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» we require that M acts on a separable hilbert space
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ype Il factors

Definition
A von Neumann algebra M is a type ll; factor if

» M has trivial centre: Z(M) =C
» Mhasatrace7: M = C

Examples

» Group von Neumann algebra L(I") of an ICC group
» L°°(X) x T of a free, p.m.p. ergodic action

Question

When do different constructions give different Il; factors?
» R =L(I) is the same for all ICC amenable groups. (Connes, 1976)
» R=L(l) if and only if [' is ICC amenable.
» R#L(F,) forany 1 < n<oo (Murray—von Neumann, 1943)
> Is L(F,) = L(F,) if n £ m? Major open problem
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Definition (I\/Iurray—von Neumann, 1943)
» Let M be a ll; factor
» if p € M is a projection, then pMp is again a ll; factor
» up to isomorphism, it only depends on 7(p)
» The fundamental group is

F(M) ={r(p)/7(q) | PMp = qMq} C R .
> this is a subgroup of R

Examples

» F(R) =
- AL - R
» F(L(F ))—7for1<n<oo

» equivalent to isomorphism problem

(Murray—von Neumann, 1943)
(Radulescu, 1992)
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Which subgroups of R are fundamental groups?
» only RY itself? No
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» F(L(I)) is countable if I has ICC, (T) (Connes, 1980)
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F(M) = {r(p)/7(q) | PMp = qMq} C R} .
Question (Murray—von Neumann, 1943)

Which subgroups of R’ are fundamental groups?

» only RY itself? No
» only R and countable? No

Examples
» F(L(T)) is countable if I has ICC, (T) (Connes, 1980)
» F(L(SL, Z x Z?)) = {1} (Popa, 2002)
» F(M) can be any countable subgroup of RY  (Popa, 2003)
» many uncountable groups are F(M) (Popa—Vaes, 2008)
» My result (D., 2010)

» explicit construction
» potentially larger class of groups
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» We begin with two actions and a quotient
» ‘“generic action”: A~(Y,v): ergodic, inf. m. p.
» “specific action”: I ~(X, p): free, ergodic, p.m.p.
> quotient 7 : [ — A.
FAX XY by g(x,y) = (gx.m(g)y)
> free, i.m.p.
» ergodic if ker m ~(X, p) is ergodic
M =L>®(X xY)xT: allyg factor
> every isomorphism ) : M — M scales Tr by mod(v)).
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» F(pMp) = mod(Aut(M))
> mod(Centra,(y ) (A)) C mod(Aut(M))
» if A € Centray(y,)(A), then id xA commutes with I
> so (aug) = (id xA).(a)ug defines an automorphism of M
Strong conditions on ' ~(X, i1): mod(Centray(y ,)(A)) = mod(Aut(M))
» Popa—Vaes conditions: no explicit examples + A amenable + A~ Y free
» my set of conditions: explicit examples + all A 4+ non-free actions
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There are examples with 7 : T — A = F..

Corollary

For any ergodic, i.m.p. a : A~ (Y,v) of any group, there is a Il;
factor M, with

.F(Ma) = mod(CentrAut(yvy)(/\))
Corollary

For any closed subgroup G C Aut, (Y) that acts ergodically on Y,
there is a type Il; factor Mg such that

F(Mg) = mod(Centrau(y ,)(9))-
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‘Examples &

Generalization

» We replace (Y, v) by a Il factor (B, Tr).
» We replace A~ (Y,v) by an outer action a: A — Outr, (B).
» We replace Centray(y)(A) by Centroug)(A)

Corollary

For any trace-preserving outer action « : A — Outr, (B) of any
countable group A, there is a ll; factor M, with
F(Ma) = mod(Centroys) (1))
For every Il; factor M,
F(M) = mod(Centroy(ue)({id}))

» Gives an alternative characterization of all fundamental groups
> in terms of outer actions on abritrary |l factors B: harder
» conjecture: we can assume that B = L(F,)*°
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