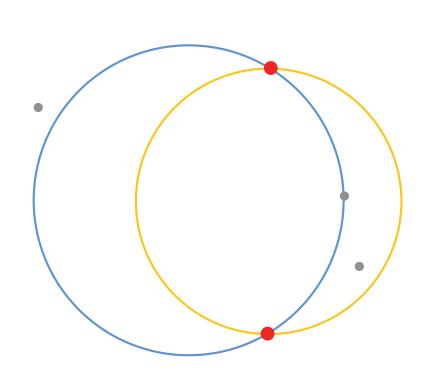
The Morse Theory of Čech and Delaunay Complexes

Ulrich Bauer (TU München), Herbert Edelsbrunner (IST Austria)

Čech and Delaunay functions

 $X \subset \mathbb{R}^d$: finite point set (in general position) **Simplices** $\Delta(X)$: nonempty subsets Two functions on simplices $Q \subseteq X$:

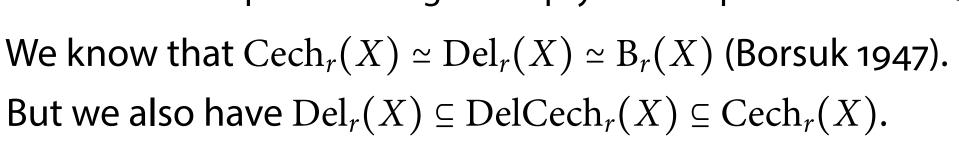
- Čech function $f_C(Q)$: radius of smallest enclosing sphere of Q
- **Delaunay function** $f_D(Q)$: radius of smallest empty circumsphere of Q
 - defined only if Q has an empty circumsphere: $Q \in \text{Del } X$



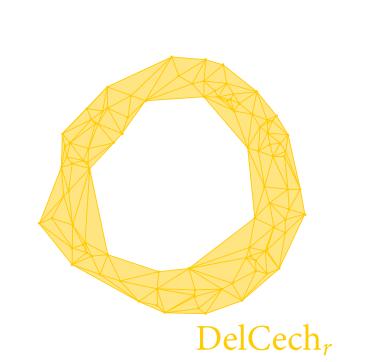
Čech and Delaunay complexes

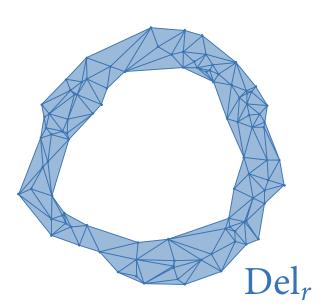
Define for any radius *r*:

- Čech complex $\operatorname{Cech}_r = f_C^{-1}(-\infty, r]$
 - all simplices having an enclosing sphere of radius $\leq r$
- **Delaunay–Čech complex** $DelCech_r = Cech_r \cap Del$
 - restriction of Čech complex to Delaunay simplices
- **Delaunay complex** (α -shape for $\alpha = r$) $\mathrm{Del}_r = f_D^{-1}(-\infty, r]$
 - all simplices having an empty circumsphere of radius $\leq r$



- Are the three complexes connected by simplicial collapses?
- For which r do they change their homotopy type?





Generalized discrete Morse theory

A function $f: K \to \mathbb{R}$ on a simplicial complex is a **generalized discrete Morse function** if for all $t \in \mathbb{R}$:

- the sublevel set $K_t = f^{-1}(-\infty, t]$ is a subcomplex
- the level set $f^{-1}(t)$ is an interval of the face poset: $[L,U]=\{Q:L\subseteq Q\subseteq U\}.$

If (s, t] contains no critical value of f, then $K_t \setminus K_s$.

Morse theory of Čech and Delaunay functions

Theorem

The Čech and Delaunay functions are generalized discrete Morse functions. The critical simplices of both are the Delaunay simplices Q with $f_D(Q) = f_C(Q)$. These are precisely the Delaunay simplices containing the circumcenter in their interior.

Sphere minimization problems

Both Čech and Delaunay function are defined using smallest spheres satisfying certain constraints:

minimize
$$r$$

subject to $||z - q|| \le r$, $q \in Q$, $||z - e|| \ge r$, $e \in E$.

Here r is the radius and z is the center of the sphere.

- Čech function: choose $E = \emptyset$
- Delaunay function: choose E = X

Selective Delaunay complexes

Define for any subset $E \subseteq X$:

- E-Delaunay function $f_E(Q)$: radius of smallest E-empty enclosing sphere of Q
 - defined only if Q has an E-empty enclosing sphere: $Q \in Del(X, E)$
- *E*-Delaunay complex $\mathrm{Del}_r(X, E) = f_D^{-1}(-\infty, r]$

Čech and Delaunay intervals

Consider a sphere S enclosing the points $Q \subseteq X$ and excluding the points $E \subseteq X$

- Let encl S be all points of X enclosed by S, and excl S excluded by S
- Let on S be the points of X on S
- Write the center of S as an affine combination $z_S = \sum_{x \in \text{on } S} \mu_x x$
- Let front $S = \{x \in \text{on } S \mid \mu_x > 0\}$, and back $S = \{x \in \text{on } S \mid \mu_x < 0\}$

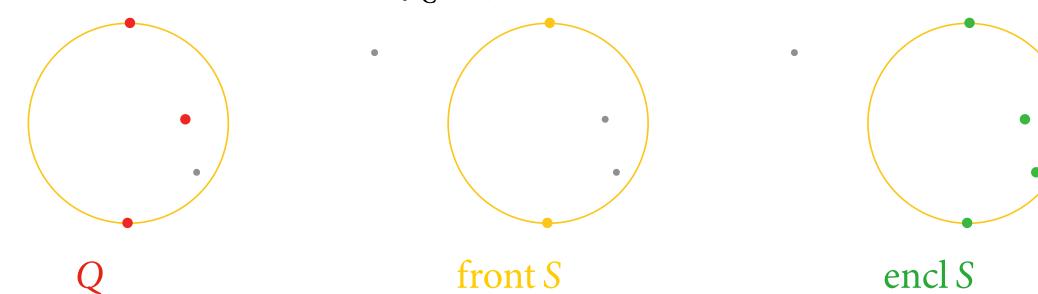
The Karush-Kuhn-Tucker conditions for the sphere minimization problem yield:

Lemma

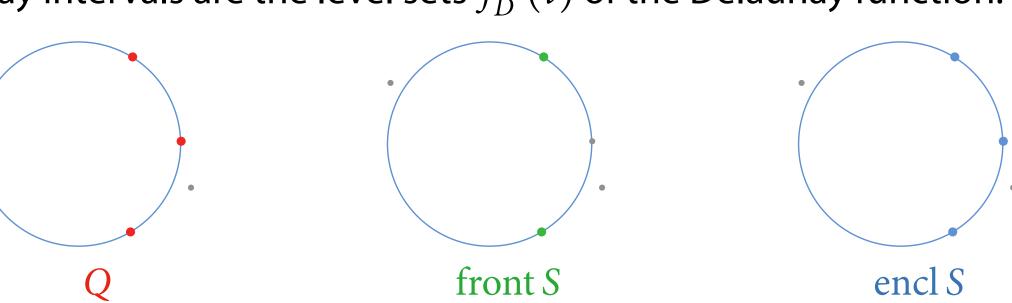
A sphere S enclosing Q and excluding E is the smallest such sphere iff:

- $z_S \in \operatorname{aff}(\operatorname{on} S)$
- $Q \in [\text{front } S, \text{encl } S]$ (i.e., front $S \subseteq Q \subseteq \text{encl } S$)
- $E \in [\text{back } S, \text{excl } S]$

The Čech intervals are the level sets $f_C^{-1}(t)$ of the Čech function:



The Delaunay intervals are the level sets $f_D^{-1}(t)$ of the Delaunay function:



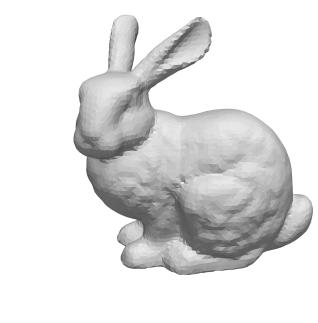
Theorem

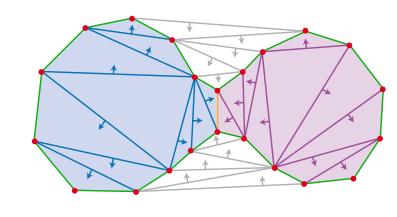
The intersection of non-critical Čech and Delaunay intervals is again non-critical.

Wrap complexes

Generalizes and greatly simplifies the surface reconstruction method **Wrap** (Edelsbrunner 2003) Define for any radius r:

- Crit_r denotes the critical simplices with value $\leq r$
- ↓ denotes the descending set of Delaunay intervals (with the partial order induced by the face relation)
- Intuition from smooth Morse theory: union of descending manifolds for all critical points with value $\leq r$





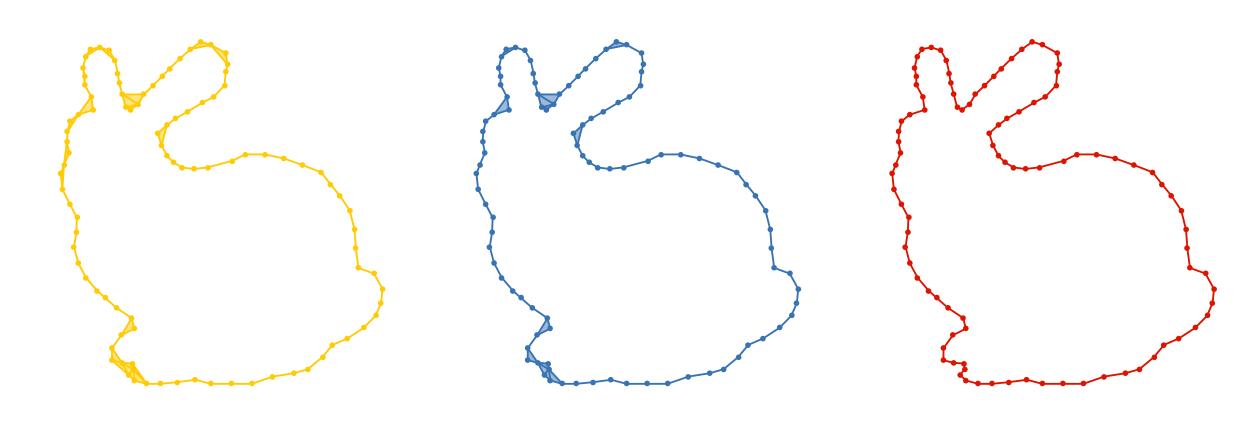
A sequence of collapses

Theorem

Let $E \subseteq E' \subseteq X$. Then $\mathrm{Del}_r(X, E) \setminus \mathrm{Del}_r(X, E) \cap \mathrm{Del}(X, E') \setminus \mathrm{Del}_r(X, E')$.

Corollary

For any given radius r, Čech, Delaunay–Čech, Delaunay, and Wrap complexes are simple-homotopy equivalent. In particular, $\operatorname{Cech}_r \setminus \operatorname{Del}\operatorname{Cech}_r \setminus \operatorname{Del}_r \setminus \operatorname{Wrap}_r$.



References

- [1] H. Edelsbrunner. Surface reconstruction by wrapping finite sets in space, 2003.
- [2] R. Forman. Morse theory for cell complexes, 1998.
- [3] R. Freij. Equivariant discrete Morse theory, 2009.