Plan of this talk

Examples of abelian categories
Equivalence of categories
Exact sequences and exact functors
Adjunctions
Projective generators
Morita equivalence
Examples of abelian categories
Plan of this talk

- Examples of abelian categories
- Equivalence of categories
Plan of this talk

- Examples of abelian categories
- Equivalence of categories
- Exact sequences and exact functors
Plan of this talk

- Examples of abelian categories
- Equivalence of categories
- Exact sequences and exact functors
- Adjunctions
Plan of this talk

- Examples of abelian categories
- Equivalence of categories
- Exact sequences and exact functors
- Adjunctions
- Projective generators
Plan of this talk

- Examples of abelian categories
- Equivalence of categories
- Exact sequences and exact functors
- Adjunctions
- Projective generators
- Morita equivalence
Plan of this talk

- Examples of abelian categories
- Equivalence of categories
- Exact sequences and exact functors
- Adjunctions
- Projective generators
- Morita equivalence
Examples of Abelian Categories

- \mathbf{R} - a unital ring.
 - $\mathbf{Mod}(\mathbf{R})$ - the category of left \mathbf{R}-modules.
- \mathbf{G} - an ℓ-group.
 - $\mathbf{Rep}(\mathbf{G})$ - the category of smooth complex representations of \mathbf{G}.
- \mathbf{A} - an idempotented algebra.
 - $\mathbf{Mod}(\mathbf{A})$ - the category of non-degenerate left \mathbf{A}-modules.
- \mathbf{X} - a topological space.
 - $\mathbf{Sh}(\mathbf{X})$ - the category of sheaves of complex vector spaces over \mathbf{X}.
Examples of Abelian Categories

- R - a unital ring.
Examples of Abelian Categories

- R - a unital ring. $\text{Mod}(R)$ - the category of left R-modules.
Examples of Abelian Categories

- R - a unital ring. $\text{Mod}(R)$ - the category of left R-modules.
- G - an ℓ-group.
Examples of Abelian Categories

- R - a unital ring. $\text{Mod}(R)$ - the category of left R-modules.
- G - an ℓ-group. $\text{Rep}(G)$ - the category of smooth complex representations of G.
Examples of Abelian Categories

- R - a unital ring. $\text{Mod}(R)$ - the category of left R-modules.
- G - an ℓ-group. $\text{Rep}(G)$ - the category of smooth complex representations of G.
- A - an idempotented algebra.
Examples of Abelian Categories

- R - a unital ring. $\text{Mod}(R)$ - the category of left R-modules.
- G - an ℓ-group. $\text{Rep}(G)$ - the category of smooth complex representations of G.
- A - an idempotented algebra. $\text{Mod}(A)$ - the category of non-degenerate left A-modules.
Examples of Abelian Categories

- R - a unital ring. $\text{Mod}(R)$ - the category of left R-modules.
- G - an ℓ-group. $\text{Rep}(G)$ - the category of smooth complex representations of G.
- A - an idempotented algebra. $\text{Mod}(A)$ - the category of non-degenerate left A-modules.
- X - a topological space.
Examples of Abelian Categories

- R - a unital ring. $\text{Mod}(R)$ - the category of left R-modules.
- G - an ℓ-group. $\text{Rep}(G)$ - the category of smooth complex representations of G.
- A - an idempotented algebra. $\text{Mod}(A)$ - the category of non-degenerate left A-modules.
- X - a topological space. $\text{Sh}(X)$ - the category of sheaves of complex vector spaces over X.
Examples of Abelian Categories

- R - a unital ring. $\text{Mod}(R)$ - the category of left R-modules.
- G - an ℓ-group. $\text{Rep}(G)$ - the category of smooth complex representations of G.
- A - an idempotented algebra. $\text{Mod}(A)$ - the category of non-degenerate left A-modules.
- X - a topological space. $\text{Sh}(X)$ - the category of sheaves of complex vector spaces over X.
Examples of idempotented algebras

- \(\mathcal{L} \)-space.
- \(\mathcal{S}(\mathcal{L}) \) - the algebra of smooth, compactly supported complex functions on \(\mathcal{L} \) with respect to pointwise multiplication.
- \(\mathcal{G} \)- an \(\mathcal{L} \)-group.
- \(\mathcal{H}(\mathcal{G}) \) - the algebra of smooth, compactly supported measures on \(\mathcal{G} \) with respect to convolution.
Examples of idempotented algebras

- X - an ℓ-space.

$S(X)$ - the algebra of smooth, compactly supported complex functions on X with respect to pointwise multiplication.

G - an ℓ-group.

$H(G)$ - the algebra of smooth, compactly supported measures on G with respect to convolution.
Examples of idempotented algebras

- X - an ℓ-space. $S(X)$ - the algebra of smooth, compactly supported complex functions on X with respect to pointwise multiplication.

- G - an ℓ-group. $H(G)$ - the algebra of smooth, compactly supported measures on G with respect to convolution.
Examples of idempotentened algebras

- X - an ℓ-space. $S(X)$ - the algebra of smooth, compactly supported complex functions on X with respect to pointwise multiplication.
- G - an ℓ-group.
Examples of idempotented algebras

- X - an ℓ-space. $S(X)$ - the algebra of smooth, compactly supported complex functions on X with respect to pointwise multiplication.
- G - an ℓ-group. $\mathcal{H}(G)$ - the algebra of smooth, compactly supported measures on G with respect to convolution.
Examples of idempotented algebras

- X - an ℓ-space. $S(X)$ - the algebra of smooth, compactly supported complex functions on X with respect to pointwise multiplication.

- G - an ℓ-group. $\mathcal{H}(G)$ - the algebra of smooth, compactly supported measures on G with respect to convolution.
Equivalence of categories

Definition
An equivalence between \mathcal{A} and \mathcal{B} is the data of two functors, $F: \mathcal{A} \to \mathcal{B}$ and $G: \mathcal{B} \to \mathcal{A}$, and isomorphisms of functors $\eta: \text{Id}_\mathcal{B} \cong F \circ G$ and $\nu: \text{Id}_\mathcal{A} \cong G \circ F$.

Let $F: \mathcal{A} \to \mathcal{B}$ be a functor. When is it an equivalence of categories (i.e. when can we find G, η, ν as above)?

Proposition $F: \mathcal{A} \to \mathcal{B}$ is an equivalence i.f.f. it is fully faithful and essentially surjective.

fully faithful: $\text{Hom}(X, Y) \to \text{Hom}(FX, FY)$ is an isomorphism, for all $X, Y \in \mathcal{A}$.

essentially surjective: For each $Z \in \mathcal{B}$, there exists $Y \in \mathcal{A}$ s.t. $Z \cong F(Y)$.

For abelian categories - functors should be additive.
Equivalence of categories

Definition

An equivalence between \mathcal{A} and \mathcal{B} is the data of two functors, $F : \mathcal{A} \to \mathcal{B}$ and $G : \mathcal{B} \to \mathcal{A}$, and isomorphisms of functors $\eta : Id_{\mathcal{B}} \cong F \circ G$ and $\nu : Id_{\mathcal{A}} \cong G \circ F$.
Definition

An equivalence between \mathcal{A} and \mathcal{B} is the data of two functors, $F: \mathcal{A} \to \mathcal{B}$ and $G: \mathcal{B} \to \mathcal{A}$, and isomorphisms of functors

$\eta: \text{Id}_B \cong F \circ G$ and $\nu: \text{Id}_A \cong G \circ F$

Let $F: \mathcal{A} \to \mathcal{B}$ be a functor.
An equivalence between A and B is the data of two functors, $F : A \to B$ and $G : B \to A$, and isomorphisms of functors $\eta : \text{Id}_B \cong F \circ G$ and $\nu : \text{Id}_A \cong G \circ F$.

Let $F : A \to B$ be a functor. **When is it an equivalence of categories** (i.e. when can we find G, η, ν as above)?
Definition

An equivalence between \mathcal{A} and \mathcal{B} is the data of two functors, $F : \mathcal{A} \to \mathcal{B}$ and $G : \mathcal{B} \to \mathcal{A}$, and isomorphisms of functors $\eta : Id_B \cong F \circ G$ and $\nu : Id_A \cong G \circ F$

Let $F : \mathcal{A} \to \mathcal{B}$ be a functor. **When is it an equivalence of categories** (i.e. when can we find G, η, ν as above)?

Proposition

$F : \mathcal{A} \to \mathcal{B}$ is an equivalence i.f.f. it is fully faithful and essentially surjective.
Equivalence of categories

Definition

An equivalence between \mathcal{A} and \mathcal{B} is the data of two functors, $F : \mathcal{A} \to \mathcal{B}$ and $G : \mathcal{B} \to \mathcal{A}$, and isomorphisms of functors $\eta : \text{Id}_\mathcal{B} \cong F \circ G$ and $\nu : \text{Id}_\mathcal{A} \cong G \circ F$.

Let $F : \mathcal{A} \to \mathcal{B}$ be a functor. **When is it an equivalence of categories** (i.e. when can we find G, η, ν as above)?

Proposition

$F : \mathcal{A} \to \mathcal{B}$ is an equivalence i.f.f. it is fully faithful and essentially surjective.

fully faithful: $\text{Hom}(X, Y) \to \text{Hom}(FX, FY)$ is an isomorphism, for all $X, Y \in \mathcal{A}$.
Definition

An equivalence between \mathcal{A} and \mathcal{B} is the data of two functors, $F : \mathcal{A} \to \mathcal{B}$ and $G : \mathcal{B} \to \mathcal{A}$, and isomorphisms of functors $\eta : \text{Id}_B \cong F \circ G$ and $\nu : \text{Id}_A \cong G \circ F$.

Let $F : \mathcal{A} \to \mathcal{B}$ be a functor. **When is it an equivalence of categories** (i.e. when can we find G, η, ν as above)?

Proposition

$F : \mathcal{A} \to \mathcal{B}$ is an equivalence i.f.f. it is fully faithful and essentially surjective.

fully faithful: $\text{Hom}(X, Y) \to \text{Hom}(FX, FY)$ is an isomorphism, for all $X, Y \in \mathcal{A}$.

essentially surjective: For each $Z \in \mathcal{B}$, there exists $Y \in \mathcal{A}$ s.t. $Z \cong F(Y)$.
Definition

An equivalence between \mathcal{A} and \mathcal{B} is the data of two functors, $F : \mathcal{A} \to \mathcal{B}$ and $G : \mathcal{B} \to \mathcal{A}$, and isomorphisms of functors $\eta : \text{Id}_\mathcal{B} \cong F \circ G$ and $\nu : \text{Id}_\mathcal{A} \cong G \circ F$.

Let $F : \mathcal{A} \to \mathcal{B}$ be a functor. When is it an equivalence of categories (i.e. when can we find G, η, ν as above)?

Proposition

$F : \mathcal{A} \to \mathcal{B}$ is an equivalence i.f.f. it is fully faithful and essentially surjective.

fully faithful: $\text{Hom}(X, Y) \to \text{Hom}(FX, FY)$ is an isomorphism, for all $X, Y \in \mathcal{A}$.

essentially surjective: For each $Z \in \mathcal{B}$, there exists $Y \in \mathcal{A}$ s.t. $Z \cong F(Y)$.

For abelian categories - functors should be additive.
Equivalences of categories: Galois and Poincaré

Galois

$K \subset K$ - a field (say of char. 0), equipped with an embedding into an algebraic closure.

$\mathbb{G} = \text{Gal}(K/K)$ - the profinite Galois group.

Fin_K - the category of finite extension fields of K.

Sets_G - the category of finite transitive continuous G-sets.

Theorem \[E \to \text{Hom}_K(E, K) \] provides an equivalence of categories $\text{Fin}_K \approx \text{Sets}_G$.

Poincaré

(X, x_0) - a pointed connected (nice) topological space.

$\mathbb{G} = \pi_1(X, x_0)$.

Cov_X - the category of covering spaces of X.

Sets_G - the category of G-sets.

Theorem Sending a covering space to its fiber over x_0 provides an equivalence of categories $\text{Cov}_X \approx \text{Sets}_G$.

Background From Category Theory
Galois

\(K \subset \overline{K} \) - a field (say of char. 0), equipped with an embedding into an algebraic closure.

Poincare

\((X, x_0)\) - a pointed connected (nice) topological space.

\[\pi_1(X, x_0). \]

\(Cov_X \) - the category of covering spaces of \(X \).

\[\text{Sets}_G \] - the category of \(G \)-sets.

Theorem: Sending a covering space to its fiber over \(x_0 \) provides an equivalence of categories \(Cov_X \approx \text{Sets}_G \).
Galois

$K \subset \overline{K}$ - a field (say of char. 0), equipped with an embedding into an algebraic closure. $G = Gal(\overline{K}/K)$ - the profinite Galois group.
Galois

\(K \subset \overline{K} \) - a field (say of char. 0), equipped with an embedding into an algebraic closure. \(G = Gal(\overline{K}/K) \) - the profinite Galois group. \(Fin_K \) - the category of finite extension fields of \(K \).
Equivalences of categories: Galois and Poincare

Galois

$K \subset \overline{K}$ - a field (say of char. 0), equipped with an embedding into an algebraic closure. $G = Gal(\overline{K}/K)$ - the profinite Galois group. \mathbf{Fin}_K - the category of finite extension fields of K. \mathbf{Sets}_G - the category of finite transitive continuous G-sets.
Galois

$K \subset \overline{K}$ - a field (say of char. 0), equipped with an embedding into an algebraic closure. $G = Gal(\overline{K}/K)$ - the profinite Galois group.

Theorem

$E \to Hom_K(E, \overline{K})$ provides an equivalence of categories $Fin_K \approx Sets_G$.
Galois

$K \subset \overline{K}$ - a field (say of char. 0), equipped with an embedding into an algebraic closure. $G = Gal(\overline{K}/K)$ - the profinite Galois group.

Fin_K - the category of finite extension fields of K. Sets_G - the category of finite transitive continuous G-sets.

Theorem

$E \rightarrow \text{Hom}_K(E, \overline{K})$ provides an equivalence of categories $\text{Fin}_K \cong \text{Sets}_G$.

Poincare

(X, x_0) - a pointed connected (nice) topological space.
Galois

A field $K \subset \overline{K}$ equipped with an embedding into an algebraic closure. $G = \text{Gal}(\overline{K}/K)$ - the profinite Galois group. Fin_K - the category of finite extension fields of K. Sets_G - the category of finite transitive continuous G-sets.

Theorem

$E \rightarrow \text{Hom}_K(E, \overline{K})$ provides an equivalence of categories $\text{Fin}_K \approx \text{Sets}_G$.

Poincare

A pointed connected (nice) topological space (X, x_0). $G = \pi_1(X, x_0)$. Cov_X - the category of covering spaces of X.
Galois

$K \subseteq \overline{K}$ - a field (say of char. 0), equipped with an embedding into an algebraic closure. $G = \text{Gal}(\overline{K}/K)$ - the profinite Galois group. Fin_K - the category of finite extension fields of K. Sets_G - the category of finite transitive continuous G-sets.

Theorem

$E \to \text{Hom}_K(E, \overline{K})$ provides an equivalence of categories $\text{Fin}_K \cong \text{Sets}_G$.

Poincare

(X, x_0) - a pointed connected (nice) topological space.
$G = \pi_1(X, x_0)$. Cov_X - the category of covering spaces of X. Sets_G - the category of G-sets.
Galois

A field $K \subset \overline{K}$, equipped with an embedding into an algebraic closure. $G = Gal(\overline{K}/K)$ - the profinite Galois group. Fin_K - the category of finite extension fields of K. $Sets_G$ - the category of finite transitive continuous G-sets.

Theorem

$E \to Hom_K(E, \overline{K})$ provides an equivalence of categories $Fin_K \approx Sets_G$.

Poincare

A pointed connected (nice) topological space (X, x_0). $G = \pi_1(X, x_0)$. Cov_X - the category of covering spaces of X. $Sets_G$ - the category of G-sets.

Theorem

Sending a covering space to its fiber over x_0 provides an equivalence of categories $Cov_X \approx Sets_G$.
Galois

\(K \subset \overline{K} \) - a field (say of char. 0), equipped with an embedding into an algebraic closure. \(G = \text{Gal}(\overline{K}/K) \) - the profinite Galois group.
\(\text{Fin}_K \) - the category of finite extension fields of \(K \). \(\text{Sets}_G \) - the category of finite transitive continuous \(G \)-sets.

Theorem

\[E \rightarrow \text{Hom}_K(E, \overline{K}) \] provides an equivalence of categories
\(\text{Fin}_K \cong \text{Sets}_G \).

Poincare

\((X, x_0)\) - a pointed connected (nice) topological space.
\(G = \pi_1(X, x_0) \). \(\text{Cov}_X \) - the category of covering spaces of \(X \). \(\text{Sets}_G \) - the category of \(G \)-sets.

Theorem

Sending a covering space to its fiber over \(x_0 \) provides an equivalence of categories \(\text{Cov}_X \cong \text{Sets}_G \).
Equivalences of categories: Gelfand and BZ

- **Gelfand**
 - Comm - the category of commutative C^*-algebras.
 - Top - the category of compact topological spaces.

 Theorem $\text{Comm} \approx \text{Top}^{\text{op}}$ (l.t.r. - forming spectrum, r.t.l. - forming algebra of continuous functions w. sup. norm).

- **Bernstein-Zelevinsky**
 - Proposition
 - For an ℓ-space X we have $\text{Sh}(X) \approx \text{Mod}(S(X))$.
 - For an ℓ-group G we have $\text{Rep}(G) \approx \text{Mod}(H(G))$.

Background From Category Theory
Gelfand

Comm - the category of commutative C^*-algebras.
Gelfand

Comm - the category of commutative C^*-algebras. *Top* - the category of compact topological spaces.
Gelfand

\textit{Comm} - the category of commutative C^*-algebras. \textit{Top} - the category of compact topological spaces.

\textbf{Theorem}

\textit{Comm} \approx \textit{Top}^\text{op} (l.t.r. - forming spectrum, r.t.l. - forming algebra of continuous functions w. sup. norm).
Gelfand

Comm - the category of commutative C^*-algebras. Top - the category of compact topological spaces.

Theorem

$Comm \approx Top^{op}$ (l.t.r. - forming spectrum, r.t.l. - forming algebra of continuous functions w. sup. norm).

Bernstein-Zelevinsky

Proposition

For an ℓ-space X we have $Sh(X) \approx Mod(S(X))$.
Gelfand

Comm - the category of commutative C^*-algebras. *Top* - the category of compact topological spaces.

Theorem

Comm \approx *Top*op (l.t.r. - forming spectrum, r.t.l. - forming algebra of continuous functions w. sup. norm).

Bernstein-Zelevinsky

Proposition

For an ℓ-space X we have $\text{Sh}(X) \approx \text{Mod}(S(X))$. For an ℓ-group G we have $\text{Rep}(G) \approx \text{Mod}(\mathcal{H}(G))$.
Gelfand

Comm - the category of commutative C^*-algebras. *Top* - the category of compact topological spaces.

Theorem

$\text{Comm} \approx \text{Top}^{\text{op}}$ (l.t.r. - forming spectrum, r.t.l. - forming algebra of continuous functions w. sup. norm).

Bernstein-Zelevinsky

Proposition

For an ℓ-space X we have $\text{Sh}(X) \approx \text{Mod}(S(X))$. For an ℓ-group G we have $\text{Rep}(G) \approx \text{Mod}(\mathcal{H}(G))$.
Exact functors

A \rightarrow B \rightarrow C is exact (in B) if \text{Im}(f) = \text{Ker}(g).

0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0 is exact if it is exact at all places. This is called a short exact sequence.

Interpretation: A is a subobject of B and C is a quotient of B, and B is “glued” from A and C.

Exact functor: maps s.e.s. to s.e.s.

Left exact functor: only resulting 0 \rightarrow F(A) \rightarrow F(B) \rightarrow F(C) stays exact.

Right exact functor: only resulting F(A) \rightarrow F(B) \rightarrow F(C) \rightarrow 0 stays exact.
A → B → C is exact (in B) if \(\text{Im}(f) = \text{Ker}(g) \).
Exact functors

\[A \to B \to C \] is exact (in \(B \)) if \(\text{Im}(f) = \text{Ker}(g) \).

\[0 \to A \to B \to C \to 0 \] is exact if it is exact at all places.

Interpretation:
\(A \) is a subobject of \(B \) and \(C \) is a quotient of \(B \), and \(B \) is “glued” from \(A \) and \(C \).

Exact functor: maps s.e.s. to s.e.s.

Left exact functor: only resulting \(0 \to F(A) \to F(B) \to F(C) \) stays exact.

Right exact functor: only resulting \(F(A) \to F(B) \to F(C) \to 0 \) stays exact.
$A \to B \to C$ is exact (in B) if $\text{Im}(f) = \text{Ker}(g)$.

$0 \to A \to B \to C \to 0$ is exact if it is exact at all places. this is called a **short exact sequence**.
Exact functors

\[A \to B \to C \] is exact (in \(B \)) if \(\text{Im}(f) = \text{Ker}(g) \).

\[0 \to A \to B \to C \to 0 \] is exact if it is exact at all places. This is called a **short exact sequence**.

Interpretation: \(A \) is a subobject of \(B \) and \(C \) is a quotient of \(B \), and \(B \) is ”glued” from \(A \) and \(C \).
Exact functors

\[A \to B \to C \] is exact (in \(B \)) if \(\text{Im}(f) = \text{Ker}(g) \).

\[0 \to A \to B \to C \to 0 \] is exact if it is exact at all places. This is called a **short exact sequence**.

Interpretation: \(A \) is a subobject of \(B \) and \(C \) is a quotient of \(B \), and \(B \) is "glued" from \(A \) and \(C \).

Exact functor: maps s.e.s. to s.e.s.
Exact functors

$A \to B \to C$ is exact (in B) if $\text{Im}(f) = \text{Ker}(g)$.

$0 \to A \to B \to C \to 0$ is exact if it is exact at all places. This is called a **short exact sequence**.

Interpretation: A is a subobject of B and C is a quotient of B, and B is "glued" from A and C.

Exact functor: maps s.e.s. to s.e.s.

Left exact functor: only resulting $0 \to F(A) \to F(B) \to F(C)$ stays exact.
$A \to B \to C$ is exact (in B) if $\text{Im}(f) = \text{Ker}(g)$.

$0 \to A \to B \to C \to 0$ is exact if it is exact at all places. This is called a **short exact sequence**.

Interpretation: A is a subobject of B and C is a quotient of B, and B is ”glued” from A and C.

Exact functor: maps s.e.s. to s.e.s.

Left exact functor: only resulting $0 \to F(A) \to F(B) \to F(C)$ stays exact.

Right exact functor: only resulting $F(A) \to F(B) \to F(C) \to 0$ stays exact.
A \to B \to C \text{ is exact (in } B \text{) if } \text{Im}(f) = \text{Ker}(g).

0 \to A \to B \to C \to 0 \text{ is exact if it is exact at all places. this is called a \textbf{short exact sequence}.}

Interpretation: A is a subobject of B and C is a quotient of B, and B is ”glued” from A and C.

Exact functor: maps s.e.s. to s.e.s..
Left exact functor: only resulting 0 \to F(A) \to F(B) \to F(C) stays exact.
Right exact functor: only resulting F(A) \to F(B) \to F(C) \to 0 stays exact.
Example

Let $M \in A$. Then the functor $H_M : A \to A$ given by $H_M(N) = \text{Hom}(M, N)$ is left exact.

Definition

M is called projective if H_M is exact.

In $\text{Mod}(R)$ (R unital) an object is projective i.f.f. it is a direct summand of a free module.
Example

Let $M \in \mathcal{A}$. Then the functor $H_M : \mathcal{A} \to \mathcal{Ab}$ given by

$$H_M(N) = \text{Hom}(M, N)$$

is left exact.
Example

Let $M \in \mathcal{A}$. Then the functor $H_M : \mathcal{A} \to \text{Ab}$ given by

$$H_M(N) = \text{Hom}(M, N)$$

is left exact.

Definition

M is called projective if H_M is exact.
Example

Let $M \in A$. Then the functor $H_M : A \to Ab$ given by

$$H_M(N) = \text{Hom}(M, N)$$

is left exact.

Definition

M is called projective if H_M is exact.

In $\text{Mod}(R)$ (R unital) an object is projective i.f.f. it is a direct summand of a free module.
Exact functors: examples

Example

Let $M \in A$. Then the functor $H_M : A \to Ab$ given by

$$H_M(N) = \text{Hom}(M, N)$$

is left exact.

Definition

M is called projective if H_M is exact.

In $\text{Mod}(R)$ (R unital) an object is projective i.f.f. it is a direct summand of a free module.
Adjunction - definition

Definition

\[\text{A} \to \text{B} \text{ is left adjoint to } \text{G} : \text{B} \to \text{A} \]\n
if for any \(\text{X} \in \text{A} \), \(\text{Y} \in \text{B} \) we are given an isomorphism \(\alpha_{\text{X,Y}} : \text{Hom}_B(\text{FX}, \text{Y}) \to \text{Hom}_A(\text{X}, \text{GY}) \) which is functorial in \(\text{X} \) and \(\text{Y} \).

Definition

\[\text{A} \to \text{B} \text{ is left adjoint to } \text{G} : \text{B} \to \text{A} \] if we are given \(\alpha : \text{Id}_A \to \text{G} \circ \text{F} \) and \(\beta : \text{F} \circ \text{G} \to \text{Id}_B \) such that \(\text{F} \to \text{F} \circ \text{G} \circ \text{F} \to \text{F} \) and \(\text{G} \to \text{G} \circ \text{F} \circ \text{G} \to \text{G} \) are the identity maps.

Theorem

Between any two left adjoints of a functor \(\text{G} \) there is a unique isomorphism which respects the adjunction data.

Yom Din Alexander Tel Aviv University

Background From Category Theory
Definition

$F : \mathcal{A} \to \mathcal{B}$ is left adjoint to $G : \mathcal{B} \to \mathcal{A}$ if for any $X \in \mathcal{A}$, $Y \in \mathcal{B}$ we are given an isomorphism

$\alpha_{X,Y} : \text{Hom}_\mathcal{B}(FX, Y) \to \text{Hom}_\mathcal{A}(X, GY)$ which is functorial in X and Y.

Theorem

Between any two left adjoints of a functor G there is a unique isomorphism which respects the adjunction data.
Adjunction - definition

Definition

\[F : \mathcal{A} \to \mathcal{B} \] is left adjoint to \(G : \mathcal{B} \to \mathcal{A} \) if for any \(X \in \mathcal{A}, Y \in \mathcal{B} \) we are given an isomorphism \(\alpha_{X,Y} : \text{Hom}_\mathcal{B}(FX, Y) \to \text{Hom}_\mathcal{A}(X, GY) \) which is functorial in \(X \) and \(Y \).

Definition

\[F : \mathcal{A} \to \mathcal{B} \] is left adjoint to \(G : \mathcal{B} \to \mathcal{A} \) if we are given \(\alpha : \text{Id}_\mathcal{A} \to G \circ F \) and \(\beta : F \circ G \to \text{Id}_\mathcal{B} \) such that \(F \to F \circ G \circ F \to F \) and \(G \to G \circ F \circ G \to G \) are the identity maps.
Definition

$F : \mathcal{A} \to \mathcal{B}$ is left adjoint to $G : \mathcal{B} \to \mathcal{A}$ if for any $X \in \mathcal{A}$, $Y \in \mathcal{B}$ we are given an isomorphism

$$\alpha_{X,Y} : \text{Hom}_{\mathcal{B}}(FX, Y) \to \text{Hom}_{\mathcal{A}}(X, GY)$$

which is functorial in X and Y.

Definition

$F : \mathcal{A} \to \mathcal{B}$ is left adjoint to $G : \mathcal{B} \to \mathcal{A}$ if we are given

$$\alpha : \text{Id}_{\mathcal{A}} \to G \circ F$$

and

$$\beta : F \circ G \to \text{Id}_{\mathcal{B}}$$

such that

$F \to F \circ G \circ F \to F$ and $G \to G \circ F \circ G \to G$ are the identity maps.

Theorem

Between any two left adjoints of a functor G there is a unique isomorphism which respects the adjunction data.
Adjunction - definition

Definition

$F : \mathcal{A} \to \mathcal{B}$ is left adjoint to $G : \mathcal{B} \to \mathcal{A}$ if for any $X \in \mathcal{A}$, $Y \in \mathcal{B}$ we are given an isomorphism

$\alpha_{X,Y} : \text{Hom}_\mathcal{B}(FX, Y) \to \text{Hom}_\mathcal{A}(X, GY)$ which is functorial in X and Y.

Definition

$F : \mathcal{A} \to \mathcal{B}$ is left adjoint to $G : \mathcal{B} \to \mathcal{A}$ if we are given $\alpha : \text{Id}_\mathcal{A} \to G \circ F$ and $\beta : F \circ G \to \text{Id}_\mathcal{B}$ such that $F \to F \circ G \circ F \to F$ and $G \to G \circ F \circ G \to G$ are the identity maps.

Theorem

Between any two left adjoints of a functor G there is a unique isomorphism which respects the adjunction data.
Adjunction - examples

Principle: Category theory gives a new, unifying, construction tool - the adjoint of a functor.

Example:
- **A** - metric spaces, **B** - complete metric spaces.
 - **G**: $B \to A$, the embedding functor.
 - It admits a left adjoint. It is called the completion of a metric space.

Example:
- **A** - sets, **B** - \mathbb{R}-modules.
 - **G**: $B \to A$, the forgetful functor.
 - It admits a left adjoint. It is called the free module construction.
Principle: category theory gives a new, unifying, construction tool - the adjoint of a functor.
Principle: category theory gives a new, unifying, construction tool - the adjoint of a functor.

Example

\mathcal{A} - metric spaces, \mathcal{B} - complete metric spaces.
Principle: category theory gives a new, unifying, construction tool - the adjoint of a functor.

Example

\mathcal{A} - metric spaces, \mathcal{B} - complete metric spaces. $G : \mathcal{B} \to \mathcal{A}$ the embedding functor.
Principle: category theory gives a new, unifying, construction tool - the adjoint of a functor.

Example

A - metric spaces, B - complete metric spaces. $G : B \to A$ the embedding functor.
It admits a left adjoint. It is called completion of a metric space.
Principle: category theory gives a new, unifying, construction tool - the adjoint of a functor.

Example
\(\mathcal{A} \) - metric spaces, \(\mathcal{B} \) - complete metric spaces. \(G : \mathcal{B} \to \mathcal{A} \) the embedding functor. It admits a left adjoint. It is called completion of a metric space.

Example
\(\mathcal{A} \) - sets, \(\mathcal{B} \) - \(R \)-modules.
Principle: category theory gives a new, unifying, construction tool - the adjoint of a functor.

Example

\(\mathcal{A} \) - metric spaces, \(\mathcal{B} \) - complete metric spaces. \(G : \mathcal{B} \rightarrow \mathcal{A} \) the embedding functor.
It admits a left adjoint. It is called completion of a metric space.

Example

\(\mathcal{A} \) - sets, \(\mathcal{B} \) - \(\mathbb{R} \)-modules. \(G : \mathcal{B} \rightarrow \mathcal{A} \) the forgetful functor.
Principle: category theory gives a new, unifying, construction tool - the adjoint of a functor.

Example

\mathcal{A} - metric spaces, \mathcal{B} - complete metric spaces. $G : \mathcal{B} \to \mathcal{A}$ the embedding functor.
It admits a left adjoint. It is called completion of a metric space.

Example

\mathcal{A} - sets, \mathcal{B} - R-modules. $G : \mathcal{B} \to \mathcal{A}$ the forgetful functor.
It admits a left adjoint. It is called free module construction.
Principle: category theory gives a new, unifying, construction tool - the adjoint of a functor.

Example

\mathcal{A} - metric spaces, \mathcal{B} - complete metric spaces. $G : \mathcal{B} \to \mathcal{A}$ the embedding functor.

It admits a left adjoint. It is called \textit{completion of a metric space}.

Example

\mathcal{A} - sets, \mathcal{B} - R-modules. $G : \mathcal{B} \to \mathcal{A}$ the forgetful functor.

It admits a left adjoint. It is called \textit{free module construction}.
Adjunction - further examples

Example

A - abelian groups, $B - \mathbb{R}$-modules. Fix $M \in B$. $G : B \to A$ sending N to $\text{Hom}(M, N)$. It admits a left adjoint. It is called tensor product construction: $V \mapsto M \otimes \mathbb{Z}V$.

Example

$H \subset G$ - finite groups. $A = \text{Rep}(H)$, $B = \text{Rep}(G)$. $G : B \to A$ the forgetful functor. It admits a left adjoint. It is called induction (this is called Frobenius reciprocity).

Background From Category Theory
Example

\(\mathcal{A} \) - abelian groups, \(\mathcal{B} \) - \(R \)-modules.
Example

\(\mathcal{A} \) - abelian groups, \(\mathcal{B} \) - \(R \)-modules. Fix \(M \in \mathcal{B} \).
<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{A} - abelian groups, \mathcal{B} - R-modules. Fix $M \in \mathcal{B}$. $G : \mathcal{B} \to \mathcal{A}$ sending N to $\text{Hom}(M, N)$.</td>
</tr>
</tbody>
</table>

It admits a left adjoint. It is called the tensor product construction: $V \mapsto M \otimes_Z V$.
Example

\mathcal{A} - abelian groups, \mathcal{B} - R-modules. Fix $M \in \mathcal{B}$. $G: \mathcal{B} \to \mathcal{A}$ sending N to $\text{Hom}(M, N)$.

It admits a left adjoint. It is called tensor product construction: $V \mapsto M \otimes_{\mathbb{Z}} V$.

Example $H \subset G$ - finite groups. $A = \text{Rep}(H)$, $B = \text{Rep}(G)$.

$G: B \to A$ the forgetful functor. It admits a left adjoint. It is called induction (this is called Frobenius reciprocity).
Example

\mathcal{A} - abelian groups, \mathcal{B} - R-modules. Fix $M \in \mathcal{B}$. $G : \mathcal{B} \to \mathcal{A}$ sending N to $\text{Hom}(M, N)$.

It admits a left adjoint. It is called tensor product construction: $V \mapsto M \otimes_{\mathbb{Z}} V$.

Example

$H \subset G$ - finite groups.
Example

\mathcal{A} - abelian groups, \mathcal{B} - R-modules. Fix $M \in \mathcal{B}$. $G: \mathcal{B} \to \mathcal{A}$ sending N to $\text{Hom}(M, N)$. It admits a left adjoint. It is called tensor product construction: $V \mapsto M \otimes_{\mathbb{Z}} V$.

Example

$H \subset G$ - finite groups. $\mathcal{A} = \text{Rep}(H)$, $\mathcal{B} = \text{Rep}(G)$.

Yom Din Alexander Tel Aviv University

Background From Category Theory
Example

\mathcal{A} - abelian groups, \mathcal{B} - R-modules. Fix $M \in \mathcal{B}$. $G : \mathcal{B} \to \mathcal{A}$ sending N to $\text{Hom}(M, N)$.

It admits a left adjoint. It is called tensor product construction: $V \mapsto M \otimes \mathbb{Z} V$.

Example

$H \subset G$ - finite groups. $\mathcal{A} = \text{Rep}(H)$, $\mathcal{B} = \text{Rep}(G)$. $G : \mathcal{B} \to \mathcal{A}$ the forgetful functor.
Adjunction - further examples

Example

\mathcal{A} - abelian groups, \mathcal{B} - R-modules. Fix $M \in \mathcal{B}$. $G : \mathcal{B} \to \mathcal{A}$ sending N to $\text{Hom}(M, N)$.
It admits a left adjoint. It is called tensor product construction: $V \mapsto M \otimes \mathbb{Z} V$.

Example

$H \subset G$ - finite groups. $\mathcal{A} = \text{Rep}(H)$, $\mathcal{B} = \text{Rep}(G)$. $G : \mathcal{B} \to \mathcal{A}$ the forgetful functor.
It admits a left adjoint. It is called induction (this is called Frobenius reciprocity).
Example

\mathcal{A} - abelian groups, $\mathcal{B} - R$-modules. Fix $M \in \mathcal{B}$. $G : \mathcal{B} \to \mathcal{A}$ sending N to $\text{Hom}(M, N)$.

It admits a left adjoint. It is called **tensor product construction**: $V \mapsto M \otimes_{\mathbb{Z}} V$.

Example

$H \subset G$ - finite groups. $\mathcal{A} = \text{Rep}(H), \mathcal{B} = \text{Rep}(G)$. $G : \mathcal{B} \to \mathcal{A}$ the forgetful functor.

It admits a left adjoint. It is called **induction** (this is called Frobenius reciprocity).
Properties of adjoint functors

Theorem
Let $F : A \to B$ be a left adjoint. Then F is right exact and commutes with direct sums.

A kind of converse is:
Theorem
Let R be unital and B an abelian category. Suppose that $F : \text{Mod}(R) \to B$ is right exact and commutes with direct sums. Then F admits a right adjoint.

A third definition of equivalence of categories is: an adjunction, such that the unit and counit maps are isomorphisms.
Theorem

Let $F : \mathcal{A} \to \mathcal{B}$ be a left adjoint. Then F is right exact and commutes with direct sums.
Theorem

Let $F : \mathcal{A} \to \mathcal{B}$ be a left adjoint. Then F is right exact and commutes with direct sums.

A kind of converse is:
Theorem

Let $F : \mathcal{A} \to \mathcal{B}$ be a left adjoint. Then F is right exact and commutes with direct sums.

A kind of converse is:

Theorem

Let R be unital and \mathcal{B} an abelian category.
Properties of adjoint functors

Theorem

Let $F : \mathcal{A} \to \mathcal{B}$ be a left adjoint. Then F is right exact and commutes with direct sums.

A kind of converse is:

Theorem

Let R be unital and \mathcal{B} an abelian category. Suppose that $F : \text{Mod}(R) \to \mathcal{B}$ is right exact and commutes with direct sums.
Theorem

Let $F : \mathcal{A} \to \mathcal{B}$ be a left adjoint. Then F is right exact and commutes with direct sums.

A kind of converse is:

Theorem

Let R be unital and \mathcal{B} an abelian category. Suppose that $F : \text{Mod}(R) \to \mathcal{B}$ is right exact and commutes with direct sums. Then F admits a right adjoint.
Theorem

Let $F : \mathcal{A} \to \mathcal{B}$ be a left adjoint. Then F is right exact and commutes with direct sums.

A kind of converse is:

Theorem

Let R be unital and \mathcal{B} an abelian category. Suppose that $F : \text{Mod}(R) \to \mathcal{B}$ is right exact and commutes with direct sums. Then F admits a right adjoint.

A third definition of equivalence of categories is: an adjunction, such that the unit and counit maps are isomorphisms.
A projective generator is an abelian category with direct sums. Let $P \in A$. Note that $\text{End}(P)$ is a unital ring. Set $R := \text{End}(P)^{\text{op}}$. For every $M \in A$, $\text{Hom}(P, M)$ is naturally an R-module. We get a functor $\Phi : A \to \text{Mod}(R)$ in this way (it “lifts” the functor H_P from before).

When is this functor an equivalence? This question will teach us how to identify abstract abelian categories as module categories.

Theorem Φ is an equivalence i.f.f. P is a compact projective generator.

P is projective means that H_P is exact. P is generator means that whenever $M \neq 0$ we have $H_P(M) \neq 0$. P is compact means that H_P commutes with direct sums.
\mathcal{A} - an abelian category with direct sums.
A - an abelian category with direct sums. $P \in A$.

Note that $\text{End}(P)$ is a unital ring. Set $R := \text{End}(P)^{\text{op}}$. For every $M \in A$, $\text{Hom}(P, M)$ is naturally an R-module. We get a functor $\Phi : A \rightarrow \text{Mod}(R)$ in this way (it “lifts” the functor H_P from before).

When is this functor an equivalence - is our question. The answer will teach us how to identify abstract abelian categories as module categories.

Theorem Φ is an equivalence i.f.f. P is a compact projective generator.

P is projective means that H_P is exact.

P is generator means that whenever $M \neq 0$ we have $H_P(M) \neq 0$.

P is compact means that H_P commutes with direct sums.
\(\mathcal{A} \) - an abelian category with direct sums. \(P \in \mathcal{A} \).
Note that \(\text{End}(P) \) is a unital ring. Set \(R := \text{End}(P)^{op} \).
\[A \] - an abelian category with direct sums. \(P \in A \).
Note that \(\text{End}(P) \) is a unital ring. Set \(R := \text{End}(P)^{\text{op}} \). For every \(M \in A \), \(\text{Hom}(P, M) \) is naturally an \(R \)-module.

\(\text{Hom}(P, M) \) is naturally an \(R \)-module.
\mathcal{A} - an abelian category with direct sums. $P \in \mathcal{A}$.

Note that $\text{End}(P)$ is a unital ring. Set $R := \text{End}(P)^{\text{op}}$. For every $M \in \mathcal{A}$, $\text{Hom}(P, M)$ is naturally an R-module.

We get a functor $\Phi : \mathcal{A} \to \text{Mod}(R)$ in this way (it ”lifts” the functor H_P from before).

Theorem Φ is an equivalence i.f.f. P is a compact projective generator.

P is projective means that H_P is exact.

P is generator means that whenever $M \neq 0$ we have $H_P(M) \neq 0$.

P is compact means that H_P commutes with direct sums.
\(\mathcal{A} \) - an abelian category with direct sums. \(P \in \mathcal{A} \).

Note that \(\text{End}(P) \) is a unital ring. Set \(R := \text{End}(P)^{op} \). For every \(M \in \mathcal{A} \), \(\text{Hom}(P, M) \) is naturally an \(R \)-module.

We get a functor \(\Phi : \mathcal{A} \to \text{Mod}(R) \) in this way (it ”lifts” the functor \(H_P \) from before).

When is this functor an equivalence - is our question. The answer will teach us how to identify abstract abelian categories as module categories.
\mathcal{A} - an abelian category with direct sums. $P \in \mathcal{A}$.
Note that $\text{End}(P)$ is a unital ring. Set $R := \text{End}(P)^{\text{op}}$. For every $M \in \mathcal{A}$, $\text{Hom}(P, M)$ is naturally an R-module.
We get a functor $\Phi : \mathcal{A} \rightarrow \text{Mod}(R)$ in this way (it "lifts" the functor H_P from before).

When is this functor an equivalence - is our question. The answer will teach us how to identify abstract abelian categories as module categories.

Theorem

Φ is an equivalence i.f.f. P is a compact projective generator.
\(\mathcal{A} \) - an abelian category with direct sums. \(P \in \mathcal{A} \).

Note that \(\text{End}(P) \) is a unital ring. Set \(R := \text{End}(P)^{op} \). For every \(M \in \mathcal{A} \), \(\text{Hom}(P, M) \) is naturally an \(R \)-module.

We get a functor \(\Phi : \mathcal{A} \to \text{Mod}(R) \) in this way (it "lifts" the functor \(H_P \) from before).

When is this functor an equivalence - is our question. The answer will teach us how to identify abstract abelian categories as module categories.

Theorem

\(\Phi \) is an equivalence i.f.f. \(P \) is a compact projective generator.

\(P \) is **projective** means that \(H_P \) is exact.
\mathcal{A} - an abelian category with direct sums. $P \in \mathcal{A}$.
Note that $End(P)$ is a unital ring. Set $R := End(P)^{op}$. For every $M \in \mathcal{A}$, $Hom(P, M)$ is naturally an R-module.
We get a functor $\Phi : \mathcal{A} \to Mod(R)$ in this way (it ”lifts” the functor H_P from before).
When is this functor an equivalence - is our question. The answer will teach us how to identify abstract abelian categories as module categories.

Theorem

Φ is an equivalence i.f.f. P is a compact projective generator.

P is **projective** means that H_P is exact.
P is **generator** means that whenever $M \neq 0$ we have $H_P(M) \neq 0$.
\mathcal{A} - an abelian category with direct sums. $P \in \mathcal{A}$.
Note that $\text{End}(P)$ is a unital ring. Set $R := \text{End}(P)\text{op}$. For every $M \in \mathcal{A}$, $\text{Hom}(P, M)$ is naturally an R-module.
We get a functor $\Phi : \mathcal{A} \to \text{Mod}(R)$ in this way (it ”lifts” the functor H_P from before).

When is this functor an equivalence - is our question. The answer will teach us how to identify abstract abelian categories as module categories.

Theorem

Φ is an equivalence i.f.f. P is a compact projective generator.

P is **projective** means that H_P is exact.
P is **generator** means that whenever $M \neq 0$ we have $H_P(M) \neq 0$.
P is **compact** means that H_P commutes with direct sums.
A - an abelian category with direct sums. $P \in A$.
Note that $\text{End}(P)$ is a unital ring. Set $R := \text{End}(P)^{\text{op}}$. For every $M \in A$, $\text{Hom}(P, M)$ is naturally an R-module.
We get a functor $\Phi : A \to \text{Mod}(R)$ in this way (it "lifts" the functor H_P from before).

When is this functor an equivalence - is our question. The answer will teach us how to identify abstract abelian categories as module categories.

Theorem

Φ is an equivalence i.f.f. P is a compact projective generator.

P is **projective** means that H_P is exact.
P is **generator** means that whenever $M \neq 0$ we have $H_P(M) \neq 0$.
P is **compact** means that H_P commutes with direct sums.
Examples

Consider $\text{Mod}(R)$ (R unital).

Let $P = R^n$. Then P is a compact projective generator and $\text{End}(P) = M_{n}(R)$.

We get an equivalence $\text{Mod}(R) \approx \text{Mod}(M_{n}(R))$.

Example

Consider $\text{Mod}(A)$ (A idempotented).

Let $e \in A$ be an idempotent, and set $P := Ae$.

Then P is compact projective and $\text{End}(P) = eAe$.

It is a generator i.f.f. $A = eAe$.

In that case we will have $\text{Mod}(A) \approx \text{Mod}(eAe)$.
Example

Consider $\text{Mod}(R)$ (R unital).

Let $P = \mathbb{R}^n$. Then P is a compact projective generator and $\text{End}(P)^\text{op} = M_n(\mathbb{R})$. We get an equivalence $\text{Mod}(R) \approx \text{Mod}(M_n(\mathbb{R}))$.

Example

Consider $\text{Mod}(A)$ (A idempotented). Let $e \in A$ be an idempotent, and set $P := Ae$. Then P is compact projective and $\text{End}(P)^\text{op} = eAe$. It is a generator i.f.f. $A = AeA$. In that case we will have $\text{Mod}(A) \approx \text{Mod}(eAe)$.
Example

Consider $\text{Mod}(R)$ (R unital). Let $P = R^n$. Then P is a compact projective generator and $\text{End}(P)^{op} = M_n(R)$. We get an equivalence $\text{Mod}(R) \cong \text{Mod}(M_n(R))$.

Example

Consider $\text{Mod}(A)$ (A idempotented). Let $e \in A$ be an idempotent, and set $P := Ae$. Then P is compact projective and $\text{End}(P)^{op} = eAe$. It is a generator i.f.f. $A = AeA$. In that case we will have $\text{Mod}(A) \cong \text{Mod}(eAe)$.
Example

Consider $\text{Mod}(R)$ (R unital). Let $P = R^n$. Then P is a compact projective generator and $\text{End}(P)^{\text{op}} = M_n(R)$.
Consider $Mod(R)$ (R unital). Let $P = R^n$. Then P is a compact projective generator and $End(P)^{op} = M_n(R)$. We get an equivalence $Mod(R) \cong Mod(M_n(R))$.
Examples

Example
Consider $\text{Mod}(R)$ (R unital). Let $P = R^n$. Then P is a compact projective generator and $\text{End}(P)^{op} = M_n(R)$. We get an equivalence $\text{Mod}(R) \approx \text{Mod}(M_n(R))$.

Example
Consider $\text{Mod}(A)$ (A idempotented).

Let $e \in A$ be an idempotent, and set $P := Ae$. Then P is compact projective and $\text{End}(P)^{op} = eAe$. It is a generator i.f.f. $A = eAe$. In that case we will have $\text{Mod}(A) \approx \text{Mod}(eAe)$.
Example
Consider $\text{Mod}(R)$ (R unital). Let $P = R^n$. Then P is a compact projective generator and $\text{End}(P)^{\text{op}} = M_n(R)$. We get an equivalence $\text{Mod}(R) \approx \text{Mod}(M_n(R))$.

Example
Consider $\text{Mod}(A)$ (A idempotented). Let $e \in A$ be an idempotent, and set $P := Ae$.
Examples

Example
Consider $\text{Mod}(R)$ (R unital). Let $P = R^n$. Then P is a compact projective generator and $\text{End}(P)^{\text{op}} = M_n(R)$.
We get an equivalence $\text{Mod}(R) \approx \text{Mod}(M_n(R))$.

Example
Consider $\text{Mod}(A)$ (A idempotent). Let $e \in A$ be an idempotent, and set $P := Ae$. Then P is compact projective and $\text{End}(P)^{\text{op}} = e Ae$.

Background From Category Theory
Example

Consider $\text{Mod}(R)$ (R unital). Let $P = R^n$. Then P is a compact projective generator and $\text{End}(P)^{\text{op}} = M_n(R)$.

We get an equivalence $\text{Mod}(R) \approx \text{Mod}(M_n(R))$.

Example

Consider $\text{Mod}(A)$ (A idempotented). Let $e \in A$ be an idempotent, and set $P := Ae$. Then P is compact projective and $\text{End}(P)^{\text{op}} = eAe$. It is a generator i.f.f. $A = AeA$.
Example
Consider $\text{Mod}(R)$ (R unital). Let $P = R^n$. Then P is a compact projective generator and $\text{End}(P)^{op} = M_n(R)$. We get an equivalence $\text{Mod}(R) \cong \text{Mod}(M_n(R))$.

Example
Consider $\text{Mod}(A)$ (A idempotented). Let $e \in A$ be an idempotent, and set $P := Ae$. Then P is compact projective and $\text{End}(P)^{op} = eAe$. It is a generator i.f.f. $A = AeA$. In that case we will have $\text{Mod}(A) \cong \text{Mod}(eAe)$.
Example

Consider $\text{Mod}(R)$ (R unital). Let $P = R^n$. Then P is a compact projective generator and $\text{End}(P)^{op} = M_n(R)$. We get an equivalence $\text{Mod}(R) \approx \text{Mod}(M_n(R))$.

Example

Consider $\text{Mod}(A)$ (A idempotented). Let $e \in A$ be an idempotent, and set $P := Ae$. Then P is compact projective and $\text{End}(P)^{op} = eAe$. It is a generator i.f.f. $A = AeA$. In that case we will have $\text{Mod}(A) \approx \text{Mod}(eAe)$.
Examples - continuation

Example

- unital. Let A be the ring of all $\mathbb{N} \times \mathbb{N}$ matrices, whose all entries, except finitely many, are 0. Let $e \in A$ be the element whose $(1, 1)$-entry is 1, and all else are 0. Then $A = AeA$, and $\text{End}(Ae)^{\text{op}} \cong R$. Hence, we get $\text{Mod}(A) \cong \text{Mod}(R)$.
Example

R - unital. Let A be the ring of all $\mathbb{N} \times \mathbb{N}$ matrices, whose all entries, except finitely many, are 0.
Example

R - unital. Let A be the ring of all $\mathbb{N} \times \mathbb{N}$ matrices, whose all entries, except finitely many, are 0. Let $e \in A$ be the element whose $(1, 1)$-entry is 1, and all else are 0.
Example

R - unital. Let A be the ring of all $\mathbb{N} \times \mathbb{N}$ matrices, whose all entries, except finitely many, are 0. Let $e \in A$ be the element whose $(1, 1)$-entry is 1, and all else are 0. Then $A = AeA$, and $\text{End}(Ae)^{\text{op}} \cong R$.

Hence, we get $\text{Mod}(A) \cong \text{Mod}(R)$.

Background From Category Theory
Example

R - unital. Let A be the ring of all $\mathbb{N} \times \mathbb{N}$ matrices, whose all entries, except finitely many, are 0. Let $e \in A$ be the element whose $(1, 1)$-entry is 1, and all else are 0. Then $A = AeA$, and $\text{End}(Ae)^{op} \cong R$. Hence, we get $\text{Mod}(A) \cong \text{Mod}(R)$.
Example

R - unital. Let A be the ring of all $\mathbb{N} \times \mathbb{N}$ matrices, whose all entries, except finitely many, are 0. Let $e \in A$ be the element whose $(1, 1)$-entry is 1, and all else are 0. Then $A = AeA$, and $End(Ae)^{op} \cong R$. Hence, we get $Mod(A) \cong Mod(R)$.

Yom Din Alexander Tel Aviv University
Morita equivalence

Definition

Two unital rings \(R \), \(S \) are called Morita equivalent, if the categories \(\text{Mod}(R) \), \(\text{Mod}(S) \) are equivalent.

There are, for a unital ring, some properties that are stable under Morita equivalence.

Example

The center of \(R \) is definable as an object attached to the abelian category \(\text{Mod}(R) \), and thus is a construction which is stable under Morita equivalence. Indeed, given an abelian category, define its center to be the endomorphism ring of the identity functor.
Morita equivalence

Definition

Two unital rings R, S are called Morita equivalent, if the categories $\text{Mod}(R), \text{Mod}(S)$ are equivalent.

There are, for a unital ring, some properties that are stable under Morita equivalence.

Example

The center of R is definable as an object attached to the abelian category $\text{Mod}(R)$, and thus is a construction which is stable under Morita equivalence. Indeed, given an abelian category, define its center to be the endomorphism ring of the identity functor.
Morita equivalence

Definition
Two unital rings R, S are called Morita equivalent, if the categories $\text{Mod}(R), \text{Mod}(S)$ are equivalent.

There are, for a unital ring, some properties that are stable under Morita equivalence.
Morita equivalence

Definition

Two unital rings R, S are called Morita equivalent, if the categories $\text{Mod}(R), \text{Mod}(S)$ are equivalent.

There are, for a unital ring, some properties that are stable under Morita equivalence.

Example

The center of R is definable as an object attached to the abelian category $\text{Mod}(R)$, and thus is a construction which is stable under Morita equivalence. Indeed, given an abelian category, define its center to be the endomorphism ring of the identity functor.