Local Langlands correspondence and examples of ABPS conjecture

Ahmed Moussaoui

UPMC Paris VI - IMJ

23/08/2013
Local Langlands correspondence and examples of ABPS conjecture

Ahmed Moussaoui

Notation

- F non-archimedean local field: finite extension of \mathbb{Q}_p or $\mathbb{F}_p((t))$
- $O_F = \{x \in F, \nu(x) \geq 0\}$, ring of integers of F
- $\mathfrak{p}_F = \{x \in F, \nu(x) > 0\}$, unique maximal ideal of O_F
- $k_F = O_F/\mathfrak{p}_F \simeq \mathbb{F}_q$, residual field of F (finite field)
- $\varpi_F \in O_F$ uniformizer of F
- \overline{F} separable algebraic closure of F
• K/F finite extension
• K/F finite extension
• $\wp_F O_K = \wp_K^e O_K$,
• K/F finite extension
• $\wp_F O_K = \wp_K^e O_K, e \geq 1$ ramification index of K/F
• K/F finite extension
• $\varpi_F \mathcal{O}_K = \varpi_K^e \mathcal{O}_K, e \geq 1$ ramification index of K/F
• k_K/k_F finite extension,
• K/F finite extension
• $\wp_F \mathcal{O}_K = e \wp_K \mathcal{O}_K$, $e \geq 1$ ramification index of K/F
• k_K/k_F finite extension, $f = [k_K : k_F]$ residual degree of K/F
• K/F finite extension
• $\wp_F \mathcal{O}_K = \wp_K \mathcal{O}_K, e \geq 1$ ramification index of K/F
• k_K/k_F finite extension, $f = [k_K : k_F]$ residual degree of K/F

K/F finite Galois extension, k_K/k_F is also Galois extension
• K/F finite extension
• $\mathfrak{f}_F \mathcal{O}_K = \mathfrak{f}_K \mathcal{O}_K, e \geq 1$ ramification index of K/F
• k_K/k_F finite extension, $f = [k_K : k_F]$ residual degree of K/F

K/F finite Galois extension, k_K/k_F is also Galois extension

$\forall \sigma \in Gal(K/F), \sigma(\mathcal{O}_K) = \mathcal{O}_K, \sigma(p_K) = p_K$

$$Gal(K/F) \longrightarrow Gal(k_K/k_F)$$
• K/F finite extension

• $\mathcal{O}_K = \mathcal{O}_K, e \geq 1$ ramification index of K/F

• k_K/k_F finite extension, $f = [k_K : k_F]$ residual degree of K/F

K/F finite Galois extension, k_K/k_F is also Galois extension

$\forall \sigma \in Gal(K/F), \sigma(\mathcal{O}_K) = \mathcal{O}_K, \sigma(p_K) = p_K$

\[
\begin{align*}
Gal(K/F) & \longrightarrow Gal(k_K/k_F) \longrightarrow 1
\end{align*}
\]
- K/F finite extension

- $\varpi_F \mathcal{O}_K = \varpi^K \mathcal{O}_K , e \geq 1$ ramification index of K/F

- k_K/k_F finite extension, $f = [k_K : k_F]$ residual degree of K/F

K/F finite Galois extension, k_K/k_F is also Galois extension

$\forall \sigma \in Gal(K/F), \sigma(\mathcal{O}_K) = \mathcal{O}_K, \sigma(p_K) = p_K$

$$
1 \longrightarrow I_{K/F} \longrightarrow Gal(K/F) \longrightarrow Gal(k_K/k_F) \longrightarrow 1
$$
Definition
An extension K/F is unramified if the ramification index $e(K/F) = 1$ and k_K/k_F is separable.
Definition
An extension K/F is unramified if the ramification index $e(K/F) = 1$ and k_K/k_F is separable.

Theorem
$\forall n \geq 1, \exists! F \subset F_n \subset \overline{F}$ unramified extension of degree n F_n/F is Galois, $k_{F_n} \simeq \mathbb{F}_{q^n}$ and $\text{Gal}(F_n/F) \xrightarrow{\sim} \text{Gal}(k_{F_n}/k_F)$
Definition
An extension K/F is unramified if the ramification index $e(K/F) = 1$ and k_K/k_F is separable.

Theorem
\[
\forall n \geq 1, \exists!\ F \subset F_n \subset \overline{F} \text{ unramified extension of degree } n
\]
F_n/F is Galois, $k_{F_n} \simeq F_q^n$ and $Gal(F_n/F) \xrightarrow{\sim} Gal(k_{F_n}/k_F)$

\[
\phi_n \in Gal(F_n/F) \leftrightarrow (x \mapsto x^q) \in Gal(k_{F_n}/k_F)
\]
Definition
An extension K/F is unramified if the ramification index $e(K/F) = 1$ and k_K/k_F is separable.

Theorem
$\forall n \geq 1, \exists! \; F \subset F_n \subset \bar{F}$ unramified extension of degree n
F_n/F is Galois, $k_{F_n} \cong \mathbb{F}_{q^n}$ and $Gal(F_n/F) \simarrow Gal(k_{F_n}/k_F)$

$\phi_n \in Gal(F_n/F) \leftrightarrow (x \mapsto x^q) \in Gal(k_{F_n}/k_F)$
$\Phi_n = \phi_n^{-1}$, $\Phi_n \mapsto 1$, $Gal(F_n/F) \cong \mathbb{Z}/n\mathbb{Z}$
Definition

An extension K/F is unramified if the ramification index $e(K/F) = 1$ and k_K/k_F is separable.

Theorem

$\forall n \geq 1, \exists! F \subset F_n \subset \overline{F}$ unramified extension of degree n F_n/F is Galois, $k_{F_n} \simeq \mathbb{F}_q^n$ and $\text{Gal}(F_n/F) \sim \text{Gal}(k_{F_n}/k_F)$

$\phi_n \in \text{Gal}(F_n/F) \iff (x \mapsto x^q) \in \text{Gal}(k_{F_n}/k_F)$

$\Phi_n = \phi_n^{-1}$, $\Phi_n \mapsto 1$, $\text{Gal}(F_n/F) \simeq \mathbb{Z}/n\mathbb{Z}$

$F_{ur} =$ composite of all F_n
Definition
An extension K/F is unramified if the ramification index $e(K/F) = 1$ and k_K/k_F is separable.

Theorem
∀n ≥ 1, ∃! $F ⊂ F_n ⊂ \overline{F}$ unramified extension of degree n
F_n/F is Galois, $k_{F_n} \simeq \mathbb{F}_{q^n}$ and $\text{Gal}(F_n/F) \xrightarrow{\sim} \text{Gal}(k_{F_n}/k_F)$

$\phi_n \in \text{Gal}(F_n/F) \iff (x \mapsto x^q) \in \text{Gal}(k_{F_n}/k_F)$
$\Phi_n = \phi_n^{-1}$, $\Phi_n \mapsto 1$, $\text{Gal}(F_n/F) \simeq \mathbb{Z}/n\mathbb{Z}$
$F_{ur} =$ composite of all F_n
F_{ur}/F is the unique maximal unramified extension of F
Definition
An extension K/F is unramified if the ramification index $e(K/F) = 1$ and k_K/k_F is separable.

Theorem
$\forall n \geq 1, \exists! F \subset F_n \subset \overline{F}$ unramified extension of degree n
F_n/F is Galois, $k_{F_n} \simeq \mathbb{F}_q^n$ and $Gal(F_n/F) \simarrow Gal(k_{F_n}/k_F)$

$\phi_n \in Gal(F_n/F) \leftrightarrow (x \mapsto x^q) \in Gal(k_{F_n}/k_F)$
$\Phi_n = \phi_n^{-1}$, $\Phi_n \mapsto 1$, $Gal(F_n/F) \simeq \mathbb{Z}/n\mathbb{Z}$

$F_{ur} =$ composite of all F_n

F_{ur}/F is the unique maximal unramified extension of F

$Gal(F_{ur}/F) \simeq \lim_{\leftarrow n \geq 1} \mathbb{Z}/n\mathbb{Z} = \hat{\mathbb{Z}}$

$\Phi_F \in Gal(F_{ur}/F)$, $\Phi_F|_{F_n} = \Phi_n$
Definition
The absolute Galois group of F is $\Gamma_F = Gal(\overline{F}/F)$
Definition

The absolute Galois group of F is $\Gamma_F = Gal(F/F)$

$$\Gamma_F \simeq \lim_{\leftarrow} Gal(E/F)$$

where E ranges over finite Galois extension such that $F \subset E \subset \overline{F}$
Definition

The absolute Galois group of F is $\Gamma_F = \text{Gal}(\overline{F}/F)$

$$\Gamma_F \cong \lim_{\leftarrow} \text{Gal}(E/F)$$

where E ranges over finite Galois extension such that $F \subset E \subset \overline{F}$

Topology on Γ_F : Open neighborhood basis at the identity are $\text{Gal}(\overline{F}/K)$ with K/F finite extension

Γ_F is a compact Haussdorff profinite group
Local Langlands correspondence and examples of ABPS conjecture

Ahmed Moussaoui

\[\text{Gal}(\overline{F}/F) \longrightarrow \text{Gal}(F_{ur}/F) \longrightarrow 1 \]
\[1 \rightarrow I_F \rightarrow Gal(\bar{F}/F) \rightarrow Gal(F_{ur}/F) \rightarrow 1 \]
Local Langlands correspondence and examples of ABPS conjecture

Ahmed Moussaoui

\[1 \rightarrow I_F \rightarrow \text{Gal}(\overline{F}/F) \rightarrow \text{Gal}(F_{ur}/F) \rightarrow 1 \]

\[\langle \Phi \rangle \]
Local Langlands correspondence and examples of ABPS conjecture

Ahmed Moussaoui

\[
1 \longrightarrow I_F \longrightarrow \text{Gal}(\overline{F}/F) \longrightarrow \text{Gal}(F_{ur}/F) \longrightarrow 1
\]

\[
\mathbb{Z}
\]
1 \rightarrow I_F \rightarrow \text{Gal}(\overline{F}/F) \rightarrow \hat{\mathbb{Z}} \rightarrow 0

Definition
The Weil group of F is the topological group, with underlying abstract group the inverse image in Γ_F of $\langle \Phi \rangle$, such that:

- I_F is an open subgroup of W_F
- the topology on I_F, as subspace of W_F, coincides with its natural topology as subspace of Γ_F
Local Langlands correspondence and examples of ABPS conjecture

Ahmed Moussaoui

\[
1 \rightarrow I_F \rightarrow \text{Gal}(\overline{F}/F) \rightarrow \hat{\mathbb{Z}} \rightarrow 0
\]

\[
W_F \rightarrow \mathbb{Z} \rightarrow 0
\]
Definition

The Weil group of F is the topological group, with underlying abstract group the inverse image in Γ_F of $<\Phi>$, such that:

- I_F is an open subgroup of W_F
- the topology on I_F, as subspace of W_F, coincides with its natural topology as subspace of Γ_F
Definition

The Weil group of F is the topological group, with underlying abstract group the inverse image in Γ_F of $\langle \Phi \rangle$, such that:

- I_F is an open subgroup of W_F
- the topology on I_F, as subspace of W_F, coincides with its natural topology as subspace of Γ_F
Let $W_F^{der} = [W_F, W_F]$ and $W_F^{ab} = W_F / W_F^{der}$.

Artin Reciprocity Map

There is a canonical continuous group morphism

$$a_F : W_F \longrightarrow F^\times$$

with the following properties.
Let $W^\text{der}_F = [W_F, W_F]$ and $W^{ab}_F = W_F / W^\text{der}_F$.

Artin Reciprocity Map

There is a canonical continuous group morphism

$$a_F : W_F \longrightarrow F^\times$$

with the following properties.

- a_F induces a topological isomorphism $W^{ab}_F \simeq F^\times$
Let $W^{der}_F = [W_F, W_F]$ and $W^{ab}_F = W_F/W^{der}_F$.

Artin Reciprocity Map

There is a canonical continuous group morphism

$$a_F : W_F \longrightarrow F^\times$$

with the following properties.

- a_F induces a topological isomorphism $W^{ab}_F \cong F^\times$
- $x \in W_F$ is a geometric Frobenius, if and only if $a_F(x)$ is an uniformizer of F
Let $W_{F}^{der} = [W_{F}, W_{F}]$ and $W_{F}^{ab} = W_{F} / W_{F}^{der}$.

Artin Reciprocity Map
There is a canonical continuous group morphism

$$a_{F} : W_{F} \rightarrow F^{\times}$$

with the following properties.

- a_{F} induces a topological isomorphism $W_{F}^{ab} \cong F^{\times}$
- $x \in W_{F}$ is a geometric Frobenius, if and only if $a_{F}(x)$ is an uniformizer of F
- $a_{F}(I_{F}) = O_{F}$
The Artin Reciprocity Map induces a bijection between
The Artin Reciprocity Map induces a bijection between

\[
\left\{ \text{irreducible representations of } F^\times \right\} \leftrightarrow \left\{ \text{admissible morphisms } W_F \rightarrow GL_1(\mathbb{C}) \right\}
\]
The Artin Reciprocity Map induces a bijection between

\[
\begin{align*}
\left\{ \text{irreducible representations of } F^\times \right\} & \leftrightarrow \left\{ \text{admissible morphisms } W_F \longrightarrow GL_1(\mathbb{C}) \right\} \\
GL_1(F) & \longrightarrow GL_1(\mathbb{C})
\end{align*}
\]

If \(T \) is a split torus over \(F \), then

\[
\begin{align*}
\left\{ \text{irreducible representations of } T \right\} & \leftrightarrow \left\{ \text{admissible morphisms } W_F \longrightarrow \hat{T} \right\} \\
T & \longrightarrow GL_1(\mathbb{C})
\end{align*}
\]

(+ equality of \(L \)-functions)
The Artin Reciprocity Map induces a bijection between

\[
\begin{cases}
\text{irreducible representations of } F^\times \\
GL_1(F) \rightarrow GL_1(\mathbb{C})
\end{cases}
\leftrightarrow
\begin{cases}
\text{admissible morphisms } \\
W_F \rightarrow GL_1(\mathbb{C})
\end{cases}
\]

If \(T \) is a split torus over \(F \), then

\[
\begin{cases}
\text{irreducible representations of } T \\
T \rightarrow GL_1(\mathbb{C})
\end{cases}
\leftrightarrow
\begin{cases}
\text{admissible morphisms } \\
W_F \rightarrow \hat{T}
\end{cases}
\]

(+ equality of \(L \)-functions)
This is the local Langlands correspondence for \(GL(1) \) and for split tori.
For $\psi : W_F \to GL_n(\mathbb{C})$ we can define a L-function by

$$L(s, \psi) = det(1 - \psi(\Phi)|_{V^I_F}q^{-s})^{-1}$$
For $\psi : W_F \rightarrow GL_n(\mathbb{C})$ we can define a L-function by

$$L(s, \psi) = \text{det}(1 - \psi(\Phi)|_{V^l_F q^{-s}})^{-1}$$

Godement and Jacquet defined L-functions for the representations of $GL_n(F)$. For $n = 2$,

- for supercuspidal representations are 1
- for Steinberg representation (and their twist by character) involve one factor with q^{-s}
- for other involve two factors with q^{-s}
Definition
The Weil-Deligne group is $WD_F = \mathbb{C} \rtimes W_F$ where W_F acts on \mathbb{C} by $wxw^{-1} = |w|x$ for $w \in W_F, x \in \mathbb{C}$.

A Langlands parameter for $GL(n)$ is a continuous morphism $\psi: WD_F \rightarrow GL_n(\mathbb{C})$ such that the restriction to \mathbb{C} is algebraic, the image of \mathbb{C} consists of unipotent elements and the image of W_F consists of semisimple elements.

We can identify one Langlands parameter ψ to a pair (ρ, N) where $\rho: W_F \rightarrow GL_n(\mathbb{C})$ is a continuous morphism such that his image consists of semisimple elements and $N \in \text{gl}_n(\mathbb{C})$ is such that $\rho(w)N\rho(w)^{-1} = |w|N$ for all $w \in W_F$.

$\psi((z, w)) = \exp(zN)\rho(w)$, $(z, w) \in WD_F$.
Definition

The Weil-Deligne group is $WD_F = \mathbb{C} \rtimes W_F$ where W_F acts on \mathbb{C} by $wxw^{-1} = |w|x$ for $w \in W_F, x \in \mathbb{C}$.

A Langlands parameter for $GL(n)$ is a continuous morphism $\psi : WD_F \longrightarrow GL_n(\mathbb{C})$ such that the restriction to \mathbb{C} is algebraic, the image of \mathbb{C} consists of unipotent elements and the image of W_F consists of semisimple elements.
Definition

The Weil-Deligne group is $WD_F = \mathbb{C} \rtimes W_F$ where W_F acts on \mathbb{C} by $wxw^{-1} = |w|x$ for $w \in W_F, x \in \mathbb{C}$.

A Langlands parameter for $GL(n)$ is a continuous morphism $\psi : WD_F \to GL_n(\mathbb{C})$ such that the restriction to \mathbb{C} is algebraic, the image of \mathbb{C} consists of unipotent elements and the image of W_F consists of semisimple elements.

We can identify one Langlands parameter ψ to a pair (ρ, N) where $\rho : W_F \to GL_n(\mathbb{C})$ is a continuous morphism such that his image consists of semisimple elements and $N \in \mathfrak{g}l_n(\mathbb{C})$ is such that $\rho(w)N\rho(w)^{-1} = |w|N$ for all $w \in W_F$.
Definition
The Weil-Deligne group is $WD_F = \mathbb{C} \rtimes W_F$ where W_F acts on \mathbb{C} by $wxw^{-1} = |w|x$ for $w \in W_F, x \in \mathbb{C}$.

A Langlands parameter for $GL(n)$ is a continuous morphism $\psi : WD_F \longrightarrow GL_n(\mathbb{C})$ such that the restriction to \mathbb{C} is algebraic, the image of \mathbb{C} consists of unipotent elements and the image of W_F consists of semisimple elements.

We can identify one Langlands parameter ψ to a pair (ρ, N) where $\rho : W_F \longrightarrow GL_n(\mathbb{C})$ is a continuous morphism such that his image consists of semisimple elements and $N \in gl_n(\mathbb{C})$ is such that $\rho(w)N\rho(w)^{-1} = |w|N$ for all $w \in W_F$.

$$\psi(z, w) = \exp(zN)\rho(w), \ (z, w) \in WD_F$$
For $w \in W_F$, let $h_w = \begin{pmatrix} |w|^{1/2} & 0 \\ 0 & |w|^{-1/2} \end{pmatrix} \in SL_2(\mathbb{C})$.
For $w \in W_F$, let $h_w = \left(|w|^{1/2}, |w|^{-1/2} \right) \in SL_2(\mathbb{C})$.

There is an isomorphism between \mathbb{C} and the subgroup G_a of $SL_2(\mathbb{C})$ of the matrices $\begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix}$, $z \in \mathbb{C}$.
For \(w \in W_F \), let \(h_w = \begin{pmatrix} |w|^{1/2} & 0 \\ 0 & |w|^{-1/2} \end{pmatrix} \in SL_2(\mathbb{C}) \).

There is an isomorphism between \(\mathbb{C} \) and the subgroup \(G_a \) of \(SL_2(\mathbb{C}) \) of the matrices \(\begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix} \), \(z \in \mathbb{C} \).

The conjugation by \(h_w \) in \(G_a \) induce the same action as \(W_F \) on \(\mathbb{C} \), and extend to \(SL_2(\mathbb{C}) \).
For $w \in W_F$, let $h_w = \begin{pmatrix} |w|^{1/2} & |w|^{-1/2} \\ |w|^{1/2} & |w|^{-1/2} \end{pmatrix} \in SL_2(\mathbb{C})$.

There is an isomorphism between \mathbb{C} and the subgroup G_a of $SL_2(\mathbb{C})$ of the matrices $\begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix}$, $z \in \mathbb{C}$.

The conjugation by h_w in G_a induce the same action as W_F on \mathbb{C}, and extend to $SL_2(\mathbb{C})$. We can consider the semidirect product $SL_2(\mathbb{C}) \rtimes W_F$ with the product

$$(x_1, w_1)(x_2, w_2) = (x_1h_{w_1}x_2h_{w_1}^{-1}, w_1w_2)$$
For $w \in W_F$, let $h_w = \left(|w|^{1/2}, |w|^{-1/2} \right) \in SL_2(\mathbb{C})$.

There is an isomorphism between \mathbb{C} and the subgroup G_a of $SL_2(\mathbb{C})$ of the matrices $\left(\begin{array}{cc} 1 & z \\ 0 & 1 \end{array} \right)$, $z \in \mathbb{C}$.

The conjugation by h_w in G_a induce the same action as W_F on \mathbb{C}, and extend to $SL_2(\mathbb{C})$. We can consider the semidirect product $SL_2(\mathbb{C}) \rtimes W_F$ with the product

$$(x_1, w_1)(x_2, w_2) = (x_1 h_{w_1} x_2 h_{w_1}^{-1}, w_1 w_2)$$

This group is isomorphic to $SL_2(\mathbb{C}) \rtimes W_F$ via the map $(x, w) \mapsto (x h_w, w)$.
We denote $W'_F = W_F \times SL_2(\mathbb{C})$.
We denote $W'_F = W_F \times SL_2(\mathbb{C})$. If a Langlands parameter is identified to (ρ, N), then it correspond to a morphism $\psi : W'_F \longrightarrow GL_n(\mathbb{C})$ with $\psi \left(1, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right) = \exp(N)$ and $\psi(w, h_w) = \rho(w)$.
Local Langlands correspondence (conjecture)

Let G a split connected reductive group over F and \widehat{G} is Langlands dual. Let $\Pi(G)$ the set of isomorphism classes of irreducible representations of G and $\Phi(G)$ the set of equivalence classes of admissible morphisms for G. There is finite-to-one map $\text{rec} : \Pi(G) \rightarrow \Phi(G)$ with these properties
Local Langlands correspondence (conjecture)

Let G a split connected reductive group over F and \widehat{G} is Langlands dual. Let $\Pi(G)$ the set of isomorphism classes of irreducible representations of G and $\Phi(G)$ the set of equivalence classes of admissible morphisms for G. There is finite-to-one map $\text{rec} : \Pi(G) \longrightarrow \Phi(G)$ with these properties

- $\pi \in \Pi(G)$ is essentially square-integrable, if and only if, the image of W_F by $\phi_{\pi} : W_F \longrightarrow \widehat{G}$ is not contained in any proper Levi subgroup of \widehat{G}.

Local Langlands correspondence (conjecture)

Let \(G \) a split connected reductive group over \(F \) and \(\hat{G} \) is Langlands dual. Let \(\Pi(G) \) the set of isomorphism classes of irreducible representations of \(G \) and \(\Phi(G) \) the set of equivalence classes of admissible morphisms for \(G \). There is finite-to-one map \(\text{rec} : \Pi(G) \rightarrow \Phi(G) \) with these properties

- \(\pi \in \Pi(G) \) is essentially square-integrable, if and only if, the image of \(W_F' \) by \(\phi_\pi : W_F' \rightarrow \hat{G} \) is not contained in any proper Levi subgroup of \(\hat{G} \).

- \(\pi \in \Pi(G) \) is tempered, if and only if, the image of \(W_F \) by \(\phi_\pi : W_F' \rightarrow \hat{G} \) is bounded
Local Langlands correspondence (conjecture)

Let G a split connected reductive group over F and \widehat{G} is Langlands dual. Let $\Pi(G)$ the set of isomorphism classes of irreducible representations of G and $\Phi(G)$ the set of equivalence classes of admissible morphisms for G. There is finite-to-one map $rec : \Pi(G) \rightarrow \Phi(G)$ with these properties

- $\pi \in \Pi(G)$ is essentially square-integrable, if and only if, the image of W_F' by $\phi_\pi : W_F' \rightarrow \widehat{G}$ is not contained in any proper Levi subgroup of \widehat{G}.

- $\pi \in \Pi(G)$ is tempered, if and only if, the image of W_F by $\phi_\pi : W_F \rightarrow \widehat{G}$ is bounded.

- $\pi \in \Pi(G)$, χ a character of F^\times, then $rec(\pi \otimes \chi) = rec(\pi)\chi$.

Equality of L-functions and ε-factors.
Local Langlands correspondence (conjecture)

Let G a split connected reductive group over F and \hat{G} is Langlands dual. Let $\Pi(G)$ the set of isomorphism classes of irreducible representations of G and $\Phi(G)$ the set of equivalence classes of admissible morphisms for G. There is finite-to-one map $\text{rec} : \Pi(G) \rightarrow \Phi(G)$ with these properties

- $\pi \in \Pi(G)$ is essentially square-integrable, if and only if, the image of W'_F by $\phi_\pi : W'_F \rightarrow \hat{G}$ is not contained in any proper Levi subgroup of \hat{G}.
- $\pi \in \Pi(G)$ is tempered, if and only if, the image of W_F by $\phi_\pi : W'_F \rightarrow \hat{G}$ is bounded
- $\pi \in \Pi(G)$, χ a character of F^\times, then $\text{rec}(\pi \otimes \chi) = \text{rec}(\pi)\chi$.
- Equality of L-functions and ε-factors.
Let $J = \begin{pmatrix} & & 1 \\ & \ddots & \\ 1 & & & \end{pmatrix}$ and $J' = \begin{pmatrix} 1 & & \\ & -1 & 1 \\ -1 & & \end{pmatrix}$.

For $M \in GL_4(F)$, $^tM = J^tMJ$.

Let $G = Sp_4(F) = \{ g \in SL_4(F) | ^t g J' g = J' \}$.
Let \(J = \begin{pmatrix} \cdots & 1 \\ 1 & \cdots \end{pmatrix} \) and \(J' = \begin{pmatrix} & & & 1 \\ & & -1 & 1 \\ -1 & & & \end{pmatrix} \).

For \(M \in GL_4(F) \), \({}^\tau M = J^t MJ \).

Let
\[
G = Sp_4(F) = \{ g \in SL_4(F) \mid {}^t g J' g = J' \}
\]
and \(B = \begin{pmatrix} * & * & * & * \\ * & * & * & * \\ * & * & * & \\ * & * & * & \end{pmatrix} \) minimal parabolic subgroup of \(Sp_4(F) \).
Let $J = \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & \\ & & & 1 \end{pmatrix}$ and $J' = \begin{pmatrix} & & & 1 \\ & & -1 & \\ -1 & & & \\ & & & -1 \end{pmatrix}$.

For $M \in GL_4(F)$, $\iota M = J^tMJ$.

Let $\quad G = Sp_4(F) = \{g \in SL_4(F)|^t gJ'g = J'\}$

and $B = \begin{pmatrix} * & * & * & * \\ * & * & * & * \\ * & * & * & * \\ * & * & * & * \end{pmatrix}$ minimal parabolic subgroup of $Sp_4(F)$.

There are three parabolic subgroups of $Sp_4(F): B, P, Q$ with respective Lévi T, M, L.
Local Langlands correspondence and examples of ABPS conjecture

Ahmed Moussaoui

$T = \left\{ \begin{pmatrix} t_1 & t_2 \\ t_2^{-1} & t_1^{-1} \end{pmatrix}, \ t_i \in F^\times \right\}, \ T \simeq (F^\times)^2$
Local Langlands correspondence and examples of ABPS conjecture

Ahmed Moussaoui

- \(T = \left\{ \begin{pmatrix} t_1 & t_2 \\ t_2^{-1} & t_1^{-1} \end{pmatrix}, \ t_i \in F^\times \right\}, \ T \cong (F^\times)^2 \)

- \(M = \left\{ \begin{pmatrix} g & \tau \end{pmatrix}, \ g \in GL_2(F) \right\}, \ M \cong GL_2(F) \)
Local Langlands correspondence and examples of ABPS conjecture

Ahmed Moussaoui

- $T = \left\{ \begin{pmatrix} t_1 & t_2 \\ t_2^{-1} & t_1^{-1} \end{pmatrix}, \ t_i \in F^\times \right\}, \ T \simeq (F^\times)^2$

- $M = \left\{ \begin{pmatrix} g \\ \tau g^{-1} \end{pmatrix}, \ g \in GL_2(F) \right\}, \ M \simeq GL_2(F)$

- $L = \left\{ \begin{pmatrix} t \\ g \\ t^{-1} \end{pmatrix}, \ t \in F^\times, \ g \in SL_2(F) \right\}, \ L \simeq GL_1(F) \times SL_2(F)$
The Weyl group of G is $W = N_G(T)/T \cong S_2 \rtimes (\mathbb{Z}/2\mathbb{Z})^2$, generated by

$$a = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}, \quad b = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}.$$
Action of W on T and on their irreducible representations

<table>
<thead>
<tr>
<th></th>
<th>$w \cdot (t_1, t_2)$</th>
<th>$w \cdot (\chi_1 \boxtimes \chi_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>(t_1, t_2)</td>
<td>$\chi_1 \boxtimes \chi_2$</td>
</tr>
<tr>
<td>a</td>
<td>(t_2, t_1)</td>
<td>$\chi_2 \boxtimes \chi_1$</td>
</tr>
<tr>
<td>b</td>
<td>(t_1, t_2^{-1})</td>
<td>$\chi_1 \boxtimes \chi_2^{-1}$</td>
</tr>
<tr>
<td>ab</td>
<td>(t_2^{-1}, t_1)</td>
<td>$\chi_2 \boxtimes \chi_1^{-1}$</td>
</tr>
<tr>
<td>ba</td>
<td>(t_2, t_1^{-1})</td>
<td>$\chi_2^{-1} \boxtimes \chi_1$</td>
</tr>
<tr>
<td>aba</td>
<td>(t_1^{-1}, t_2)</td>
<td>$\chi_1^{-1} \boxtimes \chi_2$</td>
</tr>
<tr>
<td>bab</td>
<td>(t_2^{-1}, t_1^{-1})</td>
<td>$\chi_2^{-1} \boxtimes \chi_1^{-1}$</td>
</tr>
<tr>
<td>$abab$</td>
<td>(t_1^{-1}, t_2^{-1})</td>
<td>$\chi_1^{-1} \boxtimes \chi_2^{-1}$</td>
</tr>
</tbody>
</table>
Let χ a character of F^\times such that $\chi^2|_{OF} \neq 1$ and $\chi(\varpi_F) = 1$,

Ahmed Moussaoui
Let χ a character of F^\times such that $\chi^2|_{O_F} \neq 1$ and $\chi(\varpi_F) = 1$, ζ a character of F^\times such that $\zeta^2|_{O_F} = 1$, $\zeta|_{O_F} \neq 1$ and $\zeta(\varpi_F) = 1$.
Let χ a character of F^\times such that $\chi^2|_{O_F} \neq 1$ and $\chi(\varpi_F) = 1$, ζ a character of F^\times such that $\zeta^2|_{O_F} = 1$, $\zeta|_{O_F} \neq 1$ and $\zeta(\varpi_F) = 1$.

We consider two inertial classes $s = [T, \chi \boxtimes 1]$ and $t = [T, \chi \boxtimes \zeta]$.
Let χ a character of F^\times such that $\chi^2|_{O_F} \neq 1$ and $\chi(\varpi_F) = 1$, ζ a character of F^\times such that $\zeta^2|_{O_F} = 1$, $\zeta|_{O_F} \neq 1$ and $\zeta(\varpi_F) = 1$.

We consider two inertial classes $s = [T, \chi \boxtimes 1]$ and $t = [T, \chi \boxtimes \zeta]$.

The isotropy subgroup of s is the subgroup of elements w in W such that there exists an unramified character $\phi \in \psi(T)$,

$w \cdot (\chi \boxtimes 1) = (\chi \boxtimes 1) \otimes \phi$.
Let χ a character of F^\times such that $\chi^2|_{O_F} \neq 1$ and $\chi(\bar{\omega}_F) = 1$, ζ a character of F^\times such that $\zeta^2|_{O_F} = 1$, $\zeta|_{O_F} \neq 1$ and $\zeta(\bar{\omega}_F) = 1$.

We consider two inertial classes $s = [T, \chi \boxtimes 1]$ and $t = [T, \chi \boxtimes \zeta]$.

The isotropy subgroup of s is the subgroup of elements w in W such that there exists an unramified character $\phi \in \psi(T)$, $w \cdot (\chi \boxtimes 1) = (\chi \boxtimes 1) \otimes \phi$.

For s and t we have $W_s = W_t = \{1, b\}$ and $T_s = T_t = \psi(T) \cong (\mathbb{C}^\times)^2$.
The extended quotient is

\[T_s/W_s = T_s/W_s \sqcup T_s^b/Z_{W_s}(b) \]
The extended quotient is

\[T_s \!//\! W_s = T_s / W_s \sqcup T_s^b / Z_{W_s}(b) \]

Let \((t_1, t_2) \in T_s\). We have

\[b \cdot (t_1, t_2) = (t_1, t_2) \iff (t_1, t_2^{-1}) = (t_1, t_2) \iff t_2 = \pm 1. \]
The extended quotient is

\[T_s \!/ W_s = T_s / W_s \sqcup T^b_s / Z_{W_s}(b) \]

Let \((t_1, t_2) \in T_s\). We have

\[b \cdot (t_1, t_2) = (t_1, t_2) \iff (t_1, t_2^{-1}) = (t_1, t_2) \iff t_2 = \pm 1. \]

\[T^b_s / W_s = \{(b, (z, 1)), z \in \mathbb{C}^\times \} \sqcup \{(b, (z, -1)), z \in \mathbb{C}^\times \} \]
The extended quotient is

\[T_s // W_s = T_s / W_s \sqcup T^b_s / Z_W(b) \]

Let \((t_1, t_2) \in T_s\). We have

\[b \cdot (t_1, t_2) = (t_1, t_2) \iff (t_1, t_2^{-1}) = (t_1, t_2) \iff t_2 = \pm 1. \]

\[T^b_s / W_s = \{(b, (z, 1)), z \in \mathbb{C}^\times\} \sqcup \{(b, (z, -1)), z \in \mathbb{C}^\times\} \]

Remark: It is the same extended quotient for \(s\) and \(t\).
Theorem (Sally, Tadic)

Let ψ_1, ψ_2 two characters of F^\times. Then $\psi_1 \times \psi_2 \times 1$ is reducible, if and only if

- $\psi_1^{\pm 1} = \nu^{\pm 1} \psi_2$
- $\psi_i = \nu^{\pm 1}$
- ψ_i is order two
Theorem (Sally, Tadic)

Let ψ_1, ψ_2 two characters of F^\times. Then $\psi_1 \times \psi_2 \rtimes 1$ is reducible, if and only if

- $\psi_1^\pm = \nu^\pm \psi_2$
- $\psi_i = \nu^\pm$
- ψ_i is order two

$\psi \times \zeta \rtimes 1 = \psi \rtimes T_1^\zeta + \psi \rtimes T_2^\zeta$, T_i^ζ tempered representation of $SL_2(F)$ (ζ character of F^\times of order two).
Theorem (Sally, Tadic)

Let ψ_1, ψ_2 two characters of F^\times. Then $\psi_1 \times \psi_2 \times 1$ is reducible, if and only if

- $\psi_1^{\pm 1} = \nu^{\pm 1} \psi_2$
- $\psi_i = \nu^{\pm 1}$
- ψ_i is order two

$\psi \times \zeta \times 1 = \psi \times T_1^\zeta + \psi \times T_2^\zeta$, T_i^ζ tempered representation of $SL_2(F)$ (ζ character of F^\times of order two).

$\psi \times \nu \times 1$ has two subquotients: $\psi \times 1_{SL_2}$ and $\psi \times St_{SL_2}$
\[s = [T, \chi \boxtimes 1] \]

<table>
<thead>
<tr>
<th>point of (T_s \parallel W_s)</th>
<th>cocharacter</th>
<th>constituent</th>
<th>representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>((e, (z_1, z_2)))</td>
<td>(\psi_1 \chi \times \psi_2 \times 1)</td>
<td>(\psi_1 \chi \times \psi_2 \times 1)</td>
<td></td>
</tr>
<tr>
<td>((e, (z, q^{-1})))</td>
<td>(\psi \chi \times 1_{SL_2})</td>
<td>(\psi \chi \times 1_{SL_2})</td>
<td></td>
</tr>
<tr>
<td>((b, (z, 1)))</td>
<td>(\psi \chi \times St_{SL_2})</td>
<td>(\psi \chi \times St_{SL_2})</td>
<td></td>
</tr>
<tr>
<td>((e, (z, -1)))</td>
<td>(\psi \chi \times T_1^\varepsilon)</td>
<td>(\psi \chi \times T_1^\varepsilon)</td>
<td></td>
</tr>
<tr>
<td>((b, (z, -1)))</td>
<td>(\psi \chi \times T_2^\varepsilon)</td>
<td>(\psi \chi \times T_2^\varepsilon)</td>
<td></td>
</tr>
</tbody>
</table>

Remark: \((e, (z_1, z_2))\) and \((b, (z, 1))\) are in the same \(L\)-packet.
\[\mathfrak{s} = [T, \chi \boxtimes 1] \]

<table>
<thead>
<tr>
<th>point of (T_s / W_s)</th>
<th>cocharacter</th>
<th>constituent</th>
<th>representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>((e, (z_1, z_2)))</td>
<td>(1, 1)</td>
<td>(\psi_1 \chi \times \psi_2 \rtimes 1)</td>
<td>(\psi_1 \chi \times \psi_2 \rtimes 1)</td>
</tr>
<tr>
<td>((e, (z, q^{-1})))</td>
<td>(1, 1)</td>
<td>(\psi \chi \rtimes 1_{SL_2})</td>
<td>(\psi \chi \times \nu \rtimes 1)</td>
</tr>
<tr>
<td>((b, (z, 1)))</td>
<td></td>
<td>(\psi \chi \rtimes St_{SL_2})</td>
<td></td>
</tr>
<tr>
<td>((e, (z, -1)))</td>
<td>(1, 1)</td>
<td>(\psi \chi \rtimes T_1^\varepsilon)</td>
<td>(\psi \chi \times \varepsilon \rtimes 1)</td>
</tr>
<tr>
<td>((b, (z, -1)))</td>
<td></td>
<td>(\psi \chi \rtimes T_2^\varepsilon)</td>
<td></td>
</tr>
</tbody>
</table>
\(s = [T, \chi \boxtimes 1] \)

<table>
<thead>
<tr>
<th>point of (T_s / W_s)</th>
<th>cocharacter</th>
<th>constituent</th>
<th>representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>((e, (z_1, z_2)))</td>
<td>((1, 1))</td>
<td>(\psi_1\chi \times \psi_2 \preceq 1)</td>
<td>(\psi_1\chi \times \psi_2 \preceq 1)</td>
</tr>
<tr>
<td>((e, (z, q^{-1})))</td>
<td>((1, 1))</td>
<td>(\psi\chi \preceq 1_{SL_2})</td>
<td>(\psi\chi \times \nu \preceq 1)</td>
</tr>
<tr>
<td>((b, (z, 1)))</td>
<td>((1, \tau^{-2}))</td>
<td>(\psi\chi \preceq St_{SL_2})</td>
<td></td>
</tr>
<tr>
<td>((e, (z, -1)))</td>
<td>((1, 1))</td>
<td>(\psi\chi \preceq T_1^\epsilon)</td>
<td>(\psi\chi \times \epsilon \preceq 1)</td>
</tr>
<tr>
<td>((b, (z, -1)))</td>
<td>((1, 1))</td>
<td>(\psi\chi \preceq T_2^\epsilon)</td>
<td></td>
</tr>
</tbody>
</table>
\[\mathfrak{s} = [T, \chi \boxtimes 1] \]

<table>
<thead>
<tr>
<th>point of (T_{\mathfrak{s}} \sslash W_{\mathfrak{s}})</th>
<th>cocharacter</th>
<th>constituent</th>
<th>representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>((e, (z_1, z_2)))</td>
<td>((1, 1))</td>
<td>(\psi_1 \chi \times \psi_2 \ltimes 1)</td>
<td>(\psi_1 \chi \times \psi_2 \ltimes 1)</td>
</tr>
<tr>
<td>((e, (z, q^{-1})))</td>
<td>((1, 1))</td>
<td>(\psi \chi \ltimes 1_{\text{SL}_2})</td>
<td>(\psi \chi \ltimes \nu \ltimes 1)</td>
</tr>
<tr>
<td>((b, (z, 1)))</td>
<td>((1, \tau^{-2}))</td>
<td>(\psi \chi \ltimes \text{St}_{\text{SL}_2})</td>
<td>(\psi \chi \ltimes \epsilon \ltimes 1)</td>
</tr>
<tr>
<td>((e, (z, -1)))</td>
<td>((1, 1))</td>
<td>(\psi \chi \ltimes T^\epsilon_1)</td>
<td>(\psi \chi \ltimes \epsilon \ltimes 1)</td>
</tr>
<tr>
<td>((b, (z, -1)))</td>
<td>((1, 1))</td>
<td>(\psi \chi \ltimes T^\epsilon_2)</td>
<td>(\psi \chi \ltimes \epsilon \ltimes 1)</td>
</tr>
</tbody>
</table>

Remark: \((e, (z, q^{-1}))\) and \((b, (z, 1))\) are in the same \(L\)-packet.
\[s = [T, \chi \boxtimes 1] \]

<table>
<thead>
<tr>
<th>point of (T_s // W_s)</th>
<th>cocharacter</th>
<th>constituent</th>
<th>representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>((e, (z_1, z_2)))</td>
<td>(1, 1)</td>
<td>(\psi_1 \chi \times \psi_2 \times 1)</td>
<td>(\psi_1 \chi \times \psi_2 \times 1)</td>
</tr>
<tr>
<td>((e, (z, q^{-1})))</td>
<td>(1, 1)</td>
<td>(\psi \chi \rtimes 1_{SL_2})</td>
<td>(\psi \chi \times \nu \rtimes 1)</td>
</tr>
<tr>
<td>((b, (z, 1)))</td>
<td>(1, (\tau^{-2}))</td>
<td>(\psi \chi \rtimes St_{SL_2})</td>
<td></td>
</tr>
<tr>
<td>((e, (z, -1)))</td>
<td>(1, 1)</td>
<td>(\psi \chi \rtimes T_1^\varepsilon)</td>
<td>(\psi \chi \times \varepsilon \rtimes 1)</td>
</tr>
<tr>
<td>((b, (z, -1)))</td>
<td>(1, 1)</td>
<td>(\psi \chi \rtimes T_2^\varepsilon)</td>
<td></td>
</tr>
</tbody>
</table>

\[T_s // W_s = (T_s // W_s)_{u_0} \sqcup (T_s // W_s)_{u_\varepsilon} \]
\[s = [T, \chi \boxtimes 1] \]

<table>
<thead>
<tr>
<th>point of (T_s / W_s)</th>
<th>cocharacter</th>
<th>constituent</th>
<th>representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>((e, (z_1, z_2)))</td>
<td>(1, 1)</td>
<td>(\psi_1 \chi \times \psi_2 \times 1)</td>
<td>(\psi_1 \chi \times \psi_2 \times 1)</td>
</tr>
<tr>
<td>((e, (z, q^{-1})))</td>
<td>(1, 1)</td>
<td>(\psi \chi \rtimes 1_{SL_2})</td>
<td>(\psi \chi \rtimes \nu \times 1)</td>
</tr>
<tr>
<td>((b, (z, 1)))</td>
<td>(1, \tau^{-2})</td>
<td>(\psi \chi \rtimes St_{SL_2})</td>
<td>(\psi \chi \rtimes \epsilon \times 1)</td>
</tr>
<tr>
<td>((e, (z, -1)))</td>
<td>(1, 1)</td>
<td>(\psi \chi \rtimes T_1^\epsilon)</td>
<td>(\psi \chi \rtimes \epsilon \times 1)</td>
</tr>
<tr>
<td>((b, (z, -1)))</td>
<td>(1, 1)</td>
<td>(\psi \chi \rtimes T_2^\epsilon)</td>
<td>(\psi \chi \rtimes \epsilon \times 1)</td>
</tr>
</tbody>
</table>

\[T_s / W_s = (T_s / W_s)_{u_0} \sqcup (T_s / W_s)_{u_e} \]

\[(T_s / W_s)_{u_0} = T_s / W_s \sqcup T_s^{b^-} / W_s, \]
\[s = [T, \chi \boxtimes 1] \]

<table>
<thead>
<tr>
<th>point of (T_s !// W_s)</th>
<th>cocharacter</th>
<th>constituent</th>
<th>representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>((e, (z_1, z_2)))</td>
<td>((1, 1))</td>
<td>(\psi_1\chi \times \psi_2 \sim 1)</td>
<td>(\psi_1\chi \times \psi_2 \sim 1)</td>
</tr>
<tr>
<td>((e, (z, q^{-1})))</td>
<td>((1, 1))</td>
<td>(\psi\chi \sim 1_{SL_2})</td>
<td>(\psi\chi \times \nu \sim 1)</td>
</tr>
<tr>
<td>((b, (z, 1)))</td>
<td>((1, \tau^{-2}))</td>
<td>(\psi\chi \sim St_{SL_2})</td>
<td></td>
</tr>
<tr>
<td>((e, (z, -1)))</td>
<td>((1, 1))</td>
<td>(\psi\chi \sim T^\varepsilon_1)</td>
<td></td>
</tr>
<tr>
<td>((b, (z, -1)))</td>
<td>((1, 1))</td>
<td>(\psi\chi \sim T^\varepsilon_2)</td>
<td>(\psi\chi \times \varepsilon \sim 1)</td>
</tr>
</tbody>
</table>

\[T_s \!// W_s = (T_s \!// W_s)_{u_0} \sqcup (T_s \!// W_s)_{u_e} \]

\[(T_s \!// W_s)_{u_0} = T_s / W_s \sqcup T_{\!//s}^b / W_s, \text{ cocharacter } h_{u_0}(\tau) = (1, 1) \]
$s = [T, \chi \boxtimes 1]$

<table>
<thead>
<tr>
<th>point of $T_s / / W_s$</th>
<th>cocharacter</th>
<th>constituent</th>
<th>representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(e, (z_1, z_2))$</td>
<td>$(1, 1)$</td>
<td>$\psi_1 \chi \times \psi_2 \times 1$</td>
<td>$\psi_1 \chi \times \psi_2 \times 1$</td>
</tr>
<tr>
<td>$(e, (z, q^{-1}))$</td>
<td>$(1, 1)$</td>
<td>$\psi \chi \rtimes 1_{SL_2}$</td>
<td>$\psi \chi \times \nu \rtimes 1$</td>
</tr>
<tr>
<td>$(b, (z, 1))$</td>
<td>$(1, \tau^{-2})$</td>
<td>$\psi \chi \rtimes St_{SL_2}$</td>
<td></td>
</tr>
<tr>
<td>$(e, (z, -1))$</td>
<td>$(1, 1)$</td>
<td>$\psi \chi \rtimes T^\epsilon_1$</td>
<td>$\psi \chi \times \epsilon \rtimes 1$</td>
</tr>
<tr>
<td>$(b, (z, -1))$</td>
<td>$(1, 1)$</td>
<td>$\psi \chi \rtimes T^\epsilon_2$</td>
<td></td>
</tr>
</tbody>
</table>

$T_s / / W_s = (T_s / / W_s)_{u_0} \sqcup (T_s / / W_s)_{u_e}$

$(T_s / / W_s)_{u_0} = T_s / W_s \sqcup T_s^{b-} / W_s$, cocharacter $h_{u_0}(\tau) = (1, 1)$

$(T_s / / W_s)_{u_e} = T_s^{b+} / W_s$,
\[s = [T, \chi \boxtimes 1] \]

<table>
<thead>
<tr>
<th>point of (T_s//W_s)</th>
<th>cocharacter</th>
<th>constituent</th>
<th>representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>((e, (z_1, z_2)))</td>
<td>((1, 1))</td>
<td>(\psi_1\chi \times \psi_2 \times 1)</td>
<td>(\psi_1\chi \times \psi_2 \times 1)</td>
</tr>
<tr>
<td>((e, (z, q^{-1})))</td>
<td>((1, 1))</td>
<td>(\psi\chi \times 1_{SL_2})</td>
<td>(\psi\chi \times \nu \times 1)</td>
</tr>
<tr>
<td>((b, (z, 1)))</td>
<td>((1, \tau^{-2}))</td>
<td>(\psi\chi \times St_{SL_2})</td>
<td></td>
</tr>
<tr>
<td>((e, (z, -1)))</td>
<td>((1, 1))</td>
<td>(\psi\chi \times T_1^\varepsilon)</td>
<td>(\psi\chi \times \varepsilon \times 1)</td>
</tr>
<tr>
<td>((b, (z, -1)))</td>
<td>((1, 1))</td>
<td>(\psi\chi \times T_2^\varepsilon)</td>
<td></td>
</tr>
</tbody>
</table>

\[T_s//W_s = (T_s//W_s)_{u_0} \sqcup (T_s//W_s)_{u_e} \]

\((T_s//W_s)_{u_0} = T_s//W_s \sqcup T_s^{b^-}//W_s, \) cocharacter \(h_{u_0}(\tau) = (1, 1) \)

\((T_s//W_s)_{u_e} = T_s^{b^+}//W_s, \) cocharacter \(h_{u_e}(\tau) = (1, \tau^{-2}) \)
\(s = [T, \chi \boxtimes 1] \)

<table>
<thead>
<tr>
<th>point of (T_s / W_s)</th>
<th>cocharacter</th>
<th>constituent</th>
<th>representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>((e, (z_1, z_2)))</td>
<td>((1, 1))</td>
<td>(\psi_1 \chi \times \psi_2 \times 1)</td>
<td>(\psi_1 \chi \times \psi_2 \times 1)</td>
</tr>
<tr>
<td>((e, (z, q^{-1})))</td>
<td>((1, 1))</td>
<td>(\psi \chi \times 1_{SL_2})</td>
<td>(\psi \chi \times \nu \times 1)</td>
</tr>
<tr>
<td>((b, (z, 1)))</td>
<td>((1, \tau^{-2}))</td>
<td>(\psi \chi \times St_{SL_2})</td>
<td></td>
</tr>
<tr>
<td>((e, (z, -1)))</td>
<td>((1, 1))</td>
<td>(\psi \chi \times T_1^\epsilon)</td>
<td>(\psi \chi \times \epsilon \times 1)</td>
</tr>
<tr>
<td>((b, (z, -1)))</td>
<td>((1, 1))</td>
<td>(\psi \chi \times T_2^\epsilon)</td>
<td></td>
</tr>
</tbody>
</table>

\[T_s / W_s = (T_s / W_s)_{u_0} \sqcup (T_s / W_s)_{u_e} \]

\[(T_s / W_s)_{u_0} = T_s / W_s \sqcup T_s^{b-} / W_s, \text{ cocharacter } h_{u_0}(\tau) = (1, 1) \]
\[(T_s / W_s)_{u_e} = T_s^{b+} / W_s, \text{ cocharacter } h_{u_e}(\tau) = (1, \tau^{-2}) \]

Remark : \((e, (z, -1))\) and \((b, (z, -1))\) are in the same \(L\)-packet
\[t = [T, \chi \boxtimes \zeta] \]

<table>
<thead>
<tr>
<th>point of (T_t \parallel W_t)</th>
<th>cocharacter</th>
<th>constituent</th>
<th>representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>((e, (z_1, z_2)))</td>
<td>(\psi_1 \chi \times \psi_2 \times 1)</td>
<td>(\psi_1 \chi \times \psi_2 \times 1)</td>
<td></td>
</tr>
<tr>
<td>((e, (z, 1)))</td>
<td>(\psi \chi \times T_1^\zeta)</td>
<td>(\psi \chi \times \zeta \times 1)</td>
<td></td>
</tr>
<tr>
<td>((b, (z, 1)))</td>
<td>(\psi \chi \times T_2^\zeta)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>((e, (z, -1)))</td>
<td>(\psi \chi \times T_1^{\epsilon \zeta})</td>
<td>(\psi \chi \times \epsilon \zeta \times 1)</td>
<td></td>
</tr>
<tr>
<td>((b, (z, -1)))</td>
<td>(\psi \chi \times T_2^{\epsilon \zeta})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remark: \((e, (z_1, z_2))\) and \((b, (z, 1))\) are in the same \(L\)-packet, for \((e, (z, 1))\) and \((b, (z, 1))\) is the same
\[t = [T, \chi \boxtimes \zeta] \]

<table>
<thead>
<tr>
<th>point of (T_t // W_t)</th>
<th>cocharacter</th>
<th>constituent</th>
<th>representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>((e, (z_1, z_2)))</td>
<td>(1, 1)</td>
<td>(\psi_1 \chi \times \psi_2 \times 1)</td>
<td>(\psi_1 \chi \times \psi_2 \times 1)</td>
</tr>
<tr>
<td>((e, (z, 1)))</td>
<td>(1, 1)</td>
<td>(\psi \chi \times T_1^\zeta)</td>
<td>(\psi \chi \times \zeta \times 1)</td>
</tr>
<tr>
<td>((b, (z, 1)))</td>
<td></td>
<td>(\psi \chi \times T_2^\zeta)</td>
<td></td>
</tr>
<tr>
<td>((e, (z, -1)))</td>
<td>(1, 1)</td>
<td>(\psi \chi \times T_1^{e\zeta})</td>
<td>(\psi \chi \times e\zeta \times 1)</td>
</tr>
<tr>
<td>((b, (z, -1)))</td>
<td></td>
<td>(\psi \chi \times T_2^{e\zeta})</td>
<td></td>
</tr>
</tbody>
</table>

Remark: \((e, (z, -1))\) and \((b, (z, -1))\) are in the same \(L\)-packet, for \((e, (z, 1))\) and \((b, (z, 1))\) is the same.
\[t = [T, \chi \boxtimes \zeta] \]

<table>
<thead>
<tr>
<th>point of (T_t // W_t)</th>
<th>cocharacter</th>
<th>constituent</th>
<th>representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>((e, (z_1, z_2)))</td>
<td>((1, 1))</td>
<td>(\psi_1 \chi \times \psi_2 \prec 1)</td>
<td>(\psi_1 \chi \times \psi_2 \prec 1)</td>
</tr>
<tr>
<td>((e, (z, 1)))</td>
<td>((1, 1))</td>
<td>(\psi \chi \times T_1^\zeta)</td>
<td>(\psi \chi \times \zeta \prec 1)</td>
</tr>
<tr>
<td>((b, (z, 1)))</td>
<td>((1, 1))</td>
<td>(\psi \chi \times T_2^\zeta)</td>
<td></td>
</tr>
<tr>
<td>((e, (z, -1)))</td>
<td>((1, 1))</td>
<td>(\psi \chi \times T_1^{\epsilon \zeta})</td>
<td>(\psi \chi \times \epsilon \zeta \prec 1)</td>
</tr>
<tr>
<td>((b, (z, -1)))</td>
<td></td>
<td>(\psi \chi \times T_2^{\epsilon \zeta})</td>
<td></td>
</tr>
</tbody>
</table>

Remark: \((e, (z, -1))\) and \((b, (z, -1))\) are in the same \(L\)-packet, for \((e, (z, 1))\) and \((b, (z, 1))\) is the same...
\[t = [T, \chi \boxtimes \zeta] \]

<table>
<thead>
<tr>
<th>point of (T_t / W_t)</th>
<th>cocharacter</th>
<th>constituent</th>
<th>representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>((e, (z_1, z_2)))</td>
<td>((1, 1))</td>
<td>(\psi_1 \chi \times \psi_2 \rtimes 1)</td>
<td>(\psi_1 \chi \times \psi_2 \rtimes 1)</td>
</tr>
<tr>
<td>((e, (z, 1)))</td>
<td>((1, 1))</td>
<td>(\psi \chi \rtimes T_1^\zeta)</td>
<td>(\psi \chi \times \zeta \rtimes 1)</td>
</tr>
<tr>
<td>((b, (z, 1)))</td>
<td>((1, 1))</td>
<td>(\psi \chi \rtimes T_2^\zeta)</td>
<td>(\psi \chi \times \zeta \rtimes 1)</td>
</tr>
<tr>
<td>((e, (z, -1)))</td>
<td>((1, 1))</td>
<td>(\psi \chi \rtimes T_1^{\epsilon\zeta})</td>
<td>(\psi \chi \times \epsilon\zeta \rtimes 1)</td>
</tr>
<tr>
<td>((b, (z, -1)))</td>
<td>((1, 1))</td>
<td>(\psi \chi \rtimes T_2^{\epsilon\zeta})</td>
<td>(\psi \chi \times \epsilon\zeta \rtimes 1)</td>
</tr>
</tbody>
</table>
\[t = [T, \chi \rtimes \zeta] \]

<table>
<thead>
<tr>
<th>point of (T_t / / W_t)</th>
<th>cocharacter</th>
<th>constituent</th>
<th>representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>((e, (z_1, z_2)))</td>
<td>((1, 1))</td>
<td>(\psi_1 \chi \times \psi_2 \rtimes 1)</td>
<td>(\psi_1 \chi \times \psi_2 \rtimes 1)</td>
</tr>
<tr>
<td>((e, (z, 1)))</td>
<td>((1, 1))</td>
<td>(\psi \chi \rtimes T_1^\zeta)</td>
<td>(\psi \chi \times \zeta \rtimes 1)</td>
</tr>
<tr>
<td>((b, (z, 1)))</td>
<td>((1, 1))</td>
<td>(\psi \chi \rtimes T_2^\zeta)</td>
<td>(\psi \chi \rtimes \zeta \rtimes 1)</td>
</tr>
<tr>
<td>((e, (z, -1)))</td>
<td>((1, 1))</td>
<td>(\psi \chi \rtimes T_1^{\varepsilon \zeta})</td>
<td>(\psi \chi \times \varepsilon \zeta \rtimes 1)</td>
</tr>
<tr>
<td>((b, (z, -1)))</td>
<td>((1, 1))</td>
<td>(\psi \chi \rtimes T_2^{\varepsilon \zeta})</td>
<td>(\psi \chi \times \varepsilon \zeta \rtimes 1)</td>
</tr>
</tbody>
</table>

\[T_t / / W_t = (T_t / / W_t)_{u_0} \sqcup (T_t / / W_t)_{u_e} \]
Local Langlands correspondence and examples of ABPS conjecture

Ahmed Moussaoui

$t = [T, \chi \boxtimes \zeta]$

<table>
<thead>
<tr>
<th>point of $T_t // W_t$</th>
<th>cocharacter</th>
<th>constituent</th>
<th>representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(e, (z_1, z_2))$</td>
<td>$(1, 1)$</td>
<td>$\psi_1 \chi \times \psi_2 \rtimes 1$</td>
<td>$\psi_1 \chi \times \psi_2 \rtimes 1$</td>
</tr>
<tr>
<td>$(e, (z, 1))$</td>
<td>$(1, 1)$</td>
<td>$\psi \chi \rtimes T_1^\zeta$</td>
<td>$\psi \chi \times \zeta \rtimes 1$</td>
</tr>
<tr>
<td>$(b, (z, 1))$</td>
<td>$(1, 1)$</td>
<td>$\psi \chi \rtimes T_2^\zeta$</td>
<td>$\psi \chi \times \zeta \rtimes 1$</td>
</tr>
<tr>
<td>$(e, (z, -1))$</td>
<td>$(1, 1)$</td>
<td>$\psi \chi \rtimes T_1^{\varepsilon \zeta}$</td>
<td>$\psi \chi \times \varepsilon \zeta \rtimes 1$</td>
</tr>
<tr>
<td>$(b, (z, -1))$</td>
<td>$(1, 1)$</td>
<td>$\psi \chi \rtimes T_2^{\varepsilon \zeta}$</td>
<td>$\psi \chi \times \varepsilon \zeta \rtimes 1$</td>
</tr>
</tbody>
</table>

\[T_t // W_t = (T_t // W_t)_{u_0} \sqcup (T_t // W_t)_{u_e} \]

\[(T_t // W_t)_{u_0} = T_s / W_s \sqcup T_s^b / W_s, \]
\[t = [T, \chi \boxtimes \zeta] \]

<table>
<thead>
<tr>
<th>point of $T_t /!/ W_t$</th>
<th>cocharacter</th>
<th>constituent</th>
<th>representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(e, (z_1, z_2))$</td>
<td>$(1, 1)$</td>
<td>$\psi_1 \chi \times \psi_2 \rtimes 1$</td>
<td>$\psi_1 \chi \times \psi_2 \rtimes 1$</td>
</tr>
<tr>
<td>$(e, (z, 1))$</td>
<td>$(1, 1)$</td>
<td>$\psi \chi \rtimes T_1^\zeta$</td>
<td>$\psi \chi \times \zeta \rtimes 1$</td>
</tr>
<tr>
<td>$(b, (z, 1))$</td>
<td>$(1, 1)$</td>
<td>$\psi \chi \rtimes T_1^\zeta$</td>
<td>$\psi \chi \times \zeta \rtimes 1$</td>
</tr>
<tr>
<td>$(e, (z, -1))$</td>
<td>$(1, 1)$</td>
<td>$\psi \chi \rtimes T_1^{e\zeta}$</td>
<td>$\psi \chi \times e\zeta \rtimes 1$</td>
</tr>
<tr>
<td>$(b, (z, -1))$</td>
<td>$(1, 1)$</td>
<td>$\psi \chi \rtimes T_2^{e\zeta}$</td>
<td>$\psi \chi \times e\zeta \rtimes 1$</td>
</tr>
</tbody>
</table>

\[T_t /\!/ W_t = (T_t /\!/ W_t)_{u_0} \sqcup (T_t /\!/ W_t)_{u_e} \]

\[(T_t /\!/ W_t)_{u_0} = T_s /W_s \sqcup T_s^b /W_s, \text{ cocharacter } h_{u_0}(\tau) = (1, 1) \]
\[t = [T, \chi \boxtimes \zeta] \]

<table>
<thead>
<tr>
<th>point of (T_t // W_t)</th>
<th>cocharacter</th>
<th>constituent</th>
<th>representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>((e, (z_1, z_2)))</td>
<td>(1, 1)</td>
<td>(\psi_1\chi \times \psi_2 \times 1)</td>
<td>(\psi_1\chi \times \psi_2 \times 1)</td>
</tr>
<tr>
<td>((e, (z, 1)))</td>
<td>(1, 1)</td>
<td>(\psi\chi \times T_1^\zeta)</td>
<td>(\psi\chi \times \zeta \times 1)</td>
</tr>
<tr>
<td>((b, (z, 1)))</td>
<td>(1, 1)</td>
<td>(\psi\chi \times T_2^\zeta)</td>
<td>(\psi\chi \times \zeta \times 1)</td>
</tr>
<tr>
<td>((e, (z, -1)))</td>
<td>(1, 1)</td>
<td>(\psi\chi \times T_1^{-\zeta})</td>
<td>(\psi\chi \times \epsilon\zeta \times 1)</td>
</tr>
<tr>
<td>((b, (z, -1)))</td>
<td>(1, 1)</td>
<td>(\psi\chi \times T_2^{-\zeta})</td>
<td>(\psi\chi \times \epsilon\zeta \times 1)</td>
</tr>
</tbody>
</table>

\[
T_t // W_t = (T_t // W_t)_{u_0} \sqcup (T_t // W_t)_{u_e}\]

\[
(T_t // W_t)_{u_0} = T_s / W_s \sqcup T_s^b / W_s, \text{ cocharacter } h_{u_0}(\tau) = (1, 1) \\
(T_t // W_t)_{u_e} = \emptyset
\]
\[t = [T, \chi \boxtimes \zeta] \]

<table>
<thead>
<tr>
<th>point of (T_t \parallel W_t)</th>
<th>cocharacter</th>
<th>constituent</th>
<th>representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>((e, (z_1, z_2)))</td>
<td>(1, 1)</td>
<td>(\psi_1 \chi \times \psi_2 \times 1)</td>
<td>(\psi_1 \chi \times \psi_2 \times 1)</td>
</tr>
<tr>
<td>((e, (z, 1)))</td>
<td>(1, 1)</td>
<td>(\psi \chi \rtimes T_1^\zeta)</td>
<td>(\psi \chi \times \zeta \times 1)</td>
</tr>
<tr>
<td>((b, (z, 1)))</td>
<td>(1, 1)</td>
<td>(\psi \chi \rtimes T_2^\zeta)</td>
<td>(\psi \chi \times \zeta \times 1)</td>
</tr>
<tr>
<td>((e, (z, -1)))</td>
<td>(1, 1)</td>
<td>(\psi \chi \rtimes T_1^{\epsilon \zeta})</td>
<td>(\psi \chi \times \epsilon \zeta \times 1)</td>
</tr>
<tr>
<td>((b, (z, -1)))</td>
<td>(1, 1)</td>
<td>(\psi \chi \rtimes T_2^{\epsilon \zeta})</td>
<td>(\psi \chi \times \epsilon \zeta \times 1)</td>
</tr>
</tbody>
</table>

\[
T_t \parallel W_t = (T_t \parallel W_t)_{u_0} \sqcup (T_t \parallel W_t)_{u_e}
\]

\[
(T_t \parallel W_t)_{u_0} = T_s / W_s \sqcup T_s^b / W_s, \text{ cocharacter } h_{u_0}(\tau) = (1, 1)
\]

\[
(T_t \parallel W_t)_{u_e} = \emptyset
\]

Remark: \((e, (z, -1))\) and \((b, (z, -1))\) are in the same \(L\)-packet, for \((e, (z, 1))\) and \((b, (z, 1))\) is the same
The Langlands dual group of $Sp_4(F)$ is $SO_5(\mathbb{C})$, with $SO_5(\mathbb{C}) = \{ g \in SL_5(\mathbb{C}), ^t g J g = J \}$ and the maximal torus

$$\tilde{T} = \left\{ \begin{pmatrix} z_1 & z_2 \\ z_2^{-1} & z_1^{-1} \end{pmatrix}, z_i \in \mathbb{C}^\times \right\} \simeq (\mathbb{C}^\times)^2$$
The Langlands dual group of $Sp_4(F)$ is $SO_5(\mathbb{C})$, with $SO_5(\mathbb{C}) = \{ g \in SL_5(\mathbb{C}), {}^t g J g = J \}$. The maximal torus is

$$\tilde{T} = \left\{ \begin{pmatrix} z_1 & z_2 & 1 \\ z_2 & z_1^{-1} \\ z_2^{-1} & z_1^{-1} \end{pmatrix}, z_i \in \mathbb{C}^\times \right\} \cong (\mathbb{C}^\times)^2$$

The Lie algebra of $SO_5(\mathbb{C})$ is

$$\mathfrak{so}_5(\mathbb{C}) = \left\{ \begin{pmatrix} y_1 & x_{12} & x_{13} & x_{14} & 0 \\ x_{21} & y_2 & x_{23} & 0 & -x_{14} \\ x_{31} & x_{32} & 0 & -x_{23} & -x_{13} \\ x_{41} & 0 & -x_{32} & -y_2 & -x_{12} \\ 0 & -x_{41} & -x_{31} & -x_{21} & -y_1 \end{pmatrix}, x_{ij}, y_i \in \mathbb{C} \right\}$$
The Langlands parameters for \(\chi_1 \boxtimes \chi_2 \) is
\[
\rho(\chi_1, \chi_2) : \ W_F \rightarrow \widehat{T}
\]
\[
w \mapsto \begin{pmatrix}
\chi_1(w) & \chi_2(w) & 1 \\
\chi_2(w)^{-1} & \chi_1(w)^{-1}
\end{pmatrix}
\]
The Langlands parameters for $\chi_1 \boxtimes \chi_2$ is

$$\rho(\chi_1, \chi_2) : W_F \to \hat{T}$$

$$w \mapsto \begin{pmatrix}
\chi_1(w) \\
\chi_2(w) \\
1 \\
\chi_2(w)^{-1} \\
\chi_1(w)^{-1}
\end{pmatrix}$$

The Langlands parameters for the irreducible subquotients of $\psi_1 \chi \times \psi_2 \times 1$ are $(\rho(\psi_1 \chi, \psi_2), 0)$, $(\rho(\psi_1 \chi, \nu), 0)$ and $(\rho(\psi_1 \chi, \nu), N)$ with

$$N = \begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$
The Langlands parameters are also the morphisms from W'_F to $SO_5(\mathbb{C})$. For $(\rho_\psi, \nu), N)$ the corresponding morphism is

$$\phi : W'_F \rightarrow \widehat{T}$$

$$(w, s) \mapsto \begin{pmatrix}
(\psi_1\chi)(w) \\
S_3(s) \\
(\psi_1\chi)(w)^{-1}
\end{pmatrix}$$

where S_3 is the irreducible representation of dimension 3 of $SL_2(\mathbb{C})$.
The Langlands parameters are also the morphisms from W'_F to $SO_5(\mathbb{C})$. For $(\rho(\psi_1\chi, \nu), N)$ the corresponding morphism is

$$
\phi : W'_F \rightarrow \widehat{T} \\
(w, s) \mapsto \begin{pmatrix}
(\psi_1\chi)(w) \\
S_3(s) \\
(\psi_1\chi)(w)^{-1}
\end{pmatrix}
$$

where S_3 is the irreducible representation of dimension 3 of $SL_2(\mathbb{C})$.

We have $\phi\left(1, \begin{pmatrix} \tau^{-1} \\ \tau \end{pmatrix}\right) = \\
\begin{pmatrix}
1 \\
\tau^{-2} \\
1 \\
\end{pmatrix}$
For the irreducible subquotient of $\psi_1 \chi \times \psi_2 \zeta \rtimes 1$ there are $(\rho(\psi_1 \chi, \psi_2 \zeta), 0)$.
For the irreducible subquotient of $\psi_1 \chi \times \psi_2 \zeta \trianglerighteq 1$ there are $(\rho(\psi_1 \chi, \psi_2 \zeta), 0)$. We find in this way the cocharacters and the decomposition.
$s = [T, \chi \boxtimes 1]$

<table>
<thead>
<tr>
<th>point of $T_s//W_s$</th>
<th>cocharacter</th>
<th>Langlands parameter</th>
<th>constituent</th>
<th>representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(e, (z_1, z_2))$</td>
<td>$(\psi_1 \chi, \psi_2)_T$</td>
<td>$\psi_1 \chi \times \psi_2 \times 1$</td>
<td>$\psi_1 \chi \times \psi_2 \times 1$</td>
<td></td>
</tr>
<tr>
<td>$(e, (z, q^{-1}))$</td>
<td>$(\psi \chi, v)_T$</td>
<td>$\psi \chi \times 1_{SL_2}$</td>
<td>$\psi \chi \times v \times 1$</td>
<td></td>
</tr>
<tr>
<td>$(b, (z, 1))$</td>
<td>$((\psi_1 \chi)(w))_{S_3(s)}$</td>
<td>$\psi \chi \times St_{SL_2}$</td>
<td>$\psi \chi \times St_{SL_2}$</td>
<td></td>
</tr>
<tr>
<td>$(e, (z, -1))$</td>
<td>$(\psi \chi, \varepsilon)_T$</td>
<td>$\psi \chi \times T_1^\varepsilon$</td>
<td>$\psi \chi \times T_2^\varepsilon$</td>
<td></td>
</tr>
<tr>
<td>$(b, (z, -1))$</td>
<td>$(\psi \chi, \varepsilon)_T$</td>
<td>$\psi \chi \times T_2^\varepsilon$</td>
<td>$\psi \chi \times \varepsilon \times 1$</td>
<td></td>
</tr>
</tbody>
</table>
Local Langlands correspondence and examples of ABPS conjecture

Ahmed Moussaoui

\[s = [T, \chi \boxtimes 1] \]

<table>
<thead>
<tr>
<th>point of (T_s/W_s)</th>
<th>cocharacter</th>
<th>Langands parameter</th>
<th>constituent</th>
<th>representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>((e, (z_1, z_2)))</td>
<td>(1, 1)</td>
<td>((\psi_1 \chi, \psi_2)_{\tilde{T}})</td>
<td>(\psi_1 \chi \times \psi_2 \times 1)</td>
<td>(\psi_1 \chi \times \psi_2 \times 1)</td>
</tr>
<tr>
<td>((e, (z, q^{-1})))</td>
<td>(1, 1)</td>
<td>((\psi \chi, v)_{\tilde{T}})</td>
<td>(\psi \chi \times 1_{SL_2})</td>
<td>(\psi \chi \times 1)</td>
</tr>
<tr>
<td>((b, (z, 1)))</td>
<td></td>
<td>((\psi_1 \chi)(w))_{\tilde{T}} \begin{pmatrix} S_3(s) \ (\psi_1 \chi)(w)^{-1} \end{pmatrix}</td>
<td>(\psi \chi \times St_{SL_2})</td>
<td></td>
</tr>
<tr>
<td>((e, (z, -1)))</td>
<td>(1, 1)</td>
<td>((\psi \chi, \epsilon)_{\tilde{T}})</td>
<td>(\psi \chi \times T_1^\epsilon)</td>
<td>(\psi \chi \times \epsilon \times 1)</td>
</tr>
<tr>
<td>((b, (z, -1)))</td>
<td></td>
<td>((\psi \chi, \epsilon)_{\tilde{T}})</td>
<td>(\psi \chi \times T_2^\epsilon)</td>
<td></td>
</tr>
</tbody>
</table>
\[
\mathcal{S} = [T, \chi \boxtimes 1]
\]

<table>
<thead>
<tr>
<th>Point of (T_s/W_s)</th>
<th>Cocharacter</th>
<th>Langands Parameter</th>
<th>Constituant</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>((e, (z_1, z_2)))</td>
<td>(1, 1)</td>
<td>((\psi_1 \chi, \psi_2)_{\hat{T}})</td>
<td>(\psi_1 \chi \times \psi_2 \times 1)</td>
<td>(\psi_1 \chi \times \psi_2 \times 1)</td>
</tr>
<tr>
<td>((e, (z, q^{-1})))</td>
<td>(1, 1)</td>
<td>((\psi_1 \chi, v)_{\hat{T}})</td>
<td>(\psi \chi \times 1_{SL_2})</td>
<td>(\psi \chi \times 1)</td>
</tr>
<tr>
<td>((b, (z, 1)))</td>
<td>(1, (\tau^{-2}))</td>
<td>((\psi_1 \chi)(w)_{S_3(s)} (\psi_1 \chi)(w)^{-1})</td>
<td>(\psi \chi \times S_{1 SL_2})</td>
<td>(\psi \chi \times \psi_{\chi, \varepsilon} \boxtimes T_1)</td>
</tr>
<tr>
<td>((e, (z, -1)))</td>
<td>(1, 1)</td>
<td>((\psi_1 \chi, \varepsilon)_{\hat{T}})</td>
<td>(\psi \chi \times T_1^{\varepsilon})</td>
<td>(\psi \chi \times \varepsilon \boxtimes T_2)</td>
</tr>
<tr>
<td>((b, (z, -1)))</td>
<td>(1, 1)</td>
<td>((\psi_1 \chi, \varepsilon)_{\hat{T}})</td>
<td>(\psi \chi \times T_2^{\varepsilon})</td>
<td>(\psi \chi \times \varepsilon \boxtimes T_2)</td>
</tr>
</tbody>
</table>
\[s = [T, \chi \boxtimes 1] \]

<table>
<thead>
<tr>
<th>point of (T_s // W_s)</th>
<th>cocharacter</th>
<th>Langlands parameter</th>
<th>constituent</th>
<th>representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>((e, (z_1, z_2)))</td>
<td>(1, 1)</td>
<td>((\psi_1 \chi, \psi_2)^T)</td>
<td>(\psi_1 \psi_2 \times 1)</td>
<td>(\psi_1 \psi_2 \times 1)</td>
</tr>
<tr>
<td>((e, (z, q^{-1})))</td>
<td>(1, 1)</td>
<td>((\psi \chi, \nu)^T)</td>
<td>(\nu \times 1_{SL_2})</td>
<td>(\nu \times 1)</td>
</tr>
<tr>
<td>((b, (z, 1)))</td>
<td>(1, \tau^{-2})</td>
<td>(\left(\psi_1 \chi(w)\right)_{S_3(s)})</td>
<td>(\psi \times S_{SL_2})</td>
<td></td>
</tr>
<tr>
<td>((e, (z, -1)))</td>
<td>(1, 1)</td>
<td>((\psi \chi, \epsilon)^T)</td>
<td>(\psi \times T_1^\epsilon)</td>
<td>(\psi \times 1)</td>
</tr>
<tr>
<td>((b, (z, -1)))</td>
<td>(1, 1)</td>
<td>((\psi \chi, \epsilon)^T)</td>
<td>(\psi \times T_2^\epsilon)</td>
<td>(\psi \times 1)</td>
</tr>
</tbody>
</table>
\[t = [T, \chi \boxtimes \zeta] \]

<table>
<thead>
<tr>
<th>point of (T \times W_t)</th>
<th>cocharacter</th>
<th>Langlands parameter</th>
<th>constituent</th>
<th>representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>((e, (z_1, z_2)))</td>
<td>(1, 1)</td>
<td>((\psi_1 \chi, \psi_2)_T)</td>
<td>(\psi_1 \chi \times \psi_2)</td>
<td>(\psi_1 \chi \times \psi_2)</td>
</tr>
<tr>
<td>((e, (z, 1)))</td>
<td>(1, 1)</td>
<td>((\psi \chi, \zeta)_T)</td>
<td>(\psi \chi \times T_{1,1}^1)</td>
<td>(\psi \chi \times \zeta \times 1)</td>
</tr>
<tr>
<td>((b, (z, 1)))</td>
<td>(1, 1)</td>
<td>((\psi \chi, \zeta)_T)</td>
<td>(\psi \chi \times T_{2,1}^2)</td>
<td>(\psi \chi \times \zeta \times 1)</td>
</tr>
<tr>
<td>((e, (z, -1)))</td>
<td>(1, 1)</td>
<td>((\psi \chi, \varepsilon \zeta)_T)</td>
<td>(\psi \chi \times T_{1,1}^1)</td>
<td>(\psi \chi \times \varepsilon \zeta \times 1)</td>
</tr>
<tr>
<td>((b, (z, -1)))</td>
<td>(1, 1)</td>
<td>((\psi \chi, \varepsilon \zeta)_T)</td>
<td>(\psi \chi \times T_{2,1}^2)</td>
<td>(\psi \chi \times \varepsilon \zeta \times 1)</td>
</tr>
</tbody>
</table>
Thank you for your attention.
Anne-Marie Aubert, Paul Baum, and Roger Plymen. Geometric structure in the representation theory of reductive p-adic groups II.

A. W. Knapp. Introduction to the Langlands program.