Local similarity groups and ℓ^2-homology

Werner Thumann

Karlsruhe Institute of Technology

Copenhagen, October 2013

joint work with Roman Sauer
Motivation

Zero-in-the-spectrum conjecture (Gromov 86’)

Let \mathcal{M} be a closed aspherical Riemannian manifold. Then there exists always a $p \in \mathbb{N}$ such that zero is in the spectrum of the Laplacian

$$\Delta_p : \text{dom}(\Delta_p) \subset L^2\Omega^p(\tilde{\mathcal{M}}) \to L^2\Omega^p(\tilde{\mathcal{M}})$$

acting on square integrable p-forms on the universal covering.
stronger version: \(p \in \left[\frac{\dim(M) - 1}{2}, \frac{\dim(M) + 1}{2} \right] \)
stronger version: $p \in \left[\frac{\dim(M) - 1}{2}, \frac{\dim(M) + 1}{2} \right]$

strong Novikov conjecture \Rightarrow zero-in-the-spectrum conjecture
• stronger version: $p \in \left[\frac{\dim(M)-1}{2}, \frac{\dim(M)+1}{2}\right]$
• strong Novikov conjecture \implies zero-in-the-spectrum conjecture
• false if aspherical is dropped (Farber, Weinberger 01’)

Werner Thumann (KIT) Local similarity groups and ℓ^2-homology Copenhagen, October 2013 3 / 1
stronger version: \(p \in \left[\frac{\text{dim}(M) - 1}{2}, \frac{\text{dim}(M) + 1}{2} \right] \)

strong Novikov conjecture \(\implies \) zero-in-the-spectrum conjecture

false if aspherical is dropped (Farber, Weinberger 01’)

true for 2,3-manifolds, locally symmetric spaces, Kähler hyperbolic, \(\sec(M) \leq 0, \text{asdim}(\pi_1 M) < \infty \)
Algebraic version

Let $G = \pi_1 M$, then

\[0 \in \text{spec}(\Delta_p) \iff H_p(G, \ell^2 G) \neq 0 \]
Algebraic version

Let $G = \pi_1 M$, then

$$0 \in \text{spec}(\Delta_p) \iff H_p(G, \ell^2 G) \neq 0$$

Question (drop Poincaré duality)

G type F, then there exists p with $H_p(G, \ell^2 G) \neq 0$?
Algebraic version

Let $G = \pi_1 M$, then

$$0 \in \text{spec}(\Delta_p) \iff H_p(G, \ell^2 G) \neq 0$$

Question (drop Poincaré duality)

G type F, then there exists p with $H_p(G, \ell^2 G) \neq 0$?

Question (relax finiteness)

G type F_∞, then there exists p with $H_p(G, \ell^2 G) \neq 0$?
Algebraic version

Let $G = \pi_1 M$, then

$$0 \in \text{spec}(\Delta_p) \iff H_p(G, \ell^2 G) \neq 0$$

Question (drop Poincaré duality)

G type F, then there exists p with $H_p(G, \ell^2 G) \neq 0$?

Question (relax finiteness)

G type F_∞, then there exists p with $H_p(G, \ell^2 G) \neq 0$?

Answer (Sauer, T. 13')

No!
Local similarity groups (Hughes 09’)

We will define groups acting on compact ultrametric spaces.
Local similarity groups (Hughes 09’)

We will define groups acting on compact ultrametric spaces. An ultrametric space is ...
Local similarity groups (Hughes 09’)

We will define groups acting on compact ultrametric spaces. An ultrametric space is ...

Definition

Let X, Y be metric spaces and $\gamma : X \to Y$ a homeomorphism.
We will define groups acting on compact ultrametric spaces. An ultrametric space is ...

Definition

Let X, Y be metric spaces and $\gamma : X \to Y$ a homeomorphism.

- γ isometry: $\forall x, y : d(x, y) = d(\gamma x, \gamma y)$
Local similarity groups (Hughes 09’)

We will define groups acting on compact ultrametric spaces. An ultrametric space is ...

Definition

Let X, Y be metric spaces and $\gamma : X \to Y$ a homeomorphism.

- γ isometry: $\forall x, y : d(x, y) = d(\gamma x, \gamma y)$
- γ similarity: $\exists \lambda > 0 : \forall x, y : d(x, y) = \lambda d(\gamma x, \gamma y)$
Local similarity groups (Hughes 09’)

We will define groups acting on compact ultrametric spaces. An ultrametric space is ...

Definition

Let X, Y be metric spaces and $\gamma : X \to Y$ a homeomorphism.

- γ isometry: $\forall x, y : d(x, y) = d(\gamma x, \gamma y)$
- γ similarity: $\exists \lambda > 0 : \forall x, y : d(x, y) = \lambda d(\gamma x, \gamma y)$
- γ local similarity: $\forall x \in X : \exists A, B$ balls : $x \in A, \gamma(A) = B, \gamma : A \to B$ similarity
Definition

Let X be a compact ultrametric space. A similarity structure Sim on X consists of a finite set $\text{Sim}(B_1, B_2)$ of similarities $B_1 \to B_2$ for each pair of balls such that

...
Definition

Let X be a compact ultrametric space. A similarity structure Sim on X consists of a finite set $\text{Sim}(B_1, B_2)$ of similarities $B_1 \rightarrow B_2$ for each pair of balls such that

- Sim forms a groupoid with objects the balls.

Example (Nekrashevych-R"over groups, V)
Local similarity groups

Definition

Let X be a compact ultrametric space. A similarity structure Sim on X consists of a finite set $\text{Sim}(B_1, B_2)$ of similarities $B_1 \rightarrow B_2$ for each pair of balls such that

1. Sim forms a groupoid with objects the balls.
2. $A \subset B_1$ subball and $\gamma \in \text{Sim}(B_1, B_2)$ then $\gamma|_A \in \text{Sim}(A, \gamma(A))$.

Examples (Nekrashevych-R"over groups, V)
Let X be a compact ultrametric space. A similarity structure Sim on X consists of a finite set $\text{Sim}(B_1, B_2)$ of similarities $B_1 \to B_2$ for each pair of balls such that

- Sim forms a groupoid with objects the balls.
- $A \subset B_1$ subball and $\gamma \in \text{Sim}(B_1, B_2)$ then $\gamma|_A \in \text{Sim}(A, \gamma(A))$.

Definition (local similarity group)

$$\Gamma(\text{Sim}) := \{\alpha : X \to X \text{ local similarity locally determined by } \text{Sim}\}$$
Definition

Let X be a compact ultrametric space. A similarity structure Sim on X consists of a finite set $\text{Sim}(B_1, B_2)$ of similarities $B_1 \to B_2$ for each pair of balls such that

- Sim forms a groupoid with objects the balls.
- $A \subset B_1$ subball and $\gamma \in \text{Sim}(B_1, B_2)$ then $\gamma|_A \in \text{Sim}(A, \gamma(A))$.

Definition (local similarity group)

$\Gamma(\text{Sim}) := \{ \alpha : X \to X \text{ local similarity locally determined by } \text{Sim} \}$

Examples (Nekrashevych-Röver groups, V)

...
In 2012, Dan Farley and Bruce Hughes showed that, under suitable conditions on Sim, the groups $\Gamma = \Gamma(\text{Sim})$ are of type F_∞.
Vanishing of ℓ^2-homology

Definition

Sim is called dually contracting if there is a dually contracting ball in X. A ball DC is called dually contracting if there are disjoint subballs B_1, B_2 of DC and similarities $DC \to B_i$ in Sim.

Vanishing of ℓ^2-homology

Definition

Sim is called dually contracting if there is a dually contracting ball in X. A ball DC is called dually contracting if there are disjoint subballs B_1, B_2 of DC and similarities $DC \to B_i$ in Sim.

Definition

Let $M(G)$ be a G-module for every group G. M is called a nice coefficient system if the following holds.
Vanishing of ℓ^2-homology

Definition

Sim is called dually contracting if there is a dually contracting ball in X. A ball DC is called dually contracting if there are disjoint subballs B_1, B_2 of DC and similarities $DC \to B_i$ in Sim.

Definition

Let $M(G)$ be a G-module for every group G. M is called a nice coefficient system if the following holds.

1. $H_0(G, M(G)) = 0$ if G is non-amenable.
Vanishing of ℓ^2-homology

Definition

Sim is called dually contracting if there is a dually contracting ball in X. A ball DC is called dually contracting if there are disjoint subballs B_1, B_2 of DC and similarities $DC \rightarrow B_i$ in Sim.

Definition

Let $M(G)$ be a G-module for every group G. M is called a nice coefficient system if the following holds.

1. $H_0(G, M(G)) = 0$ if G is non-amenable.
2. If $H < G$ then $H_k(H, M(H)) = 0 \implies H_k(H, M(G)) = 0$.
Vanishing of ℓ^2-homology

Definition

Sim is called dually contracting if there is a dually contracting ball in X. A ball DC is called dually contracting if there are disjoint subballs B_1, B_2 of DC and similarities $DC \to B_i$ in Sim.

Definition

Let $M(G)$ be a G-module for every group G. M is called a nice coefficient system if the following holds.

1. $H_0(G, M(G)) = 0$ if G is non-amenable.
2. If $H < G$ then $H_k(H, M(H)) = 0 \implies H_k(H, M(G)) = 0$.
3. If $H_p(G_i, M(G_i)) = 0$ for $p \leq n_i$ and $i = 1, 2$ then $H_p(G_1 \times G_2, M(G_1 \times G_2)) = 0$ for $p \leq n_1 + n_2 + 1$.
Theorem (Sauer, T. 13')

If X is a compact ultrametric space with dually contracting similarity structure Sim and M nice, then for $\Gamma = \Gamma(\text{Sim})$ we have

$$H_k(\Gamma, M(\Gamma)) = 0 \ \forall k$$
Theorem (Sauer, T. 13')

If X is a compact ultrametric space with dually contracting similarity structure Sim and M nice, then for $\Gamma = \Gamma(\text{Sim})$ we have

$$H_k(\Gamma, M(\Gamma)) = 0 \ \forall k$$

Corollary

$$H_k(V, \ell^2(V)) = 0 \ \forall k$$
Theorem (Sauer, T. 13′)

If X is a compact ultrametric space with dually contracting similarity structure Sim and M nice, then for $\Gamma = \Gamma(\text{Sim})$ we have

$$H_k(\Gamma, M(\Gamma)) = 0 \ \forall k$$

Corollary

$$H_k(V, \ell^2(V)) = 0 \ \forall k$$

Why ℓ^2 nice? Use von Neumann algebra $L\Gamma$:
Theorem (Sauer, T. 13')
If X is a compact ultrametric space with dually contracting similarity structure Sim and M nice, then for $\Gamma = \Gamma(\text{Sim})$ we have

$$H_k(\Gamma, M(\Gamma)) = 0 \ \forall k$$

Corollary

$$H_k(V, \ell^2(V)) = 0 \ \forall k$$

Why ℓ^2 nice? Use von Neumann algebra $L\Gamma$:

- $H_k(\Gamma, L\Gamma) = 0$ iff $H_k(\Gamma, \ell^2\Gamma) = 0$ (if Γ of type F_∞)
Theorem (Sauer, T. 13')

If X is a compact ultrametric space with dually contracting similarity structure Sim and M nice, then for $\Gamma = \Gamma(\text{Sim})$ we have

$$H_k(\Gamma, M(\Gamma)) = 0 \ \forall k$$

Corollary

$$H_k(V, \ell^2(V)) = 0 \ \forall k$$

Why ℓ^2 nice? Use von Neumann algebra $L\Gamma$:

- $H_k(\Gamma, L\Gamma) = 0$ iff $H_k(\Gamma, \ell^2\Gamma) = 0$ (if Γ of type F_∞)
- $H_0(\Gamma, L\Gamma) = 0$ iff Γ non-amenable. ($\Rightarrow \parallel$)
Vanishing of ℓ^2-homology

Theorem (Sauer, T. 13')
If X is a compact ultrametric space with dually contracting similarity structure Sim and M nice, then for $\Gamma = \Gamma(\text{Sim})$ we have

$$H_k(\Gamma, M(\Gamma)) = 0 \ \forall k$$

Corollary

$$H_k(V, \ell^2(V)) = 0 \ \forall k$$

Why ℓ^2 nice? Use von Neumann algebra $L\Gamma$:

- $H_k(\Gamma, L\Gamma) = 0$ iff $H_k(\Gamma, \ell^2\Gamma) = 0$ (if Γ of type F_∞)
- $H_0(\Gamma, L\Gamma) = 0$ iff Γ non-amenable. ($\Rightarrow \square$)
- $H < G$ then $LH \subset LG$ flat ring extension. ($\Rightarrow \square$)
Theorem (Sauer, T. 13')

If X is a compact ultrametric space with dually contracting similarity structure Sim and M nice, then for $\Gamma = \Gamma(\text{Sim})$ we have

$$H_k(\Gamma, M(\Gamma)) = 0 \; \forall k$$

Corollary

$$H_k(V, \ell^2(V)) = 0 \; \forall k$$

Why ℓ^2 nice? Use von Neumann algebra $L\Gamma$:

- $H_k(\Gamma, L\Gamma) = 0$ iff $H_k(\Gamma, \ell^2\Gamma) = 0$ (if Γ of type F_∞)
- $H_0(\Gamma, L\Gamma) = 0$ iff Γ non-amenable. (\Rightarrow 1)
- $H < G$ then $LH \subset LG$ flat ring extension. (\Rightarrow 2)
- $LG_1 \otimes_{\mathbb{Z}} LG_2 \subset L(G_1 \times G_2)$ ring extension. (\Rightarrow 3)
Sketch of proof

Fix a dually contracting ball DC. Using ping-pong lemma one can show that $\Gamma(Sim|_{DC})$ contains a free non-abelian subgroup and is therefore non-amenable.
Sketch of proof

Fix a dually contracting ball DC. Using ping-pong lemma one can show that $\Gamma(\text{Sim}|_{DC})$ contains a free non-abelian subgroup and is therefore non-amenable.

Define simplicial Γ-complex Z via a poset (\mathbb{P}, \leq):

- objects: $\mathcal{P} = \{P_1, \ldots, P_k\}$ partition of X into non-empty open closed subspaces (finite union of balls)
- \leq: $\mathcal{P} \leq Q$ if Q refines \mathcal{P}, i.e. for all $Q \in Q$ there is a $P \in \mathcal{P}$ with $Q \subset P$
- action: $g\{P_1, \ldots, P_k\} := \{g(P_1), \ldots, g(P_k)\}$

one can show: \mathbb{P} is directed $\iff Z$ is contractible
Now let $n \in \mathbb{N}$. Define a Γ-subcomplex $Z_n \subset Z$ via a subpost (\mathcal{P}_n, \leq):

$$\mathcal{P}_n := \{ \mathcal{P} \in \mathcal{P} \mid \text{at least } n \text{ elements } P \in \mathcal{P} \text{ satisfy } \text{Sim}(DC, P) \neq \emptyset \}$$

The condition dually contracting guarantees that \mathcal{P}_n is non-empty and still directed. (see picture)
Now let \(n \in \mathbb{N} \). Define a \(\Gamma \)-subcomplex \(Z_n \subset Z \) via a subpost \((\mathcal{P}_n, \leq)\):

\[
\mathcal{P}_n := \{ \mathcal{P} \in \mathcal{P} \mid \text{at least } n \text{ elements } P \in \mathcal{P} \text{ satisfy } \text{Sim}(DC, P) \neq \emptyset \}
\]

The condition dually contracting guarantees that \(\mathcal{P}_n \) is non-empty and still directed. (see picture)

Now there is a spectral sequence \(E^k_{pq} \) with

\[
E^1_{pq} = \bigoplus_{\sigma \in \Sigma_p} H_q(\Gamma_\sigma, M(\Gamma)) \Rightarrow H_{p+q}(\Gamma, M(\Gamma))
\]

Let \(\sigma = \mathcal{P}_1 < \ldots < \mathcal{P}_p \) a cell, then observe the normal subgroup of the stabilizer group of \(\sigma \)

\[
\Lambda_\sigma := \{ g \in \Gamma \mid g(P) = P \ \forall P \in \mathcal{P}_p \} \triangleleft \Gamma_\sigma
\]
But $\Lambda_\sigma \cong \prod_{P \in \mathcal{P}_p} \Gamma(\text{Sim}|_P)$. By definition of \mathbb{P}_n, at least n of the $\Gamma(\text{Sim}|_P)$ are isomorphic to $\Gamma(\text{Sim}|_{DC})$ and consequently

$$H_0(\Gamma(\text{Sim}|_P), M(\Gamma(\text{Sim}|_P))) = 0$$

by (1). From (3) it follows

$$H_q(\Lambda_\sigma, M(\Lambda_\sigma)) = 0 \quad \forall q \in \{0, \ldots, n - 1\}$$

By (2) we have then

$$H_q(\Lambda_\sigma, M(\Gamma)) = 0 \quad \forall q \in \{0, \ldots, n - 1\}$$

The Hochschild-Lyndon-Serre spectral sequence yields $H_q(\Gamma_\sigma, M(\Gamma)) = 0$ in that range and the spectral sequence from above yields $H_i(\Gamma, M(\Gamma)) = 0$ for $i < n$. Since n was arbitrary, the result follows.
Thank you for your attention.