Structure of the Iwahori-Hecke Algebra

Arnab Mitra

Ben-Gurion University of the Negev

20.08.2013
F - Non-archimedean local field.
\mathcal{O} - ring of integers, $\mathfrak{p} = (\pi)$ - maximal ideal.
$k := \mathcal{O}/\mathfrak{p}$, $|k| = q$.

G - Split, connected, reductive group defined over F.
A - split maximal torus A.
$B = AN$ - Borel subgroup containing A.

We assume that G, A, N etc. are defined over \mathcal{O}.
Notation

\(F \) - Non-archimedean local field.
\(\mathcal{O} \) - ring of integers, \(\mathfrak{p} = (\pi) \) - maximal ideal.
\(k := \mathcal{O}/\mathfrak{p}, \ |k| = q. \)

\(G \) - Split, connected, reductive group defined over \(F \).
\(A \) - split maximal torus \(A \).
\(B = AN \) - Borel subgroup containing \(A \).
We assume that \(G, A, N \) etc. are defined over \(\mathcal{O} \).
$K := G(\mathcal{O})$
$W := N_{G(F)}(A(F))/A(F)$ - the finite Weyl group.
\[K := G(0) \]
\[\mathcal{W} := N_{G(F)}(A(F))/A(F) - \text{the finite Weyl group.} \]

We will sometimes write \(G, A \) for \(G(F), A(F) \) (respectively) for the sake of brevity.
The Iwahori subgroup and the Iwahori Hecke Algebra

Definition

The Iwahori subgroup I of K is the inverse image of $B(k)$ in $G(O)$ under the map $G(O) \to G(k)$.

\[
H_I := \mathbb{C}[c(I\setminus G(F)/I)].
\]
The Iwahori subgroup and the Iwahori Hecke Algebra

Definition

The Iwahori subgroup I of K is the inverse image of $B(k)$ in $G(\mathcal{O})$ under the map $G(\mathcal{O}) \rightarrow G(k)$.

Definition

Define the Iwahori-Hecke algebra,

$$\mathcal{H}_I := C_c(I \setminus G(F)/I).$$
Finite dimensional Hecke algebra

\[\mathcal{H}_f := C(B(k) \setminus G(k)/B(k)). \]

By Bruhat decomposition,

\[\{ T_w := 1_{B(k)wB(k)} | (w \in W) \} \]

forms a basis of \(\mathcal{H}_f \).
Finite dimensional Hecke algebra

\[\mathcal{H}_f := \mathbb{C}(B(k) \backslash G(k)/B(k)). \]

By Bruhat decomposition,

\[\{ T_w := 1_{B(k)wB(k)} | (w \in W) \} \]

forms a basis of \(\mathcal{H}_f \).

Proposition

For \(f \in \mathbb{C}(B(k) \backslash G(k)/B(k)) \), we can define \(\tilde{f} \in \mathbb{C}_c(I \backslash K/I) \) in a natural way. The map \(f \mapsto \tilde{f} \) gives a \(\mathbb{C} \)-algebra isomorphism

\[\mathbb{C}(B(k) \backslash G(k)/B(k)) \cong \mathbb{C}_c(I \backslash K/I). \]
Theorem (Iwahori)

\(\mathcal{H}_f \) is a free \(\mathbb{C} \)-algebra on generators \(T_{s_i} \) (indexed by the set \(S \) of simple reflections of \(W \)) subject to the following relations:

- \(T_{s_i}^2 = q + (q - 1) T_{s_i} \)
- \(T_{s_i} \cdot T_{s_j} \cdot T_{s_i} \ldots = T_{s_j} \cdot T_{s_i} \cdot T_{s_j} \ldots \quad (i \neq j) \)

with \(m_{ij} \) terms on both sides, with \(m_{ij} \geq 2 \), same as those occurring in the braid relations in the presentation of the Coxeter group \(W \) in terms of \(S \).
Theorem (Iwahori)

\mathcal{H}_f is a free \mathbb{C}-algebra on generators T_{s_i} (indexed by the set S of simple reflections of W) subject to the following relations:

- $T_{s_i}^2 = q + (q - 1)T_{s_i}$
- $T_{s_i} \cdot T_{s_j} \cdot T_{s_i} \ldots = T_{s_j} \cdot T_{s_i} \cdot T_{s_j} \ldots \ (i \neq j)$ with m_{ij} terms on both sides, with $m_{ij} \geq 2$, same as those occurring in the braid relations in the presentation of the Coxeter group W in terms of S.

\mathcal{H}_f is very similar in structure to $\mathbb{C}[W]$.
Definition

\[\tilde{W}_a := N_{G(F)}(A(F))/A(O). \]
Definition

\[\tilde{W}_a := N_{G(F)}(A(F))/A(O). \]

Proposition (Iwahori and Matsumoto)

\[G = \bigcup_{x \in \tilde{W}_a} lxl. \]
Extended affine Weyl group

Definition

\[\tilde{W}_a := N_{G(F)}(A(F))/A(\mathcal{O}). \]

Proposition (Iwahori and Matsumoto)

\[G = \bigcup_{x \in \tilde{W}_a} lxl. \]

Thus the elements \(\{ T_x := 1_{lxl}, \ x \in \tilde{W}_a \} \) form a natural basis of \(\mathcal{H}_I \).
The extended affine Weyl group for $GL_n(F)$

Let $s_i \ (1 \leq i \leq n - 1)$ be the permutation matrix in $GL_n(F)$ corresponding to the transposition which interchanges e_i and e_{i+1}. Further let

$$s_0 = \begin{pmatrix} 0 & 1 & & & \pi^{-1} \\ & 1 & & & \\ & & \ddots & & \\ & & & 1 & 0 \\ \pi & & & & 0 \end{pmatrix}, \quad t = \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$$
Let $s_i \ (1 \leq i \leq n - 1)$ be the permutation matrix in $\text{GL}_n(F)$ corresponding to the transposition which interchanges e_i and e_{i+1}. Further let

$$s_0 = \begin{pmatrix} 0 & & & \pi^{-1} \\ & 1 & & \\ & & \ddots & \\ \pi & & & 1 \\ 1 & & & 0 \end{pmatrix}, \quad t = \begin{pmatrix} 0 & 1 & & \\ 0 & 1 & & \\ & & \ddots & \\ & & & 1 \\ & & & 0 \end{pmatrix}.$$

Note that $ts_i t^{-1} = s_{i-1}$.
\[\tilde{W}_a = \langle s_0, \ldots, s_{n-1}, t \rangle \]

with the following relations:

- \(s_i^2 = 1, \ 0 \leq i \leq n - 1, \)
- \((s_is_j)^{m_{ij}} = 1\) where \(m_{i,i+1} = 3 \) and \(m_{i,j} = 2 \) if \(|i - j| \mod n > 1, \)
- \(ts_it^{-1} = s_{i-1}. \)
\[\tilde{W}_a = \langle s_0, \ldots, s_{n-1}, t \rangle \]

with the following relations:

- \(s_i^2 = 1, \ 0 \leq i \leq n - 1 \),
- \((s_i s_j)^{m_{ij}} = 1 \) where \(m_{i,i+1} = 3 \) and \(m_{i,j} = 2 \) if \(\mid i - j \mid \mod n > 1 \),
- \(ts_i t^{-1} = s_{i-1} \).

Thus \(\tilde{W}_a \) is almost like \(S_n \).
Let length function, ℓ is defined to be the minimum number of generators of the type s_i (i.e. excluding any occurrences of the generator t). Note that ℓ restricted to W is the usual length function.
Let length function, ℓ is defined to be the minimum number of generators of the type s_i (i.e. excluding any occurrences of the generator t). Note that ℓ restricted to W is the usual length function.

Notice that s_1, \ldots, s_{n-1} generate S_n while if we adjoin s_0 and t we get all diagonal matrices, whose entries are integral powers of π.
Let length function, \(\ell \) is defined to be the minimum number of generators of the type \(s_i \) (i.e. excluding any occurrences of the generator \(t \)). Note that \(\ell \) restricted to \(W \) is the usual length function.

Notice that \(s_1, \ldots, s_{n-1} \) generate \(S_n \) while if we adjoin \(s_0 \) and \(t \) we get all diagonal matrices, whose entries are integral powers of \(\pi \).

It can be easily checked that \(\tilde{W}_a \cong S_n \times \mathbb{Z}^n \) where \(\mathbb{Z}^n \) is embedded as the diagonal matrices with powers of \(\pi \).
The Iwahori-Matsumoto presentation for $G = \text{GL}_n(F)$

Theorem

\mathcal{H}_i is an algebra generated by appropriately indexed T_{s_i} and T_t such that the following relations are satisfied:

- $T_{s_i} \cdot T_{s_i} = q + (q - 1) T_{s_i}$.
- $T_w \cdot T_{w'} = T_{ww'}$ if $\ell(w w') = \ell(w) + \ell(w')$.
- $T_{s_{i-1}} \cdot T_t = T_t \cdot T_{s_i}$.

(Here $i + 1$ is to be interpreted as 0 if $i = n - 1$.)
The co-character lattice

\[X_*(A) := \text{Hom}(\mathbb{G}_m, A(F)) \]
\[\pi^\mu := \mu(\pi), \quad \forall \mu \in X_*(A) \]
The co-character lattice

\[X_*(A) := \text{Hom}(\mathbb{G}_m, A(F)) \]
\[\pi^\mu := \mu(\pi), \quad \forall \mu \in X_*(A) \]

Lemma

The map \(\mu \mapsto \pi^\mu \) is an isomorphism

\[X_*(A) \cong A(F)/A(\mathcal{O}) \cong \mathbb{Z}^n. \]
The co-character lattice

\[X_*(A) := \text{Hom}(\mathbb{G}_m, A(F)) \]
\[\pi^\mu := \mu(\pi), \quad \forall \mu \in X_*(A) \]

Lemma

The map \(\mu \mapsto \pi^\mu \) is an isomorphism

\[X_*(A) \cong A(F)/A(\mathcal{O}) \cong \mathbb{Z}^n. \]

In case of \(\text{GL}_n(F) \),

\[\mu \in X_*(A) \leftrightarrow \text{diag}(\pi^{t_1}, \ldots, \pi^{t_n}) \leftrightarrow (t_1, \ldots, t_n) \]

where \((t_1, \ldots, t_n) \in \mathbb{Z} \).
Definition

Call an element $\mu \in X_\ast(A)$ dominant if

$$\pi^\mu (I \cap N) \pi^{-\mu} \subset I \cap N.$$

Call μ antidominant if $-\mu$ is dominant.
Call an element $\mu \in X_*(A)$ dominant if

$$\pi^\mu (I \cap N) \pi^{-\mu} \subset I \cap N.$$

Call μ antidominant if $-\mu$ is dominant.

For example, in the case of $GL_n(F)$, this means that μ corresponds to (t_1, \ldots, t_n) with $t_1 \geq t_2 \geq \ldots \geq t_n$.
Definition

Call an element $\mu \in X_*(A)$ dominant if

$$\pi^\mu (I \cap N) \pi^{-\mu} \subset I \cap N.$$

Call μ antidominant if $-\mu$ is dominant.

For example, in the case of $\text{GL}_n(F)$, this means that μ corresponds to (t_1, \ldots, t_n) with $t_1 \geq t_2 \geq \ldots \geq t_n$.

It follows that $\pi^{-\mu} (I \cap \bar{N}) \pi^\mu \subset I \cap \bar{N}$.
Let $\mathcal{B} = \mathbb{C}[X_*(A)]$. Using the description of $X_*(A)$,

$$\mathcal{B} \cong \mathbb{C}[X_1, ..., X_n, X_1^{-1}, ..., X_n^{-1}].$$
The toric subalgebra

Let $\mathcal{B} = \mathbb{C}[X_*(A)]$. Using the description of $X_*(A)$,

$$\mathcal{B} \cong \mathbb{C}[X_1, ..., X_n, X_1^{-1}, ..., X_n^{-1}].$$

For $\mu \in X_*(A)$ dominant define

$$\Theta_\mu = \delta^{1/2}(\pi^\mu) T_{\pi^\mu},$$

where δ is the modulus function of $B(F)$.
The toric subalgebra

Let \(\mathcal{B} = \mathbb{C}[X_*(A)] \). Using the description of \(X_*(A) \),

\[
\mathcal{B} \cong \mathbb{C}[X_1, \ldots, X_n, X_1^{-1}, \ldots, X_n^{-1}].
\]

For \(\mu \in X_*(A) \) dominant define

\[
\Theta_{\mu} = \delta^{1/2}(\pi^\mu) T_{\pi^\mu},
\]

where \(\delta \) is the modulus function of \(B(F) \).

Proposition

\(\Theta_{\mu} \) is invertible in \(\mathcal{H}_I \).
Let μ and η are dominant. Then,

$$I_{\pi^\mu} I_{\pi^\eta} = I_{\pi^\mu(I \cap N)(I \cap A)(I \cap \bar{N})_{\pi^\eta}} I_{\in I_{\pi^\mu(I \cap N)_{\pi^\eta}(I \cap \bar{N})} I_{\in I_{\pi^\mu\pi^\eta}}}$$
Let μ and η are dominant. Then,

\[I_{\pi \mu} I_{\pi \eta} I = I_{\pi \mu} (I \cap N)(I \cap A)(I \cap \bar{N})_{\pi \eta} I \]
\[\subset I (I \cap N_{\pi \mu} (I \cap A)_{\pi \eta} (I \cap \bar{N})_{\pi \eta} I \]
\[\subset I_{\pi \mu} I_{\pi \eta} I \]

So we have, $I_{\pi \mu} I_{\pi \eta} I = I_{\pi \mu + \eta} I$, which implies

\[\Theta_{\mu} \ast \Theta_{\eta} = \Theta_{\mu + \eta} \]
For $\mu \in X_*(A)$, write $\mu = \mu^+ - \mu^-$, where μ^+, μ^- are dominant. So for an arbitrary μ define

$$\Theta_\mu = \Theta_{\mu^+} \ast (\Theta_{\mu^-})^{-1}.$$
For $\mu \in X_*(A)$, write $\mu = \mu^+ - \mu^-$, where μ^+, μ^- are dominant. So for an arbitrary μ define

$$\Theta_\mu = \Theta_{\mu^+} \ast (\Theta_{\mu^-})^{-1}.$$
For $\mu \in X_*(A)$, write $\mu = \mu^+ - \mu^-$, where μ^+, μ^- are dominant. So for an arbitrary μ define

$$\Theta_{\mu} = \Theta_{\mu^+} \ast (\Theta_{\mu^-})^{-1}.$$

Proposition

The map $\Theta : B \to H_I$ is an isomorphism onto its image.

$\Theta(B)$ is an abelian subalgebra of H_I and is known as the toric subalgebra.
The Bernstein relations

We have the following commutation relation.

Proposition

Let \(\mu \in X_*(A) \), \(s \in S \) and \(\alpha \) the simple root corresponding to \(s \). Then

\[
T_s \ast \Theta_{\mu} = \Theta_{s\mu} \ast T_s + (q - 1) \frac{\Theta_{\mu} - \Theta_{s\mu}}{1 - \Theta_{-\tilde{\alpha}}}.
\]

\((s\mu = \mu - \langle \alpha, \mu \rangle \tilde{\alpha}) \)
The Bernstein relations

We have the following commutation relation.

Proposition

Let \(\mu \in X_*(A) \), \(s \in S \) and \(\alpha \) the simple root corresponding to \(s \). Then

\[
T_s * \Theta_\mu = \Theta_{s\mu} * T_s + (q - 1) \frac{\Theta_\mu - \Theta_{s\mu}}{1 - \Theta_{-\check{\alpha}}}.
\]

\((s\mu = \mu - \langle \alpha, \mu \rangle \check{\alpha})\)

\[
\frac{\Theta_\mu - \Theta_{s\mu}}{1 - \Theta_{-\check{\alpha}}} = \Theta_\mu + \Theta_{\mu - \check{\alpha}} + \ldots + \Theta_{s\mu + \check{\alpha}}
\]
The Bernstein relations

We have the following commutation relation.

Proposition

Let $\mu \in \mathcal{X}_*(A)$, $s \in S$ and α the simple root corresponding to s. Then

$$T_s \ast \Theta_\mu = \Theta_{s\mu} \ast T_s + (q - 1) \frac{\Theta_\mu - \Theta_{s\mu}}{1 - \Theta_{-\check{\alpha}}}.$$

($s\mu = \mu - \langle \alpha, \mu \rangle \check{\alpha}$)

$$\Theta_\mu - \Theta_{s\mu} \quad \frac{1}{1 - \Theta_{-\check{\alpha}}} = \Theta_\mu + \Theta_{\mu - \check{\alpha}} + ... + \Theta_{s\mu + \check{\alpha}}$$

Proposition

The elements $\Theta_\mu T_w \in \mathcal{H}_I$ form a basis over \mathbb{C}.
The Bernstein presentation

Let \mathcal{H} be the algebra with the generators

$$\{ T_w, w \in W, \Theta_\mu, \mu \in X_*(A) \}$$

such that the following relations are satisfied:

- $T_s \cdot T_s = q + (q - 1) T_s \ \forall s \in S$.
- $T_w \cdot T_{w'} = T_{ww'}$ if $\ell(ww') = \ell(w) + \ell(w')$.
- $\Theta_\mu \cdot \Theta_\eta = \Theta_{\mu+\eta}$.
- For $s = s_\alpha \in S, \mu \in \mathcal{B}$ we have,

$$T_s \cdot \Theta_\mu = \Theta_{s_\mu} \cdot T_s + (q - 1) \frac{\Theta_\mu - \Theta_{s_\mu}}{1 - \Theta_{-\alpha}}.$$

Then $\mathcal{H} \cong \mathcal{H}_I$.

W acts naturally on B. It follows easily from the commutation relation that

$$\Theta(B^W) = \text{Span} < \sum_{w \in W} \Theta_{w(\mu)} > \subset Z(H_I).$$
Description of the center

\(\mathcal{W} \) acts naturally on \(\mathcal{B} \). It follows easily from the commutation relation that

\[
\Theta(\mathcal{B}^W) = \text{Span} \left< \sum_{w \in \mathcal{W}} \Theta_w(\mu) \right> \subset Z(\mathcal{H}_I).
\]

Theorem (Bernstein)

\[
\Theta : \mathcal{B}^W \simrightarrow Z(\mathcal{H}_I).
\]
\(W \) acts naturally on \(B \). It follows easily from the commutation relation that

\[
\Theta(B^W) = \text{Span} < \sum_{w \in W} \Theta_{w(\mu)} > \subset Z(H_I).
\]

Theorem (Bernstein)

\[
\Theta : B^W \isomorph Z(H_I).
\]

It is easy to check that \(H_I \) is a f.g. module over \(B \) and \(B \) over \(B^W \). Thus \((H_I) \) is f.g. over \(Z(H_I) \) and hence is noetherian.
Structure of \mathcal{H}_I is governed by \tilde{W}_a.

$\mathcal{H}_I \cong \mathcal{H}_f \otimes_{\mathbb{C}} \mathcal{B}$ (as \mathbb{C}-vector spaces). (\mathcal{B} abelian)

$T_s \cdot \Theta_\mu = \Theta_{s\mu} \cdot T_s + (q - 1) \frac{\Theta_\mu - \Theta_{s\mu}}{1 - \Theta_{-\tilde{\alpha}}}.$

$Z(\mathcal{H}_I) \cong \mathcal{B}^W.$
Thank you for your attention.