lfloor \frac{n^2}{4} \rfloor$.
- Question III: How small can the shadow of a 2-almost-hypertree be?

Largest 2-hypercuts over \mathbb{F}_2

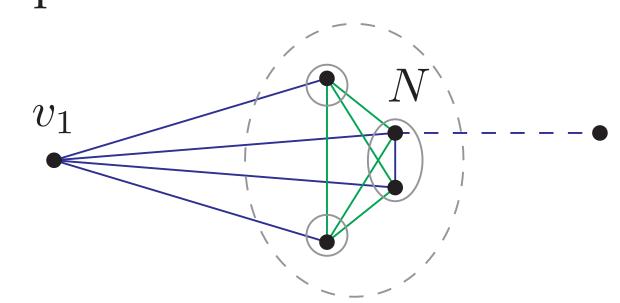
- Theorem: The largest size of an n-vertex 2-hypercut C over \mathbb{F}_2 is $|C| \leq \binom{n}{3} \frac{3}{4} \cdot n^2 + o(n^2)$.
- Key definition and observations:
 - 1. A pair of intersecting edges uv, uv' in a graph G = (V, E) are Λ -adjacent if $vv' \notin E$. G is Λ -connected if the Λ -adjacency relation is connected.



- 2. C is a 2-hypercut \iff C is an inclusion-minimal coboundary \iff $\operatorname{link}_v(C)$ is Λ -connected $\forall v \in V$.
- 3. Let $G = \operatorname{link}_v(C)$, $m = |E(\bar{G})|$, $d_1 \ge ... \ge d_{n-1}$ its degree sequence and t the number of triangles. Then,

$$|\bar{C}| = |1_{\bar{G}}\partial_2| = mn - \sum_i d_i^2 + 4t.$$

- Use the Λ -connectivity of G to derive constraints on $m,d_1,...,d_{n-1}$:
 - $-d_1 \leq m/2 + 1.$
 - $-d_1+d_2 \leq (m+n)/2.$
 - $-\sum_{i=1}^k d_i \le m n/2 + O(2^k).$
- Proof of $d_1 \le m/2 + 1$. Consider v_1 and its neighborhood N. Claim: There are $d_1 2$ edges in \bar{G} that meet N and not v_1 .
 - 1. If N has at most 2 connected components in \bar{G} we are done.
 - 2. Additional components must be connected to $V \setminus N \cup \{v_1\}$:



- Finally, minimizing $|\bar{C}|$ reduces to a quadratic optimization problem in 3 variables m, d_1, d_2 .
- This can be improved to find a precise bound $|C| \le \binom{n}{3} (\frac{3}{4}n^2 \frac{7}{2}n + 4)$. The bound is tight and attained when \bar{G} is

