What are \(p \)-adic groups? Where do they show up?

\[\text{GL}_n(\mathbb{Q}) \] reps related to \(\text{GL}(\mathbb{Q}/\mathbb{Q}) \) reps

Some kinds of reps:
- Algebraic: on \(\mathbb{Q}^n \) by matrix multiplication
- Continuous: restrictions of \(\text{GL}(\mathbb{R}) \) reps, e.g., on \(L^2(\mathbb{R}^n) \) via Fourier
- Numerical: \(\mathbb{Q}^n \times A \to \mathbb{Q} \), \(A \in \mathbb{R} > 0 \)
 \[\text{where } 1 + p \text{ is the } p \text{-adic absolute value } 1 + p = \frac{1}{p^n} \]

Claim: \(\mathbb{Q}^n \) does not extend continuously to \(\text{GL}(\mathbb{R}) \): orient \(m \to p^m \) and \(c = \lim_{m \to \infty} p^m \).

To find all (irred) reps of \(\text{GL}_n(\mathbb{Q}) \), one has to consider all embeddings

\[\text{GL}_n(\mathbb{Q}) \supset \text{GL}_n(\mathbb{Q}_p) \supset \text{GL}_n(\mathbb{Q}) \ldots \supset \text{GL}_n(\mathbb{R}) \]

Similarities/Differences between Lie-/p-adic groups: Lie groups are smooth.

What's \(\text{GL}_n(\mathbb{Q}_p) \) as top. space? On \(\text{GL}_n(\mathbb{Q}_p) \): metric of \((A,B) = \max \{ |a_{ij} - b_{ij}|_p \} \)

Lemmas: \((\text{GL}_n(\mathbb{Q}_p), \mathcal{O}_p) \) is totally disconnected (connected components are points),

Proof: Let \(Y \subset \text{GL}_n(\mathbb{Q}_p) \) connected, \(\Phi, A \in Y \), \(\mathcal{O}_p, Y \to \mathbb{R}, \quad \text{continous}, \quad B \mapsto \det(A^{-1}B) \)

Proper properties of \(\text{GL}_n(\mathbb{Q}_p) \):
1) Complete metric space (with correct metric)
2) Totally disconnected, not discrete.
3) Locally compact
4) Algebraic (multiplicative and algebraic parts of the entries)
5) Top group with 1, \(p \mathcal{O}_p \).

Examples: \(\text{SO}(\mathbb{Q}_p) \), \(\text{SL}(\mathbb{Q}_p) \), \(\text{Spin}(\mathbb{Q}_p) \)

Comparison w/ Lie groups:

- \(\text{SU}(2), \text{SU}(3) \), sometimes \(4, 5 \), never \(2 \) connected simply.

Lie groups arise often as symmetries of something: \(\text{On}(\mathbb{R}) = \{ \text{isometries of } \mathbb{R}^n \} \)

\(\text{PGL}_2(\mathbb{R}) = \{ \text{isometries of } \mathbb{H} \} \)

\(p \)-adic groups arise as isometries of \(\mathbb{F}_p \) trees

\(p = 2 \), \# lines in \(\mathbb{F}_p^2 \),

\[\mathbb{F}_p^2 \]

\(p = 3 \)

\(p = 2 \), \# lines in \(\mathbb{F}_p^2 \),

\[\mathbb{F}_p^2 \]

\(R = \mathbb{F}_p [1 + 1] \), \# fields \# \(R - \text{submodules of } \mathbb{F}_p^2 \) of index \(R \).

\(\text{Submodules of } \mathbb{L} \times \mathbb{R} \to \mathbb{R}^2 \times \mathbb{R} = \mathbb{F}_p^2 \)
neighborhoods of \(L \): R-submodules of \(L \) of index \(p \) modulo \(L \sim L \forall n \in \mathbb{N} \\
\Rightarrow \) there exists a bijection \(\{ \text{vertices of tree} \} \leftrightarrow \{ \text{R-submodules of} \ L \text{ of index} \ p^n \} \)

\(\Rightarrow \) \(GL_2(R) \) acts on tree

Replace \(R \) by quotient field \(F = \mathbb{F}_p \left[\left\{ t^n \right\} \right] = \mathbb{F}_p (\langle t \rangle) \)
Replace submodules of \(R^2 \) by \(R \)-lattices in \(F^2 \)
Lattice in \(F^n \): compact + discrete quotients, \(R \)-submodule (same as \(RV \cup RW \), \(V, W \in F^2 \) lin. indep.)

Homology of lattices \(L \in L^1 \Rightarrow L = cL^1 \) for some \(a \in \mathbb{F}_p^* \\
\Rightarrow \) bijection \(\{ \text{vertices of tree} \} \leftrightarrow \{ \text{R-lattices in} \ F^2 \}/R \\
\Rightarrow \) \(GL_2(F) \) acts on \(T \)

Stabilizer of \(L^2 \) is \(GL_2(R) \cdot Z(\mathbb{G}_1(F)) \)
Valuated fields: \[\text{Def: } \text{An absolute value on a field } F \text{ is a map } v: F \to \mathbb{R}_{\geq 0} \text{ s.t. } v(xy) = v(x)v(y) \text{ and } v(x+y) \geq \min\{v(x), v(y)\} \forall x, y \in F. \]

Examples: \(v(1,1) = 1, v(x) = |x|, v_1(x) = |x|, v_2(x) = \max\{|x|, |y|\}, v_3(x) = \|x\|_1, v_4(x) = \max\{|x|, |y|\}. \)

\(v(x,y) = 1 \text{ for } x \neq 1 \text{ in } \mathbb{R}. \)

- metric on \(F \), \(d(x,y) = |x-y| \)

\[\text{Def: A discrete valuation on } F \text{ is a surjective map } F^* \to \mathbb{Z} \text{ s.t. } v(x+y) = v(x) + v(y) \text{ and } v(xy) = v(x)v(y) \forall x, y \in F^*. \]

Examples: \(F = \mathbb{Q}_p, v(p^n) = n \) if \(x \in \mathbb{Z}_p \setminus p\mathbb{Z}_p. \)

\(F = \mathbb{Q}(x), E \text{ field, } v(x^n) = v(x) = n \text{ if } an \text{ is } \alpha. \)

\(\mathcal{O} = \{ x \in F : v(x) > 0 \} \) subring of \(F. \)

\(\mathcal{O}^* = \{ x \in F : v(x) = 0 \} \) invertibles in \(\mathcal{O}. \)

\(m = \{ x \in F : v(x) \geq 0 \} \) unique maximal ideal in \(\mathcal{O}. \)

\(\mathcal{O}_m \text{ residue field of } F. \)

For \(E \mathcal{O}: \) \(\mathcal{O} = \mathbb{Z}_p, m = p\mathbb{Z}_p, \mathcal{O}_m = \mathbb{F}_p, \)

For \(E_{\mathcal{O}}(E) = E_{\mathcal{O}}[E_{\mathcal{O}}], m = E_{\mathcal{O}}[E_{\mathcal{O}}], \mathcal{O}_m = E. \)

\(1 \mapsto e^{-v(0)} \) is a non-archimedean absolute value on \(F(\text{con class field number} > 1) \) instead of \(e \)

\(\rightarrow \) topology on \(F. \)

An element \(\pi \in F \) \(v(\pi) = 1 \) is called a \(\text{uniformizer} \) of \(F. \)

\(\pi^0 \mathcal{O} = \{ x \in F : v(x) > 0 \} \) ball around \(\mathcal{O} \) of radius \(e^{-v(0)} \)

\(= B(0, e^{-v(0)}). \)

\(\{ \pi^0 \mathcal{O} : \text{new} \} \) basis of neighborhoods of \(\mathcal{O} \).

Prop: \(\pi^0 \mathcal{O} \) is compact \(\Rightarrow \mathcal{O} \) complete wrt. \(\pi^0 \mathcal{O} \) and \(\mathcal{O}_m \) finite.

Proof: A metric space \(X \) is compact \(\Rightarrow X \) is complete and totally bounded. \(v(x) = 0 \) \(\Rightarrow x = \sum x_i. \)

\(e^{-v(0)} \) Suppose \(\pi^0 \mathcal{O} \) compact \(\Rightarrow \mathcal{O} \) compact (\(\pi^0 \mathcal{O} \) is homeomorphism).

\(\Rightarrow \) Any \(\mathcal{O} \) will finitely many balls of radius \(\pi^0 \mathcal{O}, B(x, \pi^0 \mathcal{O}) = x + \pi^0 \mathcal{O}. \)

\(\Rightarrow \mathcal{O}_m \text{ is } \mathcal{O}_m \text{ finite.} \)

Suppose \(\mathcal{O} \) complete, \(\mathcal{O}_m \) finite.

Let \(\mathcal{O} \), \(\mathcal{O}_m \text{ complete } \)

\(\Rightarrow x_i \rightarrow x_{\mathcal{O}_m} \pi^0 \mathcal{O} = B(x, \pi^0 \mathcal{O}) \mathcal{O}_m \).
In particular, \(\mathbb{Q} = \mathbb{Z}_p \) is compact (because \(\mathbb{Q} \) is the completion of \(\mathbb{Q} \) wrt. \(1/p \)),

\(\mathbb{Q} = \mathbb{E}[F] \) compact \(\Rightarrow \) \(E \) finite.

(We had a similar trick last time I talked to you, just can't use local compactness anymore.)

Local fields:

Def: A local field is a topological field which is locally compact but not discrete.

Examples: \(\mathbb{Q}, \mathbb{C}, \mathbb{Q}_p, \mathbb{F}_q(e) \)

Def: (normalized absolute value) Let \(\mu \) be a measure on \(F \) and \(x \) be a positive element of \(F \).

\[A \mapsto \mu(x A), \quad x \in F^\times, \quad \text{is again a Haar measure} \Rightarrow \exists x \in F^\times: (\forall y \in F^\times) \mu(x A) = \mu(y A) \]

\(1 \cdot |.| \) is an absolute value on \(F \).

Example: \(F = \mathbb{Q}_p \), \(A = \mathbb{Z}_p \), \(x \in A \).\)

\[|A| = |x A| = \mu(x A) = \mu(1) \cdot |x| \]

\[|A| = |x A| = \mu(x A) = \mu(1) \cdot |x| \]

\[\Rightarrow 1 \cdot |x|_p = 1 \cdot |x|_p. \]

Lemma: Let \(E \) be a local field, \(E/F \) finite extension \(\Rightarrow E \) also a local field.

Proof: \(E \cong F^n \) as \(F \)-vector space, so \(E \) and the product topology from \(F^n \) is locally compact.

Exercise: Every \(x \in E \) induces a \(F \)-linear map \(E \to E \) with determinant \(\det_E(x) \).

Examples: \(1 \cdot |.| = \det(E/F) \).

Special cases: \(E = \mathbb{C} : |z|_{E/C} = 1 \), \(1 \cdot |.| = 1 \cdot |.| \).

Theorem: (Classification of local fields)

Let \(F \) be a local field. Then \(F \) is archimedean or non-archimedean.

a) If \(F \) is archimedean \(\Rightarrow \) \(F = \mathbb{R}, \mathbb{C} \).

b) If \(F \) is non-archimedean \(\Rightarrow \exists \) discrete valuation.

If \(\mathrm{char}(F) = 0 \) \(\Rightarrow \) \(F \) is finite extension of \(\mathbb{Q} \) for some \(\mathbb{Q} \).

If \(\mathrm{char}(F) \neq 0 \) \(\Rightarrow \) \(F \cong \mathbb{F}_q(e) \) with \(\mathbb{F}_q \) finite field.
Def: A *pradic* field is a nonarchimedean local field with residual characteristic p.

The multiplicative group of a pradic field

$v: F^* \to \mathbb{Z}$ is continuous, so $O^* = \{ x \in F^* : v(x) = 0 \}$ open and closed in F^*

$F^* \cong O^* \times \mathbb{Z}$

$u^m = - (\alpha, m)$, π uniformizer

Lemma: O^* is the unique maximal compact subgroup of F^*.

Proof: Suppose $K \subset F^*$ compact $\Rightarrow \nu(K) \leq \mathbb{Z}$ compact subgroup $\Rightarrow \nu(K) = \{0\}$

O is compact (above Prop. + classification or use that $\mathfrak{m}O : \{ \text{maximal} \}$ is a neighborhood basis of $O \subset F$, $F/\{\text{maximal} \} \cong \mathfrak{m}O$ compact $\Rightarrow \mathfrak{m}O$ compact $\Rightarrow O$ compact)

m is compact, O/m also open $\Rightarrow O/m$ finite $\Rightarrow O^* = O/m$ open and closed

Since O is compact Hausdorff, so is $O^* \cong O$.

Linear algebraic groups: Examples: G_{m}, G_{a}, G_{l}, $\text{Spec}(F) = \{ \mathbf{A} \in M_{n}(F) : A^t \alpha A = \alpha \}$

$G_{m}(F) = F^*, G_{a}(F) = F$ multiplicative/additive groups.

Def: An algebraic group G is an algebraic variety (over F)

- a group
- multiplication and inverse are morphisms of algebraic varieties.

G is linear if it is a subgroup of G_{n} for some n.

$J G := \{ f \in F[G, \text{det}^{-1}] \mid f \bigg|_G = 0 \}$

If G is generated by $F[G, \text{det}^{-1}] \cap J G \Rightarrow G$ defined over F.

In this case, the group of F-rational points of G is $G(F) = \{ \text{all } f \in G(F) : f(1) = 0 \}$

$\forall f \in F[G, \text{det}^{-1}] \cap J G$
Example: Unitary groups: E/F field extension of degree 2, char $(F) = 2$

\Rightarrow Galois extension with Galois group $\text{Gal}(E/F) = \{\text{id}_E, \sigma\}$

\Rightarrow $\text{U}_n(E/F) = \{M \in \text{GL}_n(E) : \sigma(M)^t = M^{-1}\} = \mathcal{G}(F)$

$\mathcal{G}(F)$ algebraic group defined over F

$\text{U}_n(E)$ will be different.
Main reference: Springer, Linear algebraic groups

Definition: The Lie algebra of a linear algebraic group \(G = G(F) \) is the tangent space of \(G \) at \(I \) in \(\text{Mat}_n(F) \).

If \(G = \{ M \in \text{Mat}_n(F) : f_i(M) = 0 \ \forall i \} \), then \(g = \{ M \in \text{Mat}_n(F) : \langle g M f_i, M \rangle = 0 \ \forall i \} \).

(more generally: \(g = \text{Der} \left(\mathcal{O}(G, \mathcal{L}) / \mathcal{O}(G, \mathcal{L})^2 \right) \)) regular forms vanishing at \(I \).

The adjoint representation of \(G \) on \(g \) is given by \(\text{Ad}_A(X) = AXA^{-1} \).

Example: \(G = \text{SL}_n(F) = \{ A \in \text{Mat}_n(F) : \det A = 1 \} \)

\(g = \text{sl}_n(F) = \{ A \in \text{Mat}_n(F) : \langle \det, A \rangle = 0 \} \)

\[\frac{d}{dt} \det(A_t) = \sum_{ij} \frac{\partial \det(A)}{\partial x_{ij}} \frac{dx_{ij}}{dt} = \sum_{i=1}^n \frac{dx_{ii}}{dt} \]

\[\Rightarrow \text{sl}_n(F) = \{ A \in \text{Mat}_n(F) : \langle \sum_{i=1}^n dx_{ii}, A \rangle \equiv \text{tr} A = 0 \} \]

Similar: \(\text{Lie} \left(\mathcal{O}_n(F) \right) = \mathcal{O}_n(F) = \{ M \in \text{Mat}_n(F) : M^t = -M \} \)

Exponential map: \(\exp : g \to G \)

\[X \mapsto \sum_{n=0}^\infty \frac{1}{n!} X^n \quad \text{make sense of this!} \]

Need topology + division by \(n! \) \(F \) local field of characteristic \(0 \).

Lemma: Let \(F \) be a finite extension of \(\mathbb{Q}_p \) and \(G \subset \text{GL}_n(F) \) an algebraic group. For \(X \in \mathfrak{p}^2 \mathcal{O}_n(\mathfrak{g}) \), \(\exp(X) \) is well-defined.

Proof: \(v_p(n!) = \sum_{m=1}^n v_p(m) \leq n \).

\[\left| \frac{X^n}{h^n} \right|^p = \left| \frac{p^n}{h^n} \right|^p \leq p^{-n} \Rightarrow \sum_{n=0}^\infty \frac{X^n}{h^n} \text{ converges in } \mathcal{O}_n(F) \]

On \(\mathfrak{p}^2 \mathcal{O}_n(\mathfrak{g}) \), \(\exp \) has the usual properties, in particular

\[\frac{d}{dt} \exp(tX) = X. \]
There is no exponential map over \(\mathbb{F}_q \langle t \rangle \).

Groups over \(\mathbb{Q}_p \) are somewhat easier than over \(\mathbb{F}_q \langle t \rangle \).

Example: \(\text{Func} \left(\frac{\text{SL}_2(F)}{\pm I_3} \right) = \frac{\text{Func} \left(\frac{\text{SL}_2(F)}{\pm I_3} \right)}{\text{PSL}_2(F)} = \frac{\text{Func} \left(\frac{\text{SL}_2(F)}{\pm I_3} \right)}{\text{SL}_2(F)} \)\\
\text{points of PSL}_2(F) = \text{maximal ideals of } F[x_1, x_2, x_3, x_4] \text{ even} / (x_1 x_4 - x_2 x_3 - 1) ;\\
\begin{itemize}
 \item \(\begin{pmatrix} A & \ast \\ \ast & A^t \end{pmatrix} : A \in \text{SL}_2(F) \)
 \item e.g. for \(F = \mathbb{Q}_p \) (\(p \) not a square in \(\mathbb{Q}_p \) !)
\end{itemize}

\(B = \begin{pmatrix} \sqrt{p} & 0 \\ 0 & \frac{1}{\sqrt{p}} \end{pmatrix} \in \text{PSL}_2(F) \) because \(x_1 (B) = p \)
\(x_3 (B) = 0 \)
\(x_4 (B) = 1 \)

\(B \) defines an algebra homomorphism \(\text{Func} \left(\text{PSL}_2(F) \right) \to F = \mathbb{Q}_p \).

\(\Rightarrow \) The quotient map \(\text{SL}_2(F) \to \text{PSL}_2(F) \) is not surjective.

(Reason: \(\mathbb{Q}_p \) not algebraically closed.)

\(\square \)

Some kinds of linear algebraic groups

An algebraic group \(G \) is connected if the underlying variety is connected.

This does not imply that \(G(F) \) is connected w.r.t. the topology coming from \(F \).

Example: \(GL_n(F) \) is connected (can't separate \(\det \geq 0 \), using polynomials)\n\(\mathbb{O}_n(F) = \text{SO}_n(F) \cap \text{M}_n(F) ; \det H = 1 \) is disconnected.

\(G \) is simple if \(G, \{ 1 \} \) are the only (connected) normal algebraic subgroups of \(G \) (\(G \) should be connected and noncommutative).

Examples: \(SL_n, SO_n, Sp_{2n} \)

\(G \) is semisimple if \(G \) is an almost direct product of simple subgroups of \(G \).

This means that the product map \(\prod G_j \to G \) is surjective and has finite kernel.
Def: \mathcal{G} is unipotent if it is isomorphic to an algebraic subgroup of $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$.

(so $G=1$ is nilpotent $\forall g \in G(F)$)

Example: $G_2(F) = F = \{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} : x \in F \}$

Def: A linear algebraic group \mathcal{G} is reductive if $\frac{\mathcal{G}}{\mathcal{Z}}$ is the only connected, normal, unipotent, algebraic subgroup of \mathcal{G}.

Examples: Gln, all semisimple groups.

Alternative characterization: \mathcal{G} is reductive $\iff [\mathcal{G}, \mathcal{G}]$ is semisimple and \mathcal{G} is the almost direct product of $[\mathcal{G}, \mathcal{G}]$ and the center $\mathcal{Z}(\mathcal{G})$.

From the representation theoretic point of view, reductive groups are the most interesting ones.

Def: An algebraic torus is a linear algebraic group which is diagonalizable (over F)

Examples: $(\mathbb{G}_m)^n$, $SO_2(F) = \{ \begin{pmatrix} x & y \\ y & x \end{pmatrix} : x, y \in F, x^2 + y^2 = 1 \}$

$SO_2(F) = \{ \begin{pmatrix} \sqrt{1-y^2} & y \\ y & \sqrt{1-y^2} \end{pmatrix} : x, y \in F, x^2 + y^2 = 1 \}$

$SO_2(F) = \{ \begin{pmatrix} x+\sqrt{1-y^2} & 0 \\ 0 & x-\sqrt{1-y^2} \end{pmatrix} : (x+\sqrt{1-y^2})(x-\sqrt{1-y^2}) = 1 \}$

$\Rightarrow SO_2(F) \hookrightarrow F^* \quad \text{isomorphism}$

$\begin{pmatrix} x & y \\ y & x \end{pmatrix} \mapsto x+\sqrt{1-y^2}$

Def: A torus $\mathbb{Z}(F)$ is F-split if $\mathbb{Z}(F) \subset \mathbb{G}_m(F)$, i.e. $\mathbb{Z}(F) \hookrightarrow \mathbb{G}_m(F)$ as an isomorphism of algebraic groups over F. That means $\mathbb{Z}(F) \hookrightarrow \mathbb{G}_m(F)$, i.e. given by polynomials w coefficients in F.

Example: $SO_2(F)$ is F-split iff char $F \neq 2$ and $\sqrt{1-F} \in F$.
Def: An \(F \)-rational character of \(G \) is a homomorphism of algebraic groups

\[\chi: G \to G_m \]

which is defined over \(F \).

\(\chi \) induces \(\bar{\chi}: \bar{G}(F) \to \bar{F}^* \).

The collection of \(F \)-rational characters of \(G \) is a group \(\bar{X}^*(G(F)) \) with pointwise multiplication of maps \(G(F) \to \bar{F}^* \).

Lemma: Every \(F \)-rational character of \(G_m(F) \) is of the form \(x \mapsto x^n \) for some \(n \in \mathbb{N} \).

Proof: Let \(\chi \in \bar{X}^*(F^*) \). It induces an algebraic homomorphism

\[\chi^*: \text{Fun} \left(\bar{G}_m(F) \right) \to \text{Fun} \left(\bar{G}_m(F) \right), \quad \chi^*(t) \in F[S, S^{-1}] \text{ invertible} \]

\[F[t, t^{-1}] \to F[S, S^{-1}] \]

so \(\chi(t) = c t^n \) for some \(c \in F^* \), \(n \in \mathbb{N} \).

\[\Rightarrow \chi(yt) = cy^n \quad \forall y \in F^* \]

but \(\chi(y^2) = \chi(y) \chi(y) \), so \(c = 1 \).

Consequence: \(\bar{X}^*(G_m(F)) \cong \mathbb{Z} \).

\[\bar{X}^*(G_m(F)) \cong \bar{X}^*(T \times T) \cong \bar{X}^*(T(F)) \cong \mathbb{Z}^{\dim T} \]

if \(T \) is \(F \)-split.

Maximal Subtori (of reductive groups);

Def: A subtorus of \(G(F) \) is an algebraic subgroup \(T(F) \) which is a torus

(and \(T(F) \) is defined over \(F \)).

A maximal \(F \)-split subtorus

is a subtorus which is \(F \)-split and is maximal for these properties.

Example: \(SO_3(\mathbb{R}) \): \[\{ \left(\begin{array}{ccc} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{array} \right) : x^2 + y^2 = 1 \} \]

is a maximal \(F \)-split subtorus of \(SO_3(\mathbb{R}) \).
Thm (Borel-Tits: "Groupes réductifs"): Let G be a connected linear algebraic group defined over F. Then any two maximal F-split subtori of G are conjugate in $G(F)$.

From now on G will be connected and reductive, defined over F. We fix a maximal F-split subtorus $S = S(F)$ in $G = G(F)$.

Def: G is F-split if S is a maximal torus in G.

Examples: GL_n, SL_n are split for any F.
SO_n is not F-split.

Def: The Weyl group $W(G,S) = N_G(S)/Z_G(S)$ (finite group) acts on S by conjugation.

Example: $G = SL_n(F), S = \text{diagonal matrices in } G \cong Z_G(S)$.
$N_G(S) = \{ \text{monomial matrices in } G \}$
$W(G,S) \cong S_n$ (symmetric group)

Roots of (G,S): S acts on $\text{Lie}(G)$ via the adjoint representation of G.

$$\implies \text{Lie}(G) = \bigoplus_{\alpha \in \Pi^W(S)} V_{\alpha} \quad \text{where } V_{\alpha} = \{ X \in \text{Lie}(G) : A \alpha(A)X \forall A \in S \}$$

The sum is direct, because it is an algebraic action of a torus.

$\alpha \in \Pi^W(S) \setminus \Pi^F(S)$ are the roots of (G,S), $R(G,S) = \text{set of roots}$.

Example: $G = SL_n(F), S = \text{diagonal matrices in } G \cong Z_G(S)$.
$V_{\alpha_{ij}} = \text{Lie}\left(\begin{array}{ccc} x_{ii} & \cdots & x_{ii} \\ \vdots & \ddots & \vdots \\ x_{nn} & \cdots & x_{nn} \end{array} \right) \quad \text{where } F \cong \text{Lie}(S)$.

Theorem (Borel-Tits): $V = Z(S)/Z(\mathfrak{g}) \otimes \mathbb{R}$ real vector space with $W(G,S)$-action.
We realize it w/ a $W(G,S)$-invariant inner product. Then $R(G,S)$ is an integral root system in V w/ Weyl group $W(G,S)$.

If G is F-split $\implies R(G,S)$ is reduced, i.e., $\text{Root}(R(G,S)) = \{ \alpha, -\alpha \}$.
Example: \(G \cdot U_2 \cdot \left(E/F, J \right) = \{ A \in \text{Gl}_2(E) : A^T J A = J \} \), \(J = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \)

\(\text{Gal}(E/F) = \{ \text{id}_E, \sigma \} \), \(E/F \) Galois extension of degree \(2 \), \(\sigma \) acts on \(E \) by \(\sigma(x) = x \sigma(x) \).

Diagonal matrices in \(G \): \(\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} : a, b \in E, (a, b) \in E \} \)

\(\sigma(a) = 1 = c \sigma(a), \sigma(b) = 1. \)

The \(b \)'s do not give anything \(F \)-split (for \(F = \mathbb{R}, b \sigma(b) = \sigma(1) = 1 \) compact).

\(S = \{ \begin{pmatrix} a & 0 \\ 0 & \sigma(a) \end{pmatrix} : a \in E \} \) maximal \(F \)-split forms.

Claim: \(\text{Frob}(E) = \{ b \in E : b \sigma(b) = 1 \} \) not \(F \)-split.

\(\text{Proof}: \ E = F(\mu_2), \sigma(a + b \sqrt{2}) = a - b \sqrt{2} \Rightarrow \text{Frob}(E) = \{ (a, b) \in F^2 : (a + b \sqrt{2})(a - b \sqrt{2}) \}

\(\text{Frob}(E) = \{ (c, d) \in E^2 : cd = 1 \} = \text{GL}_1(E) \)

\(\text{Frob}(x)^{(c, d)} = \frac{c}{d}, \text{Frob}(x)^{(c, d)} = (2x + c)^n \in E \) \(F \)-valued \(x = 0, n = 0. \)

\(x = 0, n = 0. \)

For which \(x, y, z \in E \) does \(\begin{pmatrix} x \\ y \\ z \end{pmatrix} \) lie in \(G = U_2 ? \)

\(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} \sigma(1) & 0 \\ 0 & \sigma(1) \end{pmatrix} = \begin{pmatrix} 1 & x \sigma(z) \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \)

\(\Rightarrow \ x = z \sigma(x), y + \sigma(y) + x \sigma(z), 2z \sigma(x) \sigma(y) = \sigma \Rightarrow \{ (x, y, z) \in E^3 : y + \sigma(y) + x \sigma(z) = 0 \}

\(\dim \text{U}_2 = 1, \dim \text{U}_4 = 3. \)
Theorem: Let \(x \in \mathcal{R}(G, S) \).

a) A canonical connected unipotent \(F \)-algebraic subgroup \(U_x \) is

\[
\text{Lie}(U_x) = \begin{cases} \mathfrak{V}_x & \text{if } x \not\in \mathcal{R}(G, S) \\ \mathfrak{V}_x + \mathfrak{V}_{2x} & \text{if } x \in \mathcal{R}(G, S) \end{cases}
\]

b) \(\mathbb{Z}_G(S) \) and the \(U_x, x \in \mathcal{R}(G, S) \) generate \(G \).

c) If \(G \) is \(F \)-split \(\Rightarrow U_x \cong \mathbb{F}^* = \mathbb{G}_m(F) \) (that it is \(t \)-simple is nontrivial), in the non-split case, the dimension of \(\mathfrak{V}_x \) can be large.

Parabolic subgroups: Let \(\Delta \) be a basis of \(\mathcal{R}(G, S) \Rightarrow \mathbb{R}^*+ \mathbb{R}^- \) positive/-negative roots.

For \(\Omega \Delta \), let \(P_{\Omega} \) be the group generated by \(\mathbb{Z}_G(S) \) and the \(U_x, x \in \mathcal{R}(G, S) \).

Def: The groups \(P_{\Omega} \) are called the \underline{standard parabolic subgroups}. A general parabolic subgroup \(P \) is conjugate to some \(P_{\Omega} \).

\(G/P \) is a complete variety. This characterizes the parabolic subgroups.

Example: \(G = SL_3(F) \), \(P_{\Omega} = \left\{ \begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \right\} \), \(P_{111} \cong G \).

\(P_{x2} = \left\{ \begin{pmatrix} x * * \\ * x * \\ * * x \end{pmatrix} \right\} \)

\(P_{23} = \left\{ \begin{pmatrix} * x * \\ * * x \\ * * x \end{pmatrix} \right\} \)

In general, the minimal parabolic subgroup does not have to be solvable, (\(\text{"non-\text{quasi-split groups}"}\). Examples are much more complicated (\(\text{e.g.} \, \mathbb{Z}_G(S) \) not a torus).
Assumptions: * F local nonarchimedean field w/ discrete valuation \(v: F \rightarrow \mathbb{Z} \cup \{0\} \).
* \(G \) connected reductive algebraic group defined over \(F \). \(G = G(F) \).

Example: \(GL_3(F) \)

\[U_{0,13} = \left\{ \left(\begin{array}{ccc} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{array} \right) : x, y, z \in F \right\} \]

For \(\text{ker} R \)

\[U_{k,14} = \left\{ U_k(x) : v(x) \gg k \right\} \text{ compact open subgroup of } U_k. \]

\[U_i \cup \text{ker} R = U_k, \quad \bigcap_{i < k} U_{0,14} = \{ 1 \}. \]

Maximal torus \(S \), \(S_r = \left\{ \left(\begin{array}{ccc} x_1 & \cdots & x_k \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{array} \right) \in S : v(x_i) = r \forall i \right\}, \quad r \in \mathbb{R}_{\geq 0} \)

\[S_r = S, \quad r < 0. \]

\[n_{0,13} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right) \left(\begin{array}{ccc} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right) \left(\begin{array}{ccc} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array} \right) = U_{0,13} \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array} \right) \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array} \right) \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right) \in N_G(S) \]

The image of \(n_0 \) in \(W(G,S) = N_G(S)/Z_G(S) \) is the reflection \(s_k \).

Theorem (Chevalley): Let \(G \) be \(F \)-split, there exist isomorphisms \(U_k : F \rightarrow U_k \)
for all \(k \in R(G,S) \) w/ properties a) and b).

Proof:

\[U_{k} = U_k(\nu^{-k}[k,0]) \quad k \in R. \]

\[U_{0} = S_r = \left\{ s \in S : v(X(S)) - 1 \gg r \forall X \in X(S) \right\}, \quad r \in \mathbb{R}_{\geq 0} \]

\[s_r = s, \quad r < 0. \]

\[n_w = U_k(1) U_{-k}(1) U_k(1) \]

a) For \(\alpha, \beta \in R(G,S) \cup \{0\} \), \([U_{k,1}, U_{k,1}] \leq \left\langle \bigcup_{\alpha, \beta \in R(G,S) \cup \{0\}} \text{image generated by these tuples} \right\rangle \).

b) \(n_0 \in N_G(S) \), image of \(n_0 \) in \(W(G,S) \) is \(S_k \)

\[n_0 \text{ in } W(G,S) \text{ is } S_k, \quad n_0 U_{-k}(x) n_0^{-1} = U_k(-x) \]

This is contained in Chevalley's proof that \(G \) can be defined over \(\mathbb{Z} \) (split, reduced).
Bruhat and Tits interpreted this as \(G \) has a prolonged valued root datum. This means in particular that \(U_\nu \) is filtered by compact open subgroups \(U_{\nu,r}, r \in \mathbb{R}^+ \), such that (a) holds. The assertion of (b) has to be refined in general.

Thin ("Bruhat + Tits," Groupes redéfinis en un corps local")

Every connected reductive pro-Fic group has a prolonged valued root datum.

This is what one needs to construct the affine building of \(G \).

Example: \(E/F \) Galois extension of degree 2, \(V \in \{ Y \in \mathbb{F} \mathcal{Y}(Y) \} / \mathcal{Y} \in \frac{1}{2} \mathbb{Z} \)

\[
G = U_3(E/F_0) \quad \mathcal{Y} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
\]

\[
S = \left\{ \begin{pmatrix} a_x \ b_x \\ c_x \ d_x \end{pmatrix} : a \in F \right\} \quad U_{2x,1b} = \left\{ \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix} : y \in E, y + \sigma(y) = 0, v(y) > 0 \right\}
\]

\[
U_{x,1b} = \left\{ \begin{pmatrix} x \ y \\ 0 \ 0 \end{pmatrix} : x, y \in E, x + \sigma(y) + x \sigma(x) = 0, v(x) > 2, v(y) > 2 \right\}
\]

The standard apartment of the affine building:

\[
\chi = \mathcal{X} (G/\mathcal{S}(G)) \quad A_S = \text{Hom}_\mathbb{Z} (X, \mathcal{R})
\]

For \(\nu \in \mathcal{R}(G, S) \) let \(\nu^* = \{ \nu \in \mathcal{R} : U_\nu \text{ jumps at } k \nu \} \). This is a discrete subgroup of \(\mathcal{R} \) containing \(\mathbb{Z} \). For \(\nu \in \mathcal{R}(G, S) \) \(\mathcal{P}_\nu = \mathcal{P}_{\nu^*} \).

Def: A wall in \(A_S \) is a hyperplane of the form \(H_{\alpha, \chi} = \{ \chi \in A_S : \langle Y, \alpha \rangle = \nu \} \), \(\alpha \in \mathcal{R}(G, S) \), \(k \nu \in \mathcal{P} \).

These make \(A_S \) into a polyhedral complex.

Example: For \(G = SL_3(F) \), \(\mathcal{R}(G, S) = \{ a \} \)

\[
\mathcal{S}_{aff} = \{ \mathcal{S}_{10}, \mathcal{S}_{10}, \mathcal{S}_{10} \}
\]
we fix a chamber C_0 with $x_0 \in C_0$. $S_{1,k} = \text{affine reflection in } H_{k_1}$.

$W_{aff} := \text{subgroup of } A_5 \ltimes W(G,s) \text{ generated by } S_{1,k}, (k \in P^1)$

$\text{Suff} := \{ S_{1,k} : H_{k_1} \text{ is a wall of } C_0 \}$

Thus (Bourbaki):

a) (W_{aff}, Suff) is a Coxeter system.

b) A_5 is the associated Coxeter complex, i.e.,
 1) W_{aff} acts simply transitively on the set of chambers.
 2) The neighbors of WC_0 are $\{ WC_0 : s \in \text{Suff} \}$.

The action of $N_G(s)$ on A_5:

Define $\nu : \mathbb{Z}_G(s) \to A_5$, $\langle \nu(s), x \rangle := -\nu(x(s)), x \in X^G(G(s)/N_G(s))$

In the above example for $s = (p, v, i), \nu(p) = 1 \to \nu(x(s)) = \nu(p^2) = 2$

$v(x(s)) = \nu(p^2) = 1$

$v(s) = -\alpha^v := -\frac{2}{\langle \alpha, \nu \rangle}$

v can be extended to $\nu : \mathbb{Z}_G(s) \to A_5$ and further to $\nu : N_G(s) \to A_5 \ltimes W(G,s)$

such that ν induces $\text{id}(W(G,s)) : N_G(s)/\mathbb{Z}_G(s) \to A_5 \ltimes W(G,s)$

ker $\nu = \mathbb{Z}(G) \cdot (\text{maximal compact subgroup of } \mathbb{Z}_G(s))$

for G split: $\nu(u) = S_{w,0} (\iff \nu(w(x)) u_{w,0}(x) = u_{w,0}(x))$

This determines ν uniquely (in the split case).

In the example,

$g = U_{w_0}(x) U_{-w_0}(x) U_{w_0}(x) = (0, x, 0) = (x, 0, x) = S_{w,0}

v(x) = \nu(x, x, 1, 0) S_{w,0} = (x, x, 1, 0) \in A_5 \ltimes W(G,s)$

$A_5 \ltimes W(G,s)$ acts on A_5 by $(x, y) \cdot g = x + w(y)$, so ν defines an action of $N_G(s)$ on A_5. $B(G)$ will be $G \ltimes A_5/\mathbb{Z}$.

[Reference: Tits, Corvallis proceedings, "Reductive groups over a local field"]

We need isotropy groups (in G) of points of A_5. We decree that

the fixed points of $U_{w,0}$, $w \in P^1$, are $\{ y \in A_5 : w(y) \}$, a half space

in A_5.

\[G_y = \text{group generated by } N_\sigma(s)_y \text{ and } \bigcup_{\alpha \in \mathbb{R}(G_s)} U_{\alpha,-\alpha(y)} \quad , \quad y \in A_1, \]

\[G_y \text{ is not larger than expected : } G_y \cap U_\alpha = U_{\alpha,-\alpha(y)}. \]

\[G_y / Z(G) \cap G_y \text{ is compact.} \]

Borel-Tits : \[G_y = (U^- \cap G_y)(N_\sigma(s) \cap G_y)(U^+ \cap G_y) \] (as sets)

where \(U^\pm \) are the groups generated by \(\bigcup_{\alpha \in \mathbb{R}(G_s)} U_{\alpha} \) (for any reasonable choice of positive roots).

Example: \[SL_3(\mathbb{O}_p)_0 = SL_3(\mathbb{Z}_p) \]

\[SL_3(\mathbb{O}_p)_y = \left(\begin{array}{ccc} \mathbb{Z}_p & \mathbb{Z}_p & \mathbb{Z}_p \\ p\mathbb{Z}_p & \mathbb{Z}_p & \mathbb{Z}_p \\ p^2\mathbb{Z}_p & p\mathbb{Z}_p & \mathbb{Z}_p \end{array} \right) \cap SL_3(\mathbb{O}_p) \] "Iwahori subgroup" \[y \in G_y \text{ interior point.} \]
Def: The Bruhat-Tits building of $G = G(F)$ is $G \times \mathbb{A}^1 / \mathbb{A}^1$, where $(g, x) \sim (h, y)$ iff $\exists n \in \mathbb{N}_0(s), n(x) = y$, i.e., $g^{-1}h \in G_x$.

Example: $G = SL_2(\mathbb{Q}_3)$

\[G_0 = SL_2(\mathbb{Z}_3), \quad G_x = \left(\frac{\mathbb{Z}_3 \times \mathbb{Z}_3}{\mathbb{Z}_3 \times \mathbb{Z}_3} \right) \cap SL_2(\mathbb{Q}_3) \]

\[G/G_x \cong U_{-x, 0} / U_{-x, 1} \cong \mathbb{Z}_3 / 3\mathbb{Z}_3 \]

Properties:

1) \mathbb{A}^1 embeds in $B(G)$ via $g \mapsto (1, g)$, (easy!)

2) G acts on $B(G)$ by $g \cdot (h, y) = (gh, y)$

3) The isotropy group of $x \in \mathbb{A}^1$ is indeed G_x.

4) $x y \in \mathbb{A}^1$ in one G-orbit $\Rightarrow x / y$ in the same $\mathbb{N}_0(s)$-orbit.

5) $Z(G)$ acts trivially on $B(G)$, because $Z(G) \subseteq G_x \forall x \in \mathbb{A}^1$.

6) terminology: $g \mathbb{A}^1$ apartment, $g \mathbb{C}$ chamber (\mathbb{C} chamber in \mathbb{A}^1), $g \mathbb{S}$ poly-simplex in $B(G)$ (\mathbb{S} poly-simplex in \mathbb{A}^1)

7) $B(G)$ polysimplicial complex, locally finite

8) The action of G preserves the polysimplicial structure.
9.) For any two polysimplices \(\sigma, \tau \) in \(B(G) \), there is an apartment containing \(\sigma, \tau \).

In the picture: apartments = lines extending indefinitely in both directions

\[G\gamma = \{ \gamma g \in G : g \gamma = \gamma \forall \gamma g \in Y \} \]

Lemma:

a) Let \(\sigma \) be a polysimplex in \(B(G) \) \(\Rightarrow \) \(G_\sigma \) acts transitively on the set of apartments containing \(\sigma \).

b) Suppose \(\sigma \subset A \Rightarrow G_\sigma A = B(G) \). (Any apartment)

Proof:

a) We may assume that \(\sigma \subset A_0 \). For generic \(k \in G \), \(G_k = G_\sigma \) because \(G \) respects polysimplices. Suppose that an apartment \(A \) contains \(\sigma \), \(A = gA_0 \) for some \(g \in G \). Since \(g^{-1}x \in A_0 \)

\[\exists n, m : g^{-1}x = nx \quad \text{i.e.,} \quad g_{nx} = x \Rightarrow g_{nx}G_k, \]

\[A = gA_0 = gA_k. \]

b) Follows from a) and b).

To understand the relation between \(B(G) \) and the picture visualizing it, observe that e.g.,

\[\frac{SL_2(\mathbb{Z}_3)}{A_5} = \frac{SL_2(\mathbb{Z}_3)}{SL_2(\mathbb{Z}_3) \cap G_{x_4}} \cong \frac{U_{-n,0}}{U_{-n,4}} \]

\[\left(\frac{\mathbb{Z}_3}{\mathbb{Z}_3}, \frac{3^{-n}\mathbb{Z}_3}{\mathbb{Z}_3} \right) \cong SL_2(\mathbb{Q}_3) \]

For \(G = SL_2(F) \), \(A_5 = \) along every wall \(H \) of \(A_5 \), \(B(SL_3,F) \) branches, the branches are parametrized by

\[\frac{U_{n,0}/U_{n,1}U_{n,0}}{U_{n,0}/U_{m,0}} \cong \frac{SL_2(\mathbb{Q})}{T_8(\mathbb{Q})} \]

\(\sigma = \exists x \in F : \sigma(x) \) is fixed, \(\iff \) it fixes a point of \(B(G) \).
Corollary: There is a bijection \(\{ \text{Vertices of } B(G) \} \leftrightarrow \{ \text{maximal compact subgroups of } G \} \) \nolimits \nulldelimiterspace=0pt
\begin{align*}
\begin{array}{c}
K_x = \text{maximal compact subgroup of } G_x \\
\mathbb{G}_x \cap [\mathbb{E}, \mathbb{E}] \mathbb{Z}_{\mathbb{E}}
\end{array}
\end{align*}

For \(G = \text{SL}_3(\mathbb{F}) \) as above:
\(K_0 = \text{SL}_3(\mathbb{O}) \)
\(K_x = \begin{pmatrix}
\sigma & 0 & 0 \\
0 & \sigma & 0 \\
0 & 0 & \sigma
\end{pmatrix} \cap \text{SL}_3(\mathbb{F}) \), not conjugate to \(K_0 \).
\[\{ K_0, K_x, K_y \} \] all conjugacy classes.

Def: A vertex \(x \in \mathbb{G}_c \) is **special** if \(N_{\mathbb{G}}(s)_x / \mathbb{Z}_{\mathbb{G}}(s)_x \cong \mathbb{W}(G, s) \).

\(\mathbb{G} \in \mathbb{G}_c \) is special.

Example:

For \(\text{SL}_3(\mathbb{F}) \), all vertices are special.

Fix a basis \(\Delta \) of \(R(G, s) \).
Positive cone \(A_3^+ = \{ x \in \mathbb{A}_3 : \langle x, x \rangle > 0 \} \).
\[\nu : N_{\mathbb{G}}(s) \rightarrow A_3 \times \mathbb{W}(G, s) \] \begin{align*}
\mathbb{Z}_{\mathbb{G}}(s)^+ & = \nu^{-1}(A_3^+) \nulldelimiterspace=0pt
\end{align*}

Theorem (Cartan decomposition)

a) Let \(x \in \mathbb{G}_c \) special vertex \(\Rightarrow G = K_x \mathbb{Z}_{\mathbb{G}}(s)^+ K_x
\)
b) The natural map \(\mathbb{Z}_{\mathbb{G}}(s)^+ / \ker \nu \rightarrow K_x / G / K_x \) is bijective.

Proof: a) Let \(g \in G, x \in B(G) \). By Lemma 7 \(\exists k \in K_x \text{ s.t. } k g k^{-1} x \in \mathbb{A}_3 \)
\[\Rightarrow \exists e \in N_{\mathbb{G}}(s) : e(x) = y, g^{-1} k^{-1} e \in G_x \text{ \text{young} } A_3^+ \]
There exists \(t \in A_s^+ \cap \nu(Z_6(5)) \), \(w \in \frac{N_6(5)}{Z_6(5)} \), s.t. \(y = w(\nu t) \). Pick \(z \in Z_6(5) \).

Since \(G_X \in \mathcal{Z}(6) \) and \(\mathcal{Z}(6) \in \mathcal{Z}(S)^+ \), we can achieve \(g \in K_X Z_6(5) \).

b) Suppose that \(g \in K_X Z_6 \cap K_X Z_6' K_X \). Show \(z'z'' \in \ker(v) \).

If \(x \in K_X \), then \(K_X (zX) \cap K_X (z'X) \Rightarrow (zX) = K_X (z'X) \).

\[zX = z'X \Rightarrow z \ker(v) = z' \ker(v) \] (\(\nu(z) = \nu(z') \)).

We have \(N_6(5) / \ker(v) \), a finite extension \(W \).

Let \(C \) be a chamber in \(A_s^+ \).

Thus, (affine Bruhat decomposition) Suppose \(Z(6) \) is compact.

a) \(G = G_c N_6(5) G_c \approx G_c W G_c \) (simplified written)

b) \(W \rightarrow G_c \backslash G / G_c \) bijection.

Proof: Like for the Cartan decomposition.

Example: \(G = \text{SL}_n(F) \), \(G_c = \left(\begin{array} \otimes \end{array} \right) \cap \text{SL}_n(F) \).

There's also an Iwahori decomposition. The main point in the proof is to show that \(U^+ A_s = B(G) \).
Substantial fragment of a two-dimensional building

This emphasizes the visually chaotic nature of any two-dimensional representation of a thick building of dimension greater than one. One-dimensional affine buildings are simply texts, so can be rendered in a comprehensible and illuminating (as well as aesthetically interesting) manner. But in higher dimensions the thickness of the building is a very direct obstacle to creation of accurate two-dimensional models.
\[U^+ := \text{group generated by } U^+ U_\infty. \]

Lemma 2 \(U^+ \cdot A_+ = B(G) \).

Proof. Let \(y \in B(G) \).

Choose a chamber \(C \subset A_+ \) "sufficiently" deep inside \(A_+ \).

Fix \(x \in A_+ \) such that \(\forall y \in G_c \cdot x \) and \(x + A_+ \supset C \).

by Lemma 1.b.

\[
\begin{align*}
g \in G_c &= (G_c \cap U^+) \cdot (G_c \cap N_c(s)) \cdot (G_c \cap U^-) \\
&= \ker v \\
&= \text{ker } v \\
&\text{since } C \subset A_+ \text{ is open} \\
&\text{fixes } x \text{ since } v \text{ fixes } x \\
&\forall x \in \mathbb{R}^2(s) \cap C \\
&-\alpha(x) \leq -\alpha(a) \\
&U_{a_\alpha}(x) \supset U_{a_{-\alpha}(a)} \\
&\text{for suitable } a_\alpha \text{ for } \alpha \\
&U_{a_\alpha} \cap G_x \supset U_{a} \cap G_c
\end{align*}
\]

So \(y = g \cdot x = u \cdot x \) for some \(u \in G_c \cap U^+ \). \(\square \)

Theorem \((\text{Iwasawa decomposition}) \)

Let \(x \in A_+ \) be special and let \(P_0 = U^+ Z_G(s) \) be the standard minimal parabolic subgroup of \(G \).

a) \(G = P_0 \cdot K \cdot P_0 \)

b) For any parabolic \(P \) and any good maximal compact subgroup \(K \) : \(G = P K = KP \).

Proof. a) Let \(g \in G \). By Lemma 2, \(\exists u \in U^+, y \in A_+ \) such that \(g \cdot x = u \cdot y \)

\[\Rightarrow \exists h \in N_G(s) : h(x) = y, \quad g^{-1} u h \in G_x \]

Since \(x \) is special, we can write \(u \cdot h^{-1} = z \cdot k \) with \(z \in Z_G(s) \) and \(k \in K_x \) \(\Rightarrow y = u \cdot h = u \cdot z \cdot k \in P_0 \cdot K \).
b) By definition \(\exists g \in G : g P g^{-1} = P \).

By a) we can write \(g = p k \) with \(p \in P, k \in K \).

\[PK_x \supseteq g^{-1} P g K_x = k^{-1} p^{-1} P p k K_x = k^{-1} P k x = k^{-1} G \]

\[\implies PK_x = G = k x P \]

Moreover, \(k \) is conjugate to some \(k_y \) with \(y \in A_y \) as special.

\[k = h k_y h^{-1} \implies PK = P h k_y h^{-1} = h (h^{-1} P h) k_y h^{-1} = h G h^{-1} = G, \quad \Box \]