Strong pure infiniteness of crossed products

joint work with Eberhard Kirchberg

Adam Sierakowski asierako@fields.utoronto.ca

Fields Institute, University of Toronto

Copenhagen, November, 2011

Question

Why study strongly purely infinite C*-algebras?

- (i) $A \otimes \mathcal{O}_{\infty} \cong B \otimes \mathcal{O}_{\infty} \Leftrightarrow A \text{ and } B \text{ are } KK_X\text{-equivalent.}$
- (ii) $A \otimes \mathcal{O}_{\infty} \cong A \Leftrightarrow A$ is strongly purely infinite (s.p.i.).
 - KK_X -equivalence = KK-theory that respects the primitive ideal spaces.
 - A s.p.i. = for every $\begin{pmatrix} a & x^* \\ x & b \end{pmatrix} \in M_2(A)_+$ and $\varepsilon > 0$ there exist $d_1, d_2 \in A$, such that $\|\begin{pmatrix} d_1^* & 0 \\ 0 & d_2^* \end{pmatrix}\begin{pmatrix} a & x^* \\ x & b \end{pmatrix}\begin{pmatrix} d_1 & 0 \\ 0 & d_2 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}\| < \varepsilon$.

- (i) $A \otimes \mathcal{O}_{\infty} \cong B \otimes \mathcal{O}_{\infty} \Leftrightarrow A \text{ and } B \text{ are } KK_X\text{-equivalent.}$
- (ii) $A \otimes \mathcal{O}_{\infty} \cong A \Leftrightarrow A$ is strongly purely infinite (s.p.i.)
 - KK_X -equivalence = KK-theory that respects the primitive ideal spaces.
 - A s.p.i. = for every $\begin{pmatrix} a & x^* \\ x & b \end{pmatrix} \in M_2(A)_+$ and $\varepsilon > 0$ there exist $d_1, d_2 \in A$, such that $\|\begin{pmatrix} d_1^* & 0 \\ 0 & d_2^* \end{pmatrix}\begin{pmatrix} a & x^* \\ x & b \end{pmatrix}\begin{pmatrix} d_1 & 0 \\ 0 & d_2 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}\| < \varepsilon$.

- (i) $A \otimes \mathcal{O}_{\infty} \cong B \otimes \mathcal{O}_{\infty} \Leftrightarrow A$ and B are KK_X -equivalent.
- (ii) $A \otimes \mathcal{O}_{\infty} \cong A \Leftrightarrow A$ is strongly purely infinite (s.p.i.).
 - KK_X -equivalence = KK-theory that respects the primitive ideal spaces.
 - A s.p.i. = for every $\begin{pmatrix} a & x^* \\ x & b \end{pmatrix} \in M_2(A)_+$ and $\varepsilon > 0$ there exist $d_1, d_2 \in A$, such that $\|\begin{pmatrix} d_1^* & 0 \\ 0 & d_2^* \end{pmatrix}\begin{pmatrix} a & x^* \\ x & b \end{pmatrix}\begin{pmatrix} d_1 & 0 \\ 0 & d_2 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}\| < \varepsilon$.

- (i) $A \otimes \mathcal{O}_{\infty} \cong B \otimes \mathcal{O}_{\infty} \Leftrightarrow A \text{ and } B \text{ are } KK_X\text{-equivalent.}$
- (ii) $A \otimes \mathcal{O}_{\infty} \cong A \Leftrightarrow A$ is strongly purely infinite (s.p.i.).
 - KK_X -equivalence = KK-theory that respects the primitive ideal spaces.
 - A s.p.i. = for every $\begin{pmatrix} a & x^* \\ x & b \end{pmatrix} \in M_2(A)_+$ and $\varepsilon > 0$ there exist $d_1, d_2 \in A$, such that $\|\begin{pmatrix} d_1^* & 0 \\ 0 & d_2^* \end{pmatrix}\begin{pmatrix} a & x^* \\ x & b \end{pmatrix}\begin{pmatrix} d_1 & 0 \\ 0 & d_2 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}\| < \varepsilon$.

- (i) $A \otimes \mathcal{O}_{\infty} \cong B \otimes \mathcal{O}_{\infty} \Leftrightarrow A \text{ and } B \text{ are } KK_X\text{-equivalent.}$
- (ii) $A \otimes \mathcal{O}_{\infty} \cong A \Leftrightarrow A$ is strongly purely infinite (s.p.i.).
 - KK_X -equivalence = KK-theory that respects the primitive ideal spaces.
 - A s.p.i. = for every $\begin{pmatrix} a & x^* \\ x & b \end{pmatrix} \in M_2(A)_+$ and $\varepsilon > 0$ there exist $d_1, d_2 \in A$, such that $\|\begin{pmatrix} d_1^* & 0 \\ 0 & d_2^* \end{pmatrix} \begin{pmatrix} a & x^* \\ x & b \end{pmatrix} \begin{pmatrix} d_1 & 0 \\ 0 & d_2 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \| < \varepsilon$.

Let A be a C^* -algebra. Then A is s.p.i. iff $F := A_+$ has the diagonalization property.

• $F \subseteq A_+$ has the diagonalization property = for every matrix $[a_{jk}] \in M_n(A)_+$, $a_{jj} \in F$, $n \in \mathbb{N}$ and $0 < \tau < \varepsilon < 1$ there exist $d_1, \ldots, d_n \in A$, s.t.

$$d_j^* a_{jj} d_j = (a_{jj} - \varepsilon)_+, \quad \|d_j^* a_{jk} d_k\| < \tau, \quad j \neq k$$

Let A be a C^* -algebra. Then A is s.p.i. iff $F := A_+$ has the diagonalization property.

• $F \subseteq A_+$ has the diagonalization property = for every matrix $[a_{jk}] \in M_n(A)_+$, $a_{jj} \in F$, $n \in \mathbb{N}$ and $0 < \tau < \varepsilon < 1$ there exist $d_1, \ldots, d_n \in A$, s.t.

$$d_j^* a_{jj} d_j = (a_{jj} - \varepsilon)_+, \quad \|d_j^* a_{jk} d_k\| < \tau, \quad j \neq k.$$

Let A be a C*-algebra and $F \subseteq A_+$. If

- (i) F has the diagonalization property
- (ii) F is a filling family.

Then A is s.p.i.

$$z^*z \in D \not\subseteq I$$
, $zz^* \in F$.

Let A be a C*-algebra and $F \subseteq A_+$. If

- (i) F has the diagonalization property.
- (ii) F is a filling family.

Then A is s.p.i.

$$z^*z \in D \not\subseteq I$$
, $zz^* \in F$.

Let A be a C*-algebra and $F \subseteq A_+$. If

- (i) F has the diagonalization property.
- (ii) F is a filling family.

Then A is s.p.i.

$$z^*z \in D \nsubseteq I$$
, $zz^* \in F$.

Let A be a C*-algebra and $F \subseteq A_+$. If

- (i) F has the diagonalization property.
- (ii) F is a filling family.

Then A is s.p.i.

$$z^*z \in D \nsubseteq I$$
, $zz^* \in F$.

Let A be a C*-algebra and $F \subseteq A_+$. If

- (i) F has the diagonalization property.
- (ii) F is a filling family.

Then A is s.p.i.

$$z^*z \in D \not\subseteq I$$
, $zz^* \in F$.

Remark

For crossed products we have a natural choice for F consisting of the positive elements in the original algebra.

$$F := A_+ \subseteq (A \rtimes_r G)_+$$

- \bullet G = discrete group
- $A = C^*$ -algebra in B(H)
- action = automorphism $a \mapsto t.a \ (t \in G, a \in A)$
- $A \rtimes_r G$ = the norm closure of the image of the induced map $\pi \colon C_c(G,A) \to B(\bigoplus_{t \in G} H)$ defined by

$$a \mapsto [a_{t,s}], \quad a_{t,s} = t^{-1}.a(ts^{-1})$$

- G = discrete group
- $A = C^*$ -algebra in B(H)
- action = automorphism $a \mapsto t.a \ (t \in G, a \in A)$
- $A \rtimes_r G$ = the norm closure of the image of the induced map $\pi \colon C_c(G,A) \to B(\bigoplus_{t \in G} H)$ defined by

$$a \mapsto [a_{t,s}], \quad a_{t,s} = t^{-1}.a(ts^{-1})$$

- G = discrete group
- $A = C^*$ -algebra in B(H)
- action = automorphism $a \mapsto t.a \ (t \in G, a \in A)$
- $A \rtimes_r G =$ the norm closure of the image of the induced map $\pi \colon C_c(G,A) \to B(\bigoplus_{t \in G} H)$ defined by

$$a \mapsto [a_{t,s}], \quad a_{t,s} = t^{-1}.a(ts^{-1})$$

- G = discrete group
- $A = C^*$ -algebra in B(H)
- action = automorphism $a \mapsto t.a \ (t \in G, a \in A)$
- $A \rtimes_r G =$ the norm closure of the image of the induced map $\pi \colon C_c(G,A) \to B(\bigoplus_{t \in G} H)$ defined by

$$a \mapsto [a_{t,s}], \quad a_{t,s} = t^{-1}.a(ts^{-1})$$

- G = discrete group
- $A = C^*$ -algebra in B(H)
- action = automorphism $a \mapsto t.a \ (t \in G, a \in A)$
- $A \rtimes_r G =$ the norm closure of the image of the induced map $\pi \colon C_c(G,A) \to B(\bigoplus_{t \in G} H)$ defined by

$$a \mapsto [a_{t,s}], \quad a_{t,s} = t^{-1}.a(ts^{-1})$$

Question

When is $F := A_+$ a filling family for $(A \rtimes_r G)_+$?

- exact = every G-invariant ideal $I \subseteq A$ induces a short exact sequence at the level of reduced crossed products
- properly outer automorphism α of A= for every α -invariant ideal $0 \neq I \subseteq A$ and inner automorphism β of I, $\|\alpha|_I \beta\| = 2$
- elementwise properly outer action = for evert $t \neq e, t \mapsto t.a$ is property outer

- exact = every G-invariant ideal I ⊆ A induces a short exact sequence at the level of reduced crossed products
- properly outer automorphism α of A = for every α -invariant ideal $0 \neq I \subseteq A$ and inner automorphism β of I, $\|\alpha|_{I} \beta\| = 2$
- elementwise properly outer action = for evert $t \neq e, t \mapsto t.a$ is property outer

- exact = every G-invariant ideal I ⊆ A induces a short exact sequence at the level of reduced crossed products
- properly outer automorphism α of A = for every α -invariant ideal $0 \neq I \subseteq A$ and inner automorphism β of I, $\|\alpha|_{I} \beta\| = 2$.
- elementwise properly outer action = for evert $t \neq e, t \mapsto t.a$ is property outer

- exact = every G-invariant ideal I ⊆ A induces a short exact sequence at the level of reduced crossed products
- properly outer automorphism α of A = for every α -invariant ideal $0 \neq I \subseteq A$ and inner automorphism β of I, $\|\alpha|_{I} \beta\| = 2$.
- elementwise properly outer action = for evert $t \neq e, t \mapsto t.a$ is property outer

- \bullet $G = \mathbb{Z}$
- $A = M_{n^{\infty}} \otimes \mathcal{K}$
- action = shift (from $a \mapsto e_{11} \otimes a$)

 $F := A_+$ is a filling family for $(A \rtimes_r G)_+$

Example

- $G = \mathbb{Z}_2 * \mathbb{Z}_3$, * = free product
- $A = C(\partial G)$, $\partial G =$ infinite word space
- action = word concatenation

- $G = \mathbb{Z}$
- $A = M_{n^{\infty}} \otimes \mathcal{K}$
- ullet action = shift (from $a\mapsto e_{11}\otimes a$)

 $F := A_+$ is a filling family for $(A \rtimes_r G)_+$

Example

- $G = \mathbb{Z}_2 * \mathbb{Z}_3$, * = free product
- $A = C(\partial G)$, $\partial G = \text{infinite word space}$
- action = word concatenation

- $G = \mathbb{Z}$
- $A = M_{n^{\infty}} \otimes \mathcal{K}$
- action = shift (from $a \mapsto e_{11} \otimes a$)

 $F := A_+$ is a filling family for $(A \rtimes_r G)_+$

Example

- $G = \mathbb{Z}_2 * \mathbb{Z}_3$, * = free product
- $A = C(\partial G)$, $\partial G = \text{infinite word space}$
- action = word concatenation

- \bullet $G = \mathbb{Z}$
- $A = M_{n^{\infty}} \otimes \mathcal{K}$
- action = shift (from $a \mapsto e_{11} \otimes a$)

 $F := A_+$ is a filling family for $(A \rtimes_r G)_+$

Example

- $G = \mathbb{Z}_2 * \mathbb{Z}_3$, * = free product
- $A = C(\partial G)$, $\partial G = \text{infinite word space}$
- action = word concatenation

- \bullet $G = \mathbb{Z}$
- $A = M_{n^{\infty}} \otimes \mathcal{K}$
- action = shift (from $a \mapsto e_{11} \otimes a$)

 $F := A_+$ is a filling family for $(A \rtimes_r G)_+$

Example

- $G = \mathbb{Z}_2 * \mathbb{Z}_3$, * = free product
- $A = C(\partial G)$, $\partial G = \text{infinite word space}$
- action = word concatenation
- $F := A_+$ is a filling family for $(A \rtimes_r G)_+$

- $G = \mathbb{Z}$
- $A = M_{n^{\infty}} \otimes \mathcal{K}$
- action = shift (from $a \mapsto e_{11} \otimes a$)

 $F := A_+$ is a filling family for $(A \rtimes_r G)_+$

Example

- $G = \mathbb{Z}_2 * \mathbb{Z}_3$, * = free product
- $A = C(\partial G)$, $\partial G = \text{infinite word space}$
- action = word concatenation

- $G = \mathbb{Z}$
- $A = M_{n^{\infty}} \otimes \mathcal{K}$
- action = shift (from $a \mapsto e_{11} \otimes a$)

 $F := A_+$ is a filling family for $(A \rtimes_r G)_+$

Example

- $G = \mathbb{Z}_2 * \mathbb{Z}_3$, * = free product
- $A = C(\partial G)$, $\partial G = \text{infinite word space}$
- action = word concatenation

- $G = \mathbb{Z}$
- $A = M_{n^{\infty}} \otimes \mathcal{K}$
- action = shift (from $a \mapsto e_{11} \otimes a$)

 $F := A_+$ is a filling family for $(A \rtimes_r G)_+$

Example

- $G = \mathbb{Z}_2 * \mathbb{Z}_3$, * = free product
- $A = C(\partial G)$, $\partial G = \text{infinite word space}$
- action = word concatenation

Question

When does $F := A_+$ in $(A \rtimes_r G)_+$ have the diagonalization property?

Let G be a discrete group action on a C^* -algebra A. Suppose that the action is G-separating. Then $F:=A_+\subseteq (A\rtimes_r G)_+$ has the diagonalization property.

• *G*-separating action on $A = \text{for every } a, b \in A_+, c \in A, \varepsilon > 0$, there exist $s, t \in A$ and $g, h \in G$ s.t

$$\|s^*as - g.a\| < \varepsilon, \ \|t^*bt - h.b\| < \varepsilon, \ \|s^*ct\| < \varepsilon.$$

Remark

An action on a unital abelian C^* -algebra is never G-separating.

Let G be a discrete group action on a C^* -algebra A. Suppose that the action is G-separating. Then $F:=A_+\subseteq (A\rtimes_r G)_+$ has the diagonalization property.

• *G*-separating action on $A = \text{for every } a, b \in A_+, c \in A, \varepsilon > 0$, there exist $s, t \in A$ and $g, h \in G$ s.t

$$||s^*as - g.a|| < \varepsilon, \ ||t^*bt - h.b|| < \varepsilon, \ ||s^*ct|| < \varepsilon.$$

Remark

An action on a unital abelian C^* -algebra is never G-separating.

Theorem

Let G be a discrete group action on a C^* -algebra A. Suppose that the action is G-separating. Then $F:=A_+\subseteq (A\rtimes_r G)_+$ has the diagonalization property.

• *G*-separating action on $A = \text{for every } a, b \in A_+, c \in A, \varepsilon > 0$, there exist $s, t \in A$ and $g, h \in G$ s.t

$$\|s^*as - g.a\| < \varepsilon, \ \|t^*bt - h.b\| < \varepsilon, \ \|s^*ct\| < \varepsilon.$$

Remark

An action on a unital abelian C^* -algebra is never G-separating.

Corollary

Let G be a discrete group acting on a separable C^* -algebra A. Suppose that the action of G on A is exact, G-separating, and the action on any quotient A/I by a G-invariant ideal $I \neq A$ is elementwise properly outer. Then $A \rtimes_{\sigma,r} G$ is s.p.i.

Let G be a discrete group acting by an exact, essentially free action on an abelian C*-algebra $C_0(X)$. Suppose that the action is G-separating, i.e., for every $U_1, U_2 \subseteq X$ open and $K_1, K_2 \subseteq X$ compact, with $K_1 \subseteq U_1$, $K_2 \subseteq U_2$, there exist $g, h \in G$ s.t.

$$g.K_1\subseteq \textit{U}_1, \ \textit{h.K}_2\subseteq \textit{U}_2, \ \textit{g.K}_1\cap \textit{h.K}_2=\emptyset.$$

Then $C_0(X) \rtimes_r G$ is s.p.i.

 essentially free = for every closed G-invariant subset Y of X, the set of points in Y—only fixed by e—is dense in Y.

Let G be a discrete group acting by an exact, essentially free action on an abelian C*-algebra $C_0(X)$. Suppose that the action is G-separating, i.e., for every $U_1, U_2 \subseteq X$ open and $K_1, K_2 \subseteq X$ compact, with $K_1 \subseteq U_1$, $K_2 \subseteq U_2$, there exist $g, h \in G$ s.t.

$$g.K_1 \subseteq U_1, h.K_2 \subseteq U_2, g.K_1 \cap h.K_2 = \emptyset.$$

Then $C_0(X) \rtimes_r G$ is s.p.i.

essentially free = for every closed G-invariant subset Y of X,
the set of points in Y—only fixed by e—is dense in Y.

Suppose that φ is an endomorphism of a separable C*-algebra A. Let $(A_{\infty}, \varphi_m : A \to A_{\infty})$, be the inductive limit of the sequence

$$A \xrightarrow{\varphi} A \xrightarrow{\varphi} A \xrightarrow{\varphi} \cdots$$

 φ induces an automorphism of A_{∞} . If

- the action on any quotient A_{∞}/I by a G-invariant ideal $I \neq A_{\infty}$ is elementwise properly outer
- for every $a, b \in A_+$, $c \in A$ and $\varepsilon > 0$ there exist $k \in \mathbb{N} \cup \{0\}$ and elements $e_1, e_2 \in A$ such that

$$\|e_1^*\varphi^k(a)e_1-a\|<\varepsilon, \|e_2^*\varphi^k(b)e_2-b\|<\varepsilon, \|e_1^*\varphi^k(c)e_2\|<\varepsilon$$

Then $A_{\infty} \rtimes_{\sigma} \mathbb{Z}$ (and $A \rtimes_{\varphi} \mathbb{N}$) is s.p.i.

Suppose that φ is an endomorphism of a separable C*-algebra A. Let $(A_{\infty}, \varphi_m : A \to A_{\infty})$, be the inductive limit of the sequence

$$A \xrightarrow{\varphi} A \xrightarrow{\varphi} A \xrightarrow{\varphi} \cdots$$

 φ induces an automorphism of A_{∞} . If

- the action on any quotient A_{∞}/I by a G-invariant ideal $I \neq A_{\infty}$ is elementwise properly outer
- for every $a, b \in A_+$, $c \in A$ and $\varepsilon > 0$ there exist $k \in \mathbb{N} \cup \{0\}$ and elements $e_1, e_2 \in A$ such that

$$\|e_1^*\varphi^k(a)e_1 - a\| < \varepsilon, \|e_2^*\varphi^k(b)e_2 - b\| < \varepsilon, \|e_1^*\varphi^k(c)e_2\| < \varepsilon.$$

Then $A_{\infty} \rtimes_{\sigma} \mathbb{Z}$ (and $A \rtimes_{\omega} \mathbb{N}$) is s.p.i.

Suppose that φ is an endomorphism of a separable C*-algebra A. Let $(A_{\infty}, \varphi_m \colon A \to A_{\infty})$, be the inductive limit of the sequence

$$A \xrightarrow{\varphi} A \xrightarrow{\varphi} A \xrightarrow{\varphi} \cdots$$

 φ induces an automorphism of A_{∞} . If

- the action on any quotient A_{∞}/I by a G-invariant ideal $I \neq A_{\infty}$ is elementwise properly outer
- for every $a, b \in A_+$, $c \in A$ and $\varepsilon > 0$ there exist $k \in \mathbb{N} \cup \{0\}$ and elements $e_1, e_2 \in A$ such that

$$\|e_1^*\varphi^k(a)e_1-a\|<\varepsilon, \|e_2^*\varphi^k(b)e_2-b\|<\varepsilon, \|e_1^*\varphi^k(c)e_2\|<\varepsilon.$$

Then $A_{\infty} \rtimes_{\sigma} \mathbb{Z}$ (and $A \rtimes_{\varphi} \mathbb{N}$) is s.p.i.

Suppose that φ is an endomorphism of a separable C*-algebra A. Let $(A_{\infty}, \varphi_m \colon A \to A_{\infty})$, be the inductive limit of the sequence

$$A \xrightarrow{\varphi} A \xrightarrow{\varphi} A \xrightarrow{\varphi} \cdots$$

 φ induces an automorphism of A_{∞} . If

- the action on any quotient A_{∞}/I by a G-invariant ideal $I \neq A_{\infty}$ is elementwise properly outer
- for every $a, b \in A_+$, $c \in A$ and $\varepsilon > 0$ there exist $k \in \mathbb{N} \cup \{0\}$ and elements $e_1, e_2 \in A$ such that

$$\|e_1^*\varphi^k(a)e_1-a\|<\varepsilon, \|e_2^*\varphi^k(b)e_2-b\|<\varepsilon, \|e_1^*\varphi^k(c)e_2\|<\varepsilon.$$

Then $A_{\infty} \rtimes_{\sigma} \mathbb{Z}$ (and $A \rtimes_{\varphi} \mathbb{N}$) is s.p.i.

- $A = M_{n^{\infty}} \otimes \mathcal{K}$
- \bullet $G=\mathbb{Z}$
- action = shift (from $a \mapsto e_{11} \otimes a$)

The action is G-separating. Hence $A \rtimes_r G \ (\cong \mathcal{O}_n \otimes \mathcal{K})$ is s.p.i.

- $A = M_{n^{\infty}} \otimes \mathcal{K}$
- \bullet $G=\mathbb{Z}$
- action = shift (from $a \mapsto e_{11} \otimes a$)

The action is G-separating. Hence $A \rtimes_r G \ (\cong \mathcal{O}_r \otimes \mathcal{K})$ is s.p.i.

- $A = M_{n^{\infty}} \otimes \mathcal{K}$
- $G = \mathbb{Z}$
- action = shift (from $a \mapsto e_{11} \otimes a$)

The action is G-separating. Hence $A \rtimes_r G \ (\cong \mathcal{O}_n \otimes \mathcal{K})$ is s.p.i

- $A = M_{n^{\infty}} \otimes \mathcal{K}$
- $G = \mathbb{Z}$
- action = shift (from $a \mapsto e_{11} \otimes a$)

The action is G-separating. Hence $A \rtimes_r G \ (\cong \mathcal{O}_n \otimes \mathcal{K})$ is s.p.i

- $A = M_{n^{\infty}} \otimes \mathcal{K}$
- $G = \mathbb{Z}$
- action = shift (from $a \mapsto e_{11} \otimes a$)

The action is *G*-separating. Hence $A \rtimes_r G \ (\cong \mathcal{O}_n \otimes \mathcal{K})$ is s.p.i.

Enough if for $a, b, c \in M_{n^m}$ there exist $s, t \in M_{n^{m+1}}$ s.t.

$$s^*as = 1.a, \ t^*bt = 1.b, \ s^*ct = 0$$

With the inclusion $M_{n^m} \subseteq M_{n^{m+1}}$, $a \mapsto a \otimes 1_n$ this is just

$$s^*(a\otimes 1_n)s = e_{11}\otimes a, \quad t^*(b\otimes 1_n)t = e_{11}\otimes b,$$

$$s^*(c\otimes 1_n)t=0;$$

Enough if for $a, b, c \in M_{n^m}$ there exist $s, t \in M_{n^{m+1}}$ s.t.

$$s^*as = 1.a, \ t^*bt = 1.b, \ s^*ct = 0$$

With the inclusion $M_{n^m} \subseteq M_{n^{m+1}}$, $a \mapsto a \otimes 1_n$ this is just

$$s^*(a\otimes 1_n)s=e_{11}\otimes a,\quad t^*(b\otimes 1_n)t=e_{11}\otimes b,$$
 $s^*(c\otimes 1_n)t=0;$

Enough if for $a, b, c \in M_{n^m}$ there exist $s, t \in M_{n^{m+1}}$ s.t.

$$s^*as = 1.a, t^*bt = 1.b, s^*ct = 0$$

With the inclusion $M_{n^m} \subseteq M_{n^{m+1}}$, $a \mapsto a \otimes 1_n$ this is just

$$s^*(a\otimes 1_n)s=e_{11}\otimes a,\quad t^*(b\otimes 1_n)t=e_{11}\otimes b$$
 $s^*(c\otimes 1_n)t=0;$

Enough if for $a, b, c \in M_{n^m}$ there exist $s, t \in M_{n^{m+1}}$ s.t.

$$s^*as = 1.a, t^*bt = 1.b, s^*ct = 0$$

With the inclusion $M_{n^m} \subseteq M_{n^{m+1}}$, $a \mapsto a \otimes 1_n$ this is just

$$s^*(a \otimes 1_n)s = e_{11} \otimes a, \quad t^*(b \otimes 1_n)t = e_{11} \otimes b,$$
 $s^*(c \otimes 1_n)t = 0;$

Enough if for $a, b, c \in M_{n^m}$ there exist $s, t \in M_{n^{m+1}}$ s.t.

$$s^*as = 1.a, t^*bt = 1.b, s^*ct = 0$$

With the inclusion $M_{n^m} \subseteq M_{n^{m+1}}$, $a \mapsto a \otimes 1_n$ this is just

$$s^*(a \otimes 1_n)s = e_{11} \otimes a, \quad t^*(b \otimes 1_n)t = e_{11} \otimes b,$$
 $s^*(c \otimes 1_n)t = 0;$

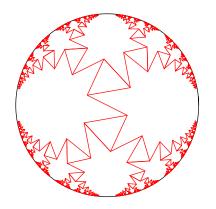


Figure: The Cayley graph for $\mathbb{Z}_2 * \mathbb{Z}_3$ with all edges of unit length.

Thank you for your attention: o)