

Steven Deprez

september 15, 2011

construction

applications

•

Type II₁ factors

Definition

A von Neumann algebra M is a (separable) type II₁ factor if

- *M* has trivial centre: $\mathcal{Z}(M) = \mathbb{C}$
- *M* has a trace $\tau: M \to \mathbb{C}$
 - au is a state
 - $\tau(xy) = \tau(yx)$
 - faithful, normal
- ▶ we require that *M* acts on a separable hilbert space

Examples

- Group von Neumann algebra $L(\Gamma)$ of an ICC group
- $L^{\infty}(X) \rtimes \Gamma$ of a free, p.m.p. ergodic action

Question

When do different constructions give different II₁ factors?

Steven Deprez

Type II₁ factors

construction

applications

Definition

A von Neumann algebra M is a (separable) type II₁ factor if

- *M* has trivial centre: $\mathcal{Z}(M) = \mathbb{C}$
- M has a trace $\tau: M \to \mathbb{C}$
 - τ is a state
 - $\blacktriangleright \ \tau(xy) = \tau(yx)$
 - faithful, normal

▶ we require that *M* acts on a separable hilbert space

Examples

- Group von Neumann algebra $L(\Gamma)$ of an ICC group
- $L^{\infty}(X) \rtimes \Gamma$ of a free, p.m.p. ergodic action

Question

When do different constructions give different II₁ factors?

Steven Deprez

The fundamental group of a II_1 factor

Type II₁ factors

construction

applications

Definition

A von Neumann algebra M is a (separable) type II₁ factor if

- *M* has trivial centre: $\mathcal{Z}(M) = \mathbb{C}$
- *M* has a trace $\tau: M \to \mathbb{C}$
 - au is a state
 - $\tau(xy) = \tau(yx)$
 - faithful, normal

• we require that M acts on a separable hilbert space

Examples

- Group von Neumann algebra $L(\Gamma)$ of an ICC group
- $L^{\infty}(X) \rtimes \Gamma$ of a free, p.m.p. ergodic action

Question

When do different constructions give different II₁ factors?

Steven Deprez

Type II₁ factors

construction

applications

4

Definition

A von Neumann algebra M is a (separable) type II₁ factor if

- *M* has trivial centre: $\mathcal{Z}(M) = \mathbb{C}$
- *M* has a trace $\tau: M \to \mathbb{C}$
 - au is a state

•
$$\tau(xy) = \tau(yx)$$

faithful, normal

▶ we require that *M* acts on a separable hilbert space

Examples

- Group von Neumann algebra $L(\Gamma)$ of an ICC group
- $L^{\infty}(X) \rtimes \Gamma$ of a free, p.m.p. ergodic action

Question

When do different constructions give different II₁ factors?

Steven Deprez

Type II₁ factors

construction

applications

Definition

A von Neumann algebra M is a (separable) type II₁ factor if

- *M* has trivial centre: $\mathcal{Z}(M) = \mathbb{C}$
- *M* has a trace $\tau: M \to \mathbb{C}$
 - au is a state
 - $\tau(xy) = \tau(yx)$
 - faithful, normal

▶ we require that *M* acts on a separable hilbert space

Examples

- Group von Neumann algebra $L(\Gamma)$ of an ICC group
- $L^{\infty}(X) \rtimes \Gamma$ of a free, p.m.p. ergodic action

Question

When do different constructions give different II_1 factors?

Steven Deprez

History Type II₁ factors

construction

applications

Definition

A von Neumann algebra M is a (separable) type II₁ factor if

- *M* has trivial centre: $\mathcal{Z}(M) = \mathbb{C}$
- M has a trace $\tau: M \to \mathbb{C}$
 - au is a state

•
$$\tau(xy) = \tau(yx)$$

faithful, normal

• we require that M acts on a separable hilbert space

Examples

- \blacktriangleright Group von Neumann algebra $L(\Gamma)$ of an ICC group
- $L^{\infty}(X) \rtimes \Gamma$ of a free, p.m.p. ergodic action

Question

When do different constructions give different II₁ factors?

Steven Deprez

applications

Type II_1 factors

History

Definition

A von Neumann algebra M is a type II₁ factor if

- *M* has trivial centre: $\mathcal{Z}(M) = \mathbb{C}$
- M has a trace $\tau: M \to \mathbb{C}$

Examples

Group von Neumann algebra L(Γ) of an ICC group
 L[∞](X) × Γ of a free, p.m.p. ergodic action

Question

When do different constructions give different II₁ factors?

applications

Type II_1 factors

History

Definition

A von Neumann algebra M is a type II₁ factor if

- *M* has trivial centre: $\mathcal{Z}(M) = \mathbb{C}$
- M has a trace $\tau: M \to \mathbb{C}$

Examples

- Group von Neumann algebra $L(\Gamma)$ of an ICC group
- $L^{\infty}(X) \rtimes \Gamma$ of a free, p.m.p. ergodic action

Question

When do different constructions give different II_1 factors?

► $R \neq L(\mathbb{F}_n)$ for any $1 < n \le \infty$ (Murray-von Neumann, 1943) ► $|s| (\mathbb{F}_n) = L(\mathbb{F}_n)$ if $n \neq m^2$

Steven Deprez

▶ $R \neq L(\mathbb{F}_n)$ for any $1 < n \leq$ ▶ Is $L(\mathbb{F}_n) = L(\mathbb{F}_m)$ if $n \neq m$?

Steven Deprez

▶ Is $L(\mathbb{F}_n) = L(\mathbb{F}_m)$ if $n \neq m$?

Steven Deprez

(Major open problem)

► Is $L(\mathbb{F}_n) = L(\mathbb{F}_m)$ if $n \neq m$?

Steven Deprez

The fundamental group of a II₁ factor

(Major open problem)

construction

Definition and history

- ▶ Let *M* be a II₁ factor
 - ▶ if $p \in M$ is a projection, then pMp is again a II₁ factor
 - up to isomorphism, it only depends on $\tau(p)$
- The fundamental group is $\mathcal{F}(M) = \{\tau(p)/\tau(q) \mid pMp \cong qMq\} \subset \mathbb{R}_+^{\times}.$ • this is a subgroup of \mathbb{R}^{\times}
- ▶ this is a subgroup of ℝ[×]₊

Examples

applications

Definition (Murray-von Neumann, 1943)

• Let M be a II₁ factor

Definition and history

- ▶ if $p \in M$ is a projection, then pMp is again a II₁ factor
- up to isomorphism, it only depends on $\tau(p)$
- The fundamental group is

 F(M) = {τ(p)/τ(q) | pMp ≅ qMq} ⊂ ℝ[×]₊.

 this is a subgroup of ℝ[×]
- ▶ this is a subgroup of ℝ[×]₊

Examples

$$\mathcal{F}(R) = \mathbb{R}_{+}^{\times}$$

$$\mathcal{F}(L(\mathbb{F}_{\infty})) = \mathbb{R}_{+}^{\times}$$

$$\mathcal{F}(L(\mathbb{F}_{n})) =? \text{ for } 1 < n < \infty$$

construction

applications

Definition and history

Definition (Murray-von Neumann, 1943)

- Let M be a II₁ factor
 - ▶ if $p \in M$ is a projection, then pMp is again a II₁ factor
 - up to isomorphism, it only depends on $\tau(p)$
- ► The fundamental group is $\mathcal{F}(M) = \{\tau(p)/\tau(q) \mid pMp \cong qMq\} \subset \mathbb{R}_+^{\times}.$

• this is a subgroup of \mathbb{R}_+^{\times}

Examples

$$\mathcal{F}(R) = \mathbb{R}_{+}^{\times}$$
(M)
$$\mathcal{F}(L(\mathbb{F}_{\infty})) = \mathbb{R}_{+}^{\times}$$
$$\mathcal{F}(L(\mathbb{F}_{n})) = ? \text{ for } 1 < n < \infty$$

construction

applications

Definition (Murray-von Neumann, 1943)

• Let M be a II₁ factor

Definition and history

- ▶ if $p \in M$ is a projection, then pMp is again a II₁ factor
- up to isomorphism, it only depends on $\tau(p)$
- The fundamental group is

$$\mathcal{F}(M) = \{ au(p)/ au(q) \mid pMp \cong qMq\} \subset \mathbb{R}_+^{ imes}.$$

• this is a subgroup of \mathbb{R}_+^{\times}

Examples

▶
$$\mathcal{F}(R) = \mathbb{R}^{\times}_{+}$$
 (Murray-von Neumann, 1943)
▶ $\mathcal{F}(L(\mathbb{F}_{\infty})) = \mathbb{R}^{\times}_{+}$ (Radulescu, 1992)
▶ $\mathcal{F}(L(\mathbb{F}_{n})) = ?$ for $1 < n < \infty$

construction

applications

Definition and history

Definition (Murray-von Neumann, 1943)

- Let M be a II₁ factor
 - ▶ if $p \in M$ is a projection, then pMp is again a II₁ factor
 - up to isomorphism, it only depends on $\tau(p)$
- The fundamental group is

$$\mathcal{F}(M) = \{ \tau(p) / \tau(q) \mid pMp \cong qMq \} \subset \mathbb{R}_+^{\times}.$$

• this is a subgroup of \mathbb{R}_+^{\times}

$$\mathcal{F}(R) = \mathbb{R}^{\times}_{+}$$
 (Murray-von Neumann, 1943)
 $\mathcal{F}(L(\mathbb{F}_{\infty})) = \mathbb{R}^{\times}_{+}$ (Radulescu, 1992)
 $\mathcal{F}(L(\mathbb{F}_n)) = ?$ for 1 < n < ∞

applications

Definition and history

Definition (Murray–von Neumann, 1943)

- Let M be a II₁ factor
 - if $p \in M$ is a projection, then pMp is again a II₁ factor
 - up to isomorphism, it only depends on $\tau(p)$
- The fundamental group is

$$\mathcal{F}(M) = \{ au(p) / au(q) \mid pMp \cong qMq \} \subset \mathbb{R}_+^{\times}.$$

► this is a subgroup of ℝ[×]_⊥

Examples

▶
$$\mathcal{F}(R) = \mathbb{R}^{\times}_{+}$$
 (Murray-von Neumann, 1943)
▶ $\mathcal{F}(L(\mathbb{F}_{\infty})) = \mathbb{R}^{\times}_{+}$ (Radulescu, 1992)
▶ $\mathcal{F}(L(\mathbb{F}_{n})) = ?$ for $1 < n < \infty$

equivalent to isomorphism problem

(Radulescu, 1992)

construction

applications

Definition and history

- Let M be a II₁ factor
 - ▶ if $p \in M$ is a projection, then pMp is again a II₁ factor
 - up to isomorphism, it only depends on $\tau(p)$
- The fundamental group is

$$\mathcal{F}(M) = \{ \tau(p) / \tau(q) \mid pMp \cong qMq \} \subset \mathbb{R}_+^{\times}.$$

• this is a subgroup of \mathbb{R}_+^{\times}

Examples

▶ $\mathcal{F}(R) = \mathbb{R}^{\times}_{+}$ (Murray-von Neumann, 1943) ▶ $\mathcal{F}(L(\mathbb{F}_{\infty})) = \mathbb{R}^{\times}_{+}$ (Radulescu, 1992)

•
$$\mathcal{F}(L(\mathbb{F}_n)) =?$$
 for $1 < n < \infty$

applications

Definition and history

$$\mathcal{F}(M) = \{ au(p) / au(q) \mid pMp \cong qMq\} \subset \mathbb{R}_+^{ imes}$$
 ,

Question (Murray-von Neumann, 1943)

Which subgroups of \mathbb{R}_+^{\times} are fundamental groups?

- only \mathbb{R}^{\times}_{+} itself?
- only \mathbb{R}^{\times}_+ and countable?

- ► $\mathcal{F}(L(\Gamma))$ is countable if Γ has ICC, (T) (Connes, 1980) ► $\mathcal{F}(L(SL_2 \mathbb{Z} \ltimes \mathbb{Z}^2)) = \{1\}$ (Popa, 2002)
- $\mathcal{F}(M)$ can be any countable subgroup of $\mathbb{R}_+^{ imes}$ (Popa, 2003)
- ▶ many uncountable groups are $\mathcal{F}(M)$ (Popa–Vaes, 2008)
- My result

construction

applications

Definition and history

$$\mathcal{F}(M) = \{ au(p) / au(q) \mid pMp \cong qMq \} \subset \mathbb{R}_+^{ imes}.$$

```
Question (Murray-von Neumann, 1943)
```

Which subgroups of \mathbb{R}_+^{\times} are fundamental groups?

- only \mathbb{R}^{\times}_+ itself?
- only \mathbb{R}_+^{\times} and countable?

- ► $\mathcal{F}(L(\Gamma))$ is countable if Γ has ICC, (T) (Connes, 1980) ► $\mathcal{F}(L(SL_2 \mathbb{Z} \ltimes \mathbb{Z}^2)) = \{1\}$ (Popa, 2002)
- $\mathcal{F}(M)$ can be any countable subgroup of \mathbb{R}_+^{\times} (Popa, 2003)
- ▶ many uncountable groups are $\mathcal{F}(M)$ (Popa–Vaes, 2008)
- ► My result

applications


```
Question (Murray-von Neumann, 1943)
```

Which subgroups of \mathbb{R}^{\times}_+ are fundamental groups?

- only \mathbb{R}^{\times}_+ itself? No
- only \mathbb{R}^{\times}_+ and countable?

- ► $\mathcal{F}(L(\Gamma))$ is countable if Γ has ICC, (T) (Connes, 1980) ► $\mathcal{F}(L(SL_2 \mathbb{Z} \ltimes \mathbb{Z}^2)) = \{1\}$ (Popa, 2002)
- $\mathcal{F}(M)$ can be any countable subgroup of \mathbb{R}^{\times}_+ (Popa, 2003)
- ▶ many uncountable groups are $\mathcal{F}(M)$ (Popa–Vaes, 2008)
- My result

construction

applications

Definition and history

Question (Murray-von Neumann, 1943)

Which subgroups of \mathbb{R}_+^{\times} are fundamental groups?

- only \mathbb{R}^{\times}_+ itself? No
- only \mathbb{R}_+^{\times} and countable?

- ► $\mathcal{F}(L(\Gamma))$ is countable if Γ has ICC, (T) (Connes, 1980)
 - we can not compute $\mathcal{F}(L(\Gamma))$ for any ICC property (T) group

•
$$\mathcal{F}(\mathsf{L}(\mathsf{SL}_2 \mathbb{Z} \ltimes \mathbb{Z}^2)) = \{1\}$$

- ▶ $\mathcal{F}(M)$ can be any countable subgroup of \mathbb{R}_+^{\times} (Popa, 2003)
- many uncountable groups are $\mathcal{F}(M)$
- ► My result

applications

Definition and history

Question (Murray-von Neumann, 1943)

Which subgroups of \mathbb{R}^{\times}_{+} are fundamental groups?

- only \mathbb{R}^{\times}_+ itself? No
- only $\mathbb{R}^{\times}_{\perp}$ and countable?

- \blacktriangleright $\mathcal{F}(L(\Gamma))$ is countable if Γ has ICC, (T) (Connes, 1980) (Popa, 2002)
- $\blacktriangleright \mathcal{F}(\mathsf{L}(\mathsf{SL}_2 \mathbb{Z} \ltimes \mathbb{Z}^2)) = \{1\}$
 - deformation/rigidity
- $\blacktriangleright \mathcal{F}(M)$ can be any countable subgroup of $\mathbb{R}^{\times}_{\perp}$ (Popa, 2003)
- many uncountable groups are $\mathcal{F}(M)$ (Popa–Vaes, 2008)
- ▶ My result

construction

applications

Definition and history

Question (Murray-von Neumann, 1943)

Which subgroups of \mathbb{R}^{\times}_+ are fundamental groups?

- only \mathbb{R}^{\times}_+ itself? No
- only \mathbb{R}_+^{\times} and countable?

- ► $\mathcal{F}(L(\Gamma))$ is countable if Γ has ICC, (T) (Connes, 1980) ► $\mathcal{F}(L(SL_2 \mathbb{Z} \ltimes \mathbb{Z}^2)) = \{1\}$ (Popa, 2002)
- $\mathcal{F}(M)$ can be any countable subgroup of \mathbb{R}_+^{\times} (Popa, 2003)
 - ► alternative constructions: Ioana-Peterson-Popa, Houdayer
- ▶ many uncountable groups are $\mathcal{F}(M)$ (Popa–Vaes, 2008)
- ► My result

applications

Definition and history

$$\mathcal{F}(M) = \{ au(p) / au(q) \mid pMp \cong qMq\} \subset \mathbb{R}^{ imes}_+$$
 .

Question (Murray–von Neumann, 1943)

Which subgroups of \mathbb{R}^{\times}_{+} are fundamental groups?

- only $\mathbb{R}^{\times}_{\perp}$ itself? No
- only \mathbb{R}_+^{\times} and countable?

- $\blacktriangleright \mathcal{F}(L(\Gamma))$ is countable if Γ has ICC, (T) (Connes, 1980) (Popa, 2002)
- $\blacktriangleright \mathcal{F}(\mathsf{L}(\mathsf{SL}_2 \mathbb{Z} \ltimes \mathbb{Z}^2)) = \{1\}$
- ▶ $\mathcal{F}(M)$ can be any countable subgroup of $\mathbb{R}^{\times}_{\perp}$ (Popa, 2003)
- many uncountable groups are $\mathcal{F}(M)$ (Popa–Vaes, 2008)
- My result

construction

applications

Definition and history

$$\mathcal{F}(M) = \{ \tau(p) / \tau(q) \mid pMp \cong qMq \} \subset \mathbb{R}_+^{\times}.$$

```
Question (Murray-von Neumann, 1943)
```

Which subgroups of \mathbb{R}_+^{\times} are fundamental groups?

- only \mathbb{R}^{\times}_+ itself? No
- only \mathbb{R}_+^{\times} and countable?

Examples

- ► $\mathcal{F}(L(\Gamma))$ is countable if Γ has ICC, (T) (Connes, 1980) ► $\mathcal{F}(L(SL_2 \mathbb{Z} \ltimes \mathbb{Z}^2)) = \{1\}$ (Popa, 2002)
- ► $\mathcal{F}(M)$ can be any countable subgroup of \mathbb{R}^{\times}_{+} (Popa, 2002)
- many uncountable groups are $\mathcal{F}(M)$
- My result

(Popa–Vaes, 2008)

applications

$$\mathcal{F}(M) = \{ au(p) / au(q) \mid pMp \cong qMq\} \subset \mathbb{R}_+^{ imes}$$
 .

Question (Murray–von Neumann, 1943)

Which subgroups of \mathbb{R}^{\times}_{+} are fundamental groups?

- only $\mathbb{R}^{\times}_{\perp}$ itself? No
- only \mathbb{R}^{\times}_+ and countable? No

- $\blacktriangleright \mathcal{F}(L(\Gamma))$ is countable if Γ has ICC, (T) (Connes, 1980) (Popa, 2002)
- $\blacktriangleright \mathcal{F}(\mathsf{L}(\mathsf{SL}_2 \mathbb{Z} \ltimes \mathbb{Z}^2)) = \{1\}$
- ▶ $\mathcal{F}(M)$ can be any countable subgroup of $\mathbb{R}^{\times}_{\perp}$ (Popa, 2003) (Popa–Vaes, 2008)
- many uncountable groups are $\mathcal{F}(M)$
- My result

construction

applications

Definition and history

Question (Murray-von Neumann, 1943)

Which subgroups of \mathbb{R}^{\times}_+ are fundamental groups?

- only \mathbb{R}^{\times}_+ itself? No
- only \mathbb{R}^{\times}_+ and countable? No

Examples

- ► $\mathcal{F}(L(\Gamma))$ is countable if Γ has ICC, (T) (Connes, 1980)
- $\blacktriangleright \mathcal{F}(\mathsf{L}(\mathsf{SL}_2 \mathbb{Z} \ltimes \mathbb{Z}^2)) = \{1\}$ (Popa, 2002)
- ▶ $\mathcal{F}(M)$ can be any countable subgroup of \mathbb{R}^{\times}_+ (Popa, 2003)
- many uncountable groups are $\mathcal{F}(M)$
 - pure existence result
- My result

(D., 2010)

(Popa-Vaes, 2008)

construction

applications

Question (Murray-von Neumann, 1943)

Which subgroups of \mathbb{R}^{\times}_+ are fundamental groups?

- only \mathbb{R}^{\times}_+ itself? No
- only \mathbb{R}^{\times}_+ and countable? No

Examples

- ► $\mathcal{F}(L(\Gamma))$ is countable if Γ has ICC, (T) (Connes, 1980)
- $\blacktriangleright \mathcal{F}(\mathsf{L}(\mathsf{SL}_2 \mathbb{Z} \ltimes \mathbb{Z}^2)) = \{1\}$ (Popa, 2002)
- $\mathcal{F}(M)$ can be any countable subgroup of \mathbb{R}^{\times}_+ (Popa, 2003)
- ▶ many uncountable groups are $\mathcal{F}(M)$ (Popa–Vaes, 2008)
- My result
 - explicit construction
 - potentially larger class of groups

(D., 2010)

construction

applications

Definition and history

$\mathcal{F}(M) = \{ \tau(p) / \tau(q) \mid pMp \cong qMq \} \subset \mathbb{R}_+^{\times}.$

Question (Murray-von Neumann, 1943)

Which subgroups of \mathbb{R}_+^{\times} are fundamental groups?

- only \mathbb{R}^{\times}_+ itself? No
- only \mathbb{R}^{\times}_+ and countable? No

Examples

- ► $\mathcal{F}(L(\Gamma))$ is countable if Γ has ICC, (T) (Connes, 1980)
- $\blacktriangleright \mathcal{F}(\mathsf{L}(\mathsf{SL}_2 \mathbb{Z} \ltimes \mathbb{Z}^2)) = \{1\}$ (Popa, 2002)
- ▶ $\mathcal{F}(M)$ can be any countable subgroup of \mathbb{R}^{\times}_+ (Popa, 2003)
- ▶ many uncountable groups are $\mathcal{F}(M)$ (Popa–Vaes, 2008)
- My result
 - explicit construction
 - potentially larger class of groups

(D., 2010)

construction

applications

Definition and history

Question (Murray-von Neumann, 1943)

Which subgroups of \mathbb{R}^{\times}_+ are fundamental groups?

- only \mathbb{R}^{\times}_+ itself? No
- only \mathbb{R}^{\times}_+ and countable? No

Examples

- ► $\mathcal{F}(L(\Gamma))$ is countable if Γ has ICC, (T) (Connes, 1980)
- $\blacktriangleright \mathcal{F}(\mathsf{L}(\mathsf{SL}_2 \mathbb{Z} \ltimes \mathbb{Z}^2)) = \{1\}$ (Popa, 2002)
- ▶ $\mathcal{F}(M)$ can be any countable subgroup of \mathbb{R}^{\times}_+ (Popa, 2003)
- ▶ many uncountable groups are $\mathcal{F}(M)$ (Popa–Vaes, 2008)
- My result
 - explicit construction
 - potentially larger class of groups

(D., 2010)

construction

applications

The construction

- \blacktriangleright We begin with two actions and a quotient
 - "generic action": $\Lambda \curvearrowright (Y, \nu)$: ergodic, inf. m. p.
 - "specific action": $\Gamma \curvearrowright (X, \mu)$: free, ergodic, p.m.p.
 - quotient $\pi : \Gamma \to \Lambda$.

• $\Gamma \frown X \times Y$ by $g(x, y) = (gx, \pi(g)y)$

- ► free, i.m.p.
- ergodic if ker $\pi \curvearrowright(X,\mu)$ is ergodic
- $M = L^{\infty}(X \times Y) \rtimes \Gamma$: a II_{∞} factor
 - every isomorphism $\psi: M \to M$ scales Tr by $mod(\psi)$.
 - if $Tr(p) < \infty$, then pMp is a II₁ factor.
 - $\mathcal{F}(pMp) = mod(Aut(M))$
- $mod(Centr_{Aut(Y,\nu)}(\Lambda)) \subset mod(Aut(M))$
 - if $\Delta \in \text{Centr}_{Aut(Y,\nu)}(\Lambda)$, then id $\times \Delta$ commutes with Γ
 - ▶ so $\psi(au_g) = (\operatorname{id} \times \Delta)_*(a)u_g$ defines an automorphism of M
- ▶ Strong conditions on $\Gamma \curvearrowright (X, \mu)$: mod(Centr_{Aut(Y,\nu)}(Λ)) = mod(Aut(M))
 - Popa–Vaes conditions: no explicit examples + Λ amenable + $\Lambda \curvearrowright Y$ free
 - my set of conditions: explicit examples + all Λ + non-free actions

construction

applications

The construction

- We begin with two actions and a quotient
 - "generic action": $\Lambda \curvearrowright (Y, \nu)$: ergodic, inf. m. p.
 - "specific action": $\Gamma \curvearrowright (X, \mu)$: free, ergodic, p.m.p.
 - quotient $\pi : \Gamma \to \Lambda$.

• $\Gamma \frown X \times Y$ by $g(x, y) = (gx, \pi(g)y)$

► free, i.m.p.

- ergodic if ker $\pi \curvearrowright(X,\mu)$ is ergodic
- $M = L^{\infty}(X \times Y) \rtimes \Gamma$: a II_{∞} factor
 - every isomorphism $\psi: M \to M$ scales Tr by $mod(\psi)$.
 - if $Tr(p) < \infty$, then *pMp* is a II₁ factor.
 - $\mathcal{F}(pMp) = mod(Aut(M))$
- $mod(Centr_{Aut(Y,\nu)}(\Lambda)) \subset mod(Aut(M))$
 - if $\Delta \in \mathsf{Centr}_{\mathsf{Aut}(Y,\nu)}(\Lambda)$, then id $\times \Delta$ commutes with Γ
 - so $\psi(au_g) = (\operatorname{id} imes \Delta)_*(a)u_g$ defines an automorphism of M

▶ Strong conditions on $\Gamma \curvearrowright(X, \mu)$: mod(Centr_{Aut(Y,\nu)}(Λ)) = mod(Aut(M))

- Popa–Vaes conditions: no explicit examples + Λ amenable + $\Lambda \curvearrowright Y$ free
- my set of conditions: explicit examples + all Λ + non-free actions

construction

applications

The construction

- We begin with two actions and a quotient
 - "generic action": $\Lambda \curvearrowright (Y, \nu)$: ergodic, inf. m. p.
 - "specific action": $\Gamma \curvearrowright (X, \mu)$: free, ergodic, p.m.p.
 - quotient $\pi: \Gamma \to \Lambda$.

• $\Gamma \frown X \times Y$ by $g(x, y) = (gx, \pi(g)y)$

► free, i.m.p.

• $M = L^{\infty}(X \times Y) \rtimes \Gamma$: a II_{∞} factor

- every isomorphism $\psi: M \to M$ scales Tr by $mod(\psi)$.
- if $Tr(p) < \infty$, then pMp is a II₁ factor.
- $\mathcal{F}(pMp) = mod(Aut(M))$
- $mod(Centr_{Aut(Y,\nu)}(\Lambda)) \subset mod(Aut(M))$
 - if $\Delta \in \text{Centr}_{Aut(Y,\nu)}(\Lambda)$, then id $\times \Delta$ commutes with Γ
 - ▶ so $\psi(au_g) = (\operatorname{id} \times \Delta)_*(a)u_g$ defines an automorphism of M

▶ Strong conditions on $\Gamma \curvearrowright (X, \mu)$: mod(Centr_{Aut(Y,\nu)}(Λ)) = mod(Aut(M))

- Popa–Vaes conditions: no explicit examples + Λ amenable + $\Lambda \curvearrowright Y$ free
- my set of conditions: explicit examples + all Λ + non-free actions

construction

applications

The construction

- We begin with two actions and a quotient
 - "generic action": $\Lambda \curvearrowright (Y, \nu)$: ergodic, inf. m. p.
 - "specific action": $\Gamma \curvearrowright (X, \mu)$: free, ergodic, p.m.p.
 - quotient $\pi: \Gamma \to \Lambda$.

• $\Gamma \frown X \times Y$ by $g(x, y) = (gx, \pi(g)y)$

- ▶ free, i.m.p.
- ergodic if ker $\pi \,{\sim}(X,\mu)$ is ergodic
- $M = L^{\infty}(X \times Y) \rtimes \Gamma$: a II_{∞} factor
 - every isomorphism $\psi: M \to M$ scales Tr by $mod(\psi)$.
 - if $Tr(p) < \infty$, then pMp is a II₁ factor.
 - $\mathcal{F}(pMp) = mod(Aut(M))$
- $mod(Centr_{Aut(Y,\nu)}(\Lambda)) \subset mod(Aut(M))$
 - if $\Delta \in \text{Centr}_{Aut(Y,\nu)}(\Lambda)$, then id $\times \Delta$ commutes with Γ
 - ▶ so $\psi(au_g) = (id \times \Delta)_*(a)u_g$ defines an automorphism of M
- ▶ Strong conditions on $\Gamma \curvearrowright (X, \mu)$: mod(Centr_{Aut(Y,\nu)}(Λ)) = mod(Aut(M))
 - Popa–Vaes conditions: no explicit examples + Λ amenable + $\Lambda \curvearrowright Y$ free
 - my set of conditions: explicit examples + all Λ + non-free actions

construction

applications

The construction

- We begin with two actions and a quotient
 - "generic action": $\Lambda \curvearrowright (Y, \nu)$: ergodic, inf. m. p.
 - "specific action": $\Gamma \curvearrowright (X, \mu)$: free, ergodic, p.m.p.
 - quotient $\pi: \Gamma \to \Lambda$.

• $\Gamma \frown X \times Y$ by $g(x, y) = (gx, \pi(g)y)$

- ► free, i.m.p.
- ergodic if ker $\pi \curvearrowright(X,\mu)$ is ergodic
- $M = L^{\infty}(X \times Y) \rtimes \Gamma$: a II_{∞} factor
 - every isomorphism $\psi: M \to M$ scales Tr by $mod(\psi)$.
 - if $Tr(p) < \infty$, then pMp is a II₁ factor.
 - $\mathcal{F}(pMp) = mod(Aut(M))$
- $mod(Centr_{Aut(Y,\nu)}(\Lambda)) \subset mod(Aut(M))$
 - if $\Delta \in \text{Centr}_{Aut(Y,\nu)}(\Lambda)$, then id $\times \Delta$ commutes with Γ
 - ▶ so $\psi(au_g) = (\operatorname{id} \times \Delta)_*(a)u_g$ defines an automorphism of M
- ▶ Strong conditions on $\Gamma \curvearrowright (X, \mu)$: mod(Centr_{Aut(Y,\nu)}(Λ)) = mod(Aut(M))
 - Popa–Vaes conditions: no explicit examples + Λ amenable + $\Lambda \curvearrowright Y$ free
 - my set of conditions: explicit examples + all Λ + non-free actions

	ISTO	sto

applications

•

The construction

- \blacktriangleright We begin with two actions and a quotient
 - "generic action": $\Lambda \curvearrowright (Y, \nu)$: ergodic, inf. m. p.
 - "specific action": $\Gamma \curvearrowright (X, \mu)$: free, ergodic, p.m.p.
 - quotient $\pi: \Gamma \to \Lambda$.

• $\Gamma \frown X \times Y$ by $g(x, y) = (gx, \pi(g)y)$

- ► free, i.m.p.
- ergodic if ker $\pi \curvearrowright(X, \mu)$ is ergodic

• $M = L^{\infty}(X \times Y) \rtimes \Gamma$: a II_{∞} factor

- every isomorphism $\psi: M \to M$ scales Tr by $mod(\psi)$.
- if $Tr(p) < \infty$, then pMp is a II₁ factor.
- $\mathcal{F}(pMp) = mod(Aut(M))$
- $mod(Centr_{Aut(Y,\nu)}(\Lambda)) \subset mod(Aut(M))$
 - if $\Delta \in \text{Centr}_{Aut(Y,\nu)}(\Lambda)$, then id $\times \Delta$ commutes with Γ
 - ▶ so $\psi(au_g) = (\operatorname{id} \times \Delta)_*(a)u_g$ defines an automorphism of M

▶ Strong conditions on $\Gamma \curvearrowright (X, \mu)$: mod(Centr_{Aut(Y,\nu)}(Λ)) = mod(Aut(M))

- Popa–Vaes conditions: no explicit examples + Λ amenable + $\Lambda \curvearrowright Y$ free
- my set of conditions: explicit examples + all Λ + non-free actions

	ISTO	sto

applications

•

- The construction
- \blacktriangleright We begin with two actions and a quotient
 - "generic action": $\Lambda \curvearrowright (Y, \nu)$: ergodic, inf. m. p.
 - "specific action": $\Gamma \curvearrowright (X, \mu)$: free, ergodic, p.m.p.
 - quotient $\pi: \Gamma \to \Lambda$.

•
$$\Gamma \frown X \times Y$$
 by $g(x, y) = (gx, \pi(g)y)$

- ► free, i.m.p.
- ergodic if ker $\pi \curvearrowright(X, \mu)$ is ergodic

• $M = L^{\infty}(X \times Y) \rtimes \Gamma$: a II_{∞} factor

- every isomorphism $\psi: M \to M$ scales Tr by $mod(\psi)$.
- if $Tr(p) < \infty$, then pMp is a II₁ factor.
- $\mathcal{F}(pMp) = mod(Aut(M))$
- $mod(Centr_{Aut(Y,\nu)}(\Lambda)) \subset mod(Aut(M))$
 - if $\Delta \in \text{Centr}_{Aut(Y,\nu)}(\Lambda)$, then id $\times \Delta$ commutes with Γ
 - ▶ so $\psi(au_g) = (\operatorname{id} \times \Delta)_*(a)u_g$ defines an automorphism of M
- ▶ Strong conditions on $\Gamma \curvearrowright (X, \mu)$: mod(Centr_{Aut(Y,\nu)}(Λ)) = mod(Aut(M))
 - Popa–Vaes conditions: no explicit examples + Λ amenable + $\Lambda \curvearrowright Y$ free
 - my set of conditions: explicit examples + all Λ + non-free actions

History				
TISLOIV				

applications

The construction

- \blacktriangleright We begin with two actions and a quotient
 - "generic action": $\Lambda \curvearrowright (Y, \nu)$: ergodic, inf. m. p.
 - "specific action": $\Gamma \curvearrowright (X, \mu)$: free, ergodic, p.m.p.
 - quotient $\pi: \Gamma \to \Lambda$.

•
$$\Gamma \frown X \times Y$$
 by $g(x, y) = (gx, \pi(g)y)$

- ► free, i.m.p.
- ergodic if ker $\pi \curvearrowright(X, \mu)$ is ergodic
- $M = L^{\infty}(X \times Y) \rtimes \Gamma$: a II_{∞} factor
 - every isomorphism $\psi: M \to M$ scales Tr by $mod(\psi)$.
 - if $Tr(p) < \infty$, then pMp is a II₁ factor.
 - $\mathcal{F}(pMp) = mod(Aut(M))$
- $mod(Centr_{Aut(Y,\nu)}(\Lambda)) \subset mod(Aut(M))$
 - if $\Delta \in \text{Centr}_{Aut(Y,\nu)}(\Lambda)$, then id $\times \Delta$ commutes with Γ
 - ▶ so $\psi(au_g) = (\operatorname{id} \times \Delta)_*(a)u_g$ defines an automorphism of M
- ▶ Strong conditions on $\Gamma \curvearrowright (X, \mu)$: mod(Centr_{Aut(Y,\nu)}(Λ)) = mod(Aut(M))
 - Popa–Vaes conditions: no explicit examples + Λ amenable + $\Lambda \curvearrowright Y$ free
 - my set of conditions: explicit examples + all Λ + non-free actions

	ISTO	sto

applications

- We begin with two actions and a quotient
 - "generic action": $\Lambda \curvearrowright (Y, \nu)$: ergodic, inf. m. p.
 - "specific action": $\Gamma \curvearrowright (X, \mu)$: free, ergodic, p.m.p.
 - quotient $\pi: \Gamma \to \Lambda$.

The construction

•
$$\Gamma \frown X \times Y$$
 by $g(x, y) = (gx, \pi(g)y)$

- ► free, i.m.p.
- ergodic if ker $\pi \curvearrowright(X, \mu)$ is ergodic

• $M = L^{\infty}(X \times Y) \rtimes \Gamma$: a II_{∞} factor

- every isomorphism $\psi: M \to M$ scales Tr by $mod(\psi)$.
- if $Tr(p) < \infty$, then pMp is a II₁ factor.
- $\mathcal{F}(pMp) = mod(Aut(M))$
- $mod(Centr_{Aut(Y,\nu)}(\Lambda)) \subset mod(Aut(M))$
 - if $\Delta \in \text{Centr}_{Aut(Y,\nu)}(\Lambda)$, then id $\times \Delta$ commutes with Γ
 - ▶ so $\psi(au_g) = (\operatorname{id} \times \Delta)_*(a)u_g$ defines an automorphism of M
- ▶ Strong conditions on $\Gamma \curvearrowright (X, \mu)$: mod(Centr_{Aut(Y,\nu)}(Λ)) = mod(Aut(M))
 - Popa–Vaes conditions: no explicit examples + Λ amenable + $\Lambda \curvearrowright Y$ free
 - my set of conditions: explicit examples + all Λ + non-free actions

	ISTO	sto

applications

- The construction
- \blacktriangleright We begin with two actions and a quotient
 - "generic action": $\Lambda \curvearrowright (Y, \nu)$: ergodic, inf. m. p.
 - "specific action": $\Gamma \curvearrowright (X, \mu)$: free, ergodic, p.m.p.
 - quotient $\pi: \Gamma \to \Lambda$.

•
$$\Gamma \frown X \times Y$$
 by $g(x, y) = (gx, \pi(g)y)$

- ► free, i.m.p.
- ergodic if ker $\pi \curvearrowright(X, \mu)$ is ergodic

• $M = L^{\infty}(X \times Y) \rtimes \Gamma$: a II_{∞} factor

- every isomorphism $\psi: M \to M$ scales Tr by $mod(\psi)$.
- if $Tr(p) < \infty$, then pMp is a II₁ factor.
- $\mathcal{F}(pMp) = mod(Aut(M))$
- ▶ $mod(Centr_{Aut(Y,\nu)}(\Lambda)) \subset mod(Aut(M))$
 - if $\Delta \in \text{Centr}_{\text{Aut}(Y,\nu)}(\Lambda)$, then id $\times \Delta$ commutes with Γ
 - ▶ so $\psi(au_g) = (\operatorname{id} \times \Delta)_*(a)u_g$ defines an automorphism of M
- ▶ Strong conditions on $\Gamma \curvearrowright (X, \mu)$: mod(Centr_{Aut(Y,\nu)}(Λ)) = mod(Aut(M))
 - Popa–Vaes conditions: no explicit examples + Λ amenable + $\Lambda \curvearrowright Y$ free
 - my set of conditions: explicit examples + all Λ + non-free actions

construction

applications

- The construction
- \blacktriangleright We begin with two actions and a quotient
 - "generic action": $\Lambda \curvearrowright (Y, \nu)$: ergodic, inf. m. p.
 - "specific action": $\Gamma \curvearrowright (X, \mu)$: free, ergodic, p.m.p.
 - quotient $\pi: \Gamma \to \Lambda$.

•
$$\Gamma \frown X \times Y$$
 by $g(x, y) = (gx, \pi(g)y)$

- ► free, i.m.p.
- ergodic if ker $\pi \curvearrowright(X, \mu)$ is ergodic

•
$$M = L^{\infty}(X \times Y) \rtimes \Gamma$$
: a II $_{\infty}$ factor

- every isomorphism $\psi: M \to M$ scales Tr by $mod(\psi)$.
- if $Tr(p) < \infty$, then pMp is a II₁ factor.
- $\mathcal{F}(pMp) = mod(Aut(M))$
- ▶ $mod(Centr_{Aut(Y,\nu)}(\Lambda)) \subset mod(Aut(M))$
 - if $\Delta \in \text{Centr}_{\text{Aut}(Y,\nu)}(\Lambda)$, then id $\times \Delta$ commutes with Γ
 - so $\psi(au_g) = (\operatorname{id} \times \Delta)_*(a)u_g$ defines an automorphism of M
- ▶ Strong conditions on $\Gamma \curvearrowright (X, \mu)$: mod(Centr_{Aut(Y,\nu)}(Λ)) = mod(Aut(M))
 - Popa–Vaes conditions: no explicit examples + Λ amenable + $\Lambda \curvearrowright Y$ free
 - my set of conditions: explicit examples + all Λ + non-free actions

construction

applications

- The construction
- ▶ We begin with two actions and a quotient
 - "generic action": $\Lambda \curvearrowright (Y, \nu)$: ergodic, inf. m. p.
 - "specific action": $\Gamma \curvearrowright (X, \mu)$: free, ergodic, p.m.p.
 - quotient $\pi: \Gamma \to \Lambda$.

•
$$\Gamma \frown X \times Y$$
 by $g(x, y) = (gx, \pi(g)y)$

- ► free, i.m.p.
- ergodic if ker $\pi \curvearrowright(X, \mu)$ is ergodic

•
$$M = L^{\infty}(X \times Y) \rtimes \Gamma$$
: a II $_{\infty}$ factor

- every isomorphism $\psi: M \to M$ scales Tr by $mod(\psi)$.
- if $Tr(p) < \infty$, then pMp is a II₁ factor.
- $\mathcal{F}(pMp) = mod(Aut(M))$
- $mod(Centr_{Aut(Y,\nu)}(\Lambda)) \subset mod(Aut(M))$
 - if $\Delta \in \operatorname{Centr}_{\operatorname{Aut}(Y,\nu)}(\Lambda)$, then id $\times \Delta$ commutes with Γ
 - so $\psi(au_g) = (id \times \Delta)_*(a)u_g$ defines an automorphism of M

▶ Strong conditions on $\Gamma \curvearrowright (X, \mu)$: mod(Centr_{Aut(Y,\nu)}(Λ)) = mod(Aut(M))

- Popa–Vaes conditions: no explicit examples + Λ amenable + $\Lambda \curvearrowright Y$ free
- my set of conditions: explicit examples + all Λ + non-free actions

construction

applications

- We begin with two actions and a quotient
 - "generic action": $\Lambda \curvearrowright (Y, \nu)$: ergodic, inf. m. p.
 - "specific action": $\Gamma \curvearrowright (X, \mu)$: free, ergodic, p.m.p.
 - quotient $\pi: \Gamma \to \Lambda$.

The construction

•
$$\Gamma \frown X \times Y$$
 by $g(x, y) = (gx, \pi(g)y)$

- ► free, i.m.p.
- ergodic if ker $\pi \curvearrowright(X, \mu)$ is ergodic

•
$$M = L^{\infty}(X \times Y) \rtimes \Gamma$$
: a II $_{\infty}$ factor

- every isomorphism $\psi: M \to M$ scales Tr by $mod(\psi)$.
- if $Tr(p) < \infty$, then pMp is a II₁ factor.
- $\mathcal{F}(pMp) = mod(Aut(M))$
- $mod(Centr_{Aut(Y,\nu)}(\Lambda)) \subset mod(Aut(M))$
 - if $\Delta \in \text{Centr}_{Aut(Y,\nu)}(\Lambda)$, then id $\times \Delta$ commutes with Γ
 - so $\psi(au_g) = (id \times \Delta)_*(a)u_g$ defines an automorphism of M

• Strong conditions on $\Gamma \curvearrowright(X,\mu)$: mod(Centr_{Aut(Y,\nu)}(\Lambda)) = mod(Aut(M))

- ▶ Popa–Vaes conditions: no explicit examples + Λ amenable + $\Lambda \curvearrowright Y$ free
- my set of conditions: explicit examples + all Λ + non-free actions

		n/

applications

۲

- The construction
- \blacktriangleright We begin with two actions and a quotient
 - "generic action": $\Lambda \curvearrowright (Y, \nu)$: ergodic, inf. m. p.
 - "specific action": $\Gamma \curvearrowright (X, \mu)$: free, ergodic, p.m.p.
 - quotient $\pi: \Gamma \to \Lambda$.

•
$$\Gamma \frown X \times Y$$
 by $g(x, y) = (gx, \pi(g)y)$

- ► free, i.m.p.
- ergodic if ker $\pi \curvearrowright(X, \mu)$ is ergodic

•
$$M = L^{\infty}(X \times Y) \rtimes \Gamma$$
: a II $_{\infty}$ factor

- every isomorphism $\psi: M \to M$ scales Tr by $mod(\psi)$.
- if $Tr(p) < \infty$, then pMp is a II₁ factor.
- $\mathcal{F}(pMp) = mod(Aut(M))$
- $mod(Centr_{Aut(Y,\nu)}(\Lambda)) \subset mod(Aut(M))$
 - if $\Delta \in \operatorname{Centr}_{\operatorname{Aut}(Y,\nu)}(\Lambda)$, then id $\times \Delta$ commutes with Γ
 - so $\psi(au_g) = (id \times \Delta)_*(a)u_g$ defines an automorphism of M
- ► Strong conditions on $\Gamma \curvearrowright (X, \mu)$: mod(Centr_{Aut(Y,\nu)}(\Lambda)) = mod(Aut(M))
 - Popa–Vaes conditions: no explicit examples + Λ amenable + $\Lambda \curvearrowright Y$ free
 - \blacktriangleright my set of conditions: explicit examples + all Λ + non-free actions

	ISTO	sto

applications

- The construction
- We begin with two actions and a quotient
 - "generic action": $\Lambda \curvearrowright (Y, \nu)$: ergodic, inf. m. p.
 - "specific action": $\Gamma \curvearrowright (X, \mu)$: free, ergodic, p.m.p.
 - quotient $\pi: \Gamma \to \Lambda$.

•
$$\Gamma \frown X \times Y$$
 by $g(x, y) = (gx, \pi(g)y)$

- ► free, i.m.p.
- ergodic if ker $\pi \curvearrowright(X, \mu)$ is ergodic

•
$$M = L^{\infty}(X \times Y) \rtimes \Gamma$$
: a II $_{\infty}$ factor

- every isomorphism $\psi: M \to M$ scales Tr by $mod(\psi)$.
- if $Tr(p) < \infty$, then pMp is a II₁ factor.
- $\mathcal{F}(pMp) = mod(Aut(M))$
- $mod(Centr_{Aut(Y,\nu)}(\Lambda)) \subset mod(Aut(M))$
 - if $\Delta \in \operatorname{Centr}_{\operatorname{Aut}(Y,\nu)}(\Lambda)$, then id $\times \Delta$ commutes with Γ
 - so $\psi(au_g) = (id \times \Delta)_*(a)u_g$ defines an automorphism of M
- ► Strong conditions on $\Gamma \curvearrowright (X, \mu)$: mod(Centr_{Aut(Y,\nu)}(\Lambda)) = mod(Aut(M))
 - ► Popa–Vaes conditions: no explicit examples + Λ amenable + $\Lambda \frown Y$ free
 - my set of conditions: explicit examples + all Λ + non-free actions

applications

Example

Examples

History

There are examples with $\pi: \Gamma \to \Lambda = \mathbb{F}_{\infty}$.

Corollary

For any ergodic, i.m.p. $\alpha : \Lambda \curvearrowright (Y, \nu)$ of **any** group, there is a II₁ factor M_{α} with

$$\mathcal{F}(M_{\alpha}) = \mathsf{mod}(\mathsf{Centr}_{\mathsf{Aut}(Y,\nu)}(\Lambda))$$

Corollary

For any closed subgroup $\mathcal{G} \subset \operatorname{Aut}_{\nu}(Y)$ that acts ergodically on Y, there is a type II₁ factor $M_{\mathcal{G}}$ such that $\mathcal{F}(M_{\mathcal{G}}) = \operatorname{mod}(\operatorname{Centr}_{\operatorname{Aut}(Y,\nu)}(\mathcal{G})).$

applications

Example

Examples

History

```
There are examples with \pi: \Gamma \to \Lambda = \mathbb{F}_{\infty}.
```

Corollary

For any ergodic, i.m.p. $\alpha : \Lambda \curvearrowright (Y, \nu)$ of **any** group, there is a II_1 factor M_{α} with

$$\mathcal{F}(M_{\alpha}) = \mathsf{mod}(\mathsf{Centr}_{\mathsf{Aut}(Y,\nu)}(\Lambda))$$

Corollary

For any closed subgroup $\mathcal{G} \subset \operatorname{Aut}_{\nu}(Y)$ that acts ergodically on Y, there is a type II₁ factor $M_{\mathcal{G}}$ such that $\mathcal{F}(M_{\mathcal{G}}) = \operatorname{mod}(\operatorname{Centr}_{\operatorname{Aut}(Y,\nu)}(\mathcal{G})).$

applications

Example

History

Examples

There are examples with $\pi : \Gamma \to \Lambda = \mathbb{F}_{\infty}$.

Corollary

For any ergodic, i.m.p. $\alpha : \Lambda \curvearrowright (Y, \nu)$ of **any** group, there is a II₁ factor M_{α} with

$$\mathcal{F}(M_{\alpha}) = \mathsf{mod}(\mathsf{Centr}_{\mathsf{Aut}(Y,\nu)}(\Lambda))$$

Corollary

For any closed subgroup $\mathcal{G} \subset \operatorname{Aut}_{\nu}(Y)$ that acts ergodically on Y, there is a type II₁ factor $M_{\mathcal{G}}$ such that $\mathcal{F}(M_{\mathcal{G}}) = \operatorname{mod}(\operatorname{Centr}_{\operatorname{Aut}(Y,\nu)}(\mathcal{G})).$

applications

Examples

Generalization

History

• We replace (Y, ν) by a II_{∞} factor (B, Tr).

- We replace $\Lambda \curvearrowright (Y, \nu)$ by an outer action $\alpha : \Lambda \to \operatorname{Out}_{\mathsf{Tr}}(B)$.
- We replace $\operatorname{Centr}_{\operatorname{Aut}(Y)}(\Lambda)$ by $\operatorname{Centr}_{\operatorname{Out}(B)}(\Lambda)$

Corollary

- Gives an alternative characterization of all fundamental groups
- in terms of outer actions on abritrary II_{∞} factors *B*: harder
- conjecture: we can assume that $B = L(\mathbb{F}_{\infty})^{\infty}$

applications

Examples

Generalization

History

- We replace (Y, ν) by a II_{∞} factor (B, Tr).
- We replace $\Lambda \curvearrowright (Y, \nu)$ by an outer action $\alpha : \Lambda \rightarrow \operatorname{Out}_{\mathsf{Tr}}(B)$.
- We replace $\operatorname{Centr}_{\operatorname{Aut}(Y)}(\Lambda)$ by $\operatorname{Centr}_{\operatorname{Out}(B)}(\Lambda)$

Corollary

- Gives an alternative characterization of all fundamental groups
- in terms of outer actions on abritrary II_{∞} factors *B*: harder
- conjecture: we can assume that $B = L(\mathbb{F}_{\infty})^{\infty}$

applications

Examples

Generalization

History

- We replace (Y, ν) by a II_{∞} factor (B, Tr).
- We replace $\Lambda \curvearrowright (Y, \nu)$ by an outer action $\alpha : \Lambda \rightarrow \operatorname{Out}_{\mathsf{Tr}}(B)$.
- ► We replace Centr_{Aut(Y)}(Λ) by Centr_{Out(B)}(Λ)

Corollary

- Gives an alternative characterization of all fundamental groups
- in terms of outer actions on abritrary II_{∞} factors *B*: harder
- conjecture: we can assume that $B = L(\mathbb{F}_{\infty})^{\infty}$

History

- We replace (Y, ν) by a II_{∞} factor (B, Tr).
- We replace $\Lambda \curvearrowright (Y, \nu)$ by an outer action $\alpha : \Lambda \rightarrow \operatorname{Out}_{\mathsf{Tr}}(B)$.
- ▶ We replace Centr_{Aut(Y)}(Λ) by Centr_{Out(B)}(Λ)

Corollary

- Gives an alternative characterization of all fundamental groups
- in terms of outer actions on abritrary II_{∞} factors *B*: harder
- conjecture: we can assume that $B = L(\mathbb{F}_{\infty})^{\infty}$

History

- We replace (Y, ν) by a II_{∞} factor (B, Tr).
- We replace $\Lambda \curvearrowright (Y, \nu)$ by an outer action $\alpha : \Lambda \rightarrow \operatorname{Out}_{\mathsf{Tr}}(B)$.
- ▶ We replace Centr_{Aut(Y)}(Λ) by Centr_{Out(B)}(Λ)

Corollary

- Gives an alternative characterization of all fundamental groups
- in terms of outer actions on abritrary II_{∞} factors *B*: harder
- conjecture: we can assume that $B = L(\mathbb{F}_{\infty})^{\infty}$

History

- We replace (Y, ν) by a II_{∞} factor (B, Tr).
- We replace $\Lambda \curvearrowright (Y, \nu)$ by an outer action $\alpha : \Lambda \rightarrow \operatorname{Out}_{\mathsf{Tr}}(B)$.
- ▶ We replace Centr_{Aut(Y)}(Λ) by Centr_{Out(B)}(Λ)

Corollary

For any trace-preserving outer action $\alpha : \Lambda \to \operatorname{Out}_{\operatorname{Tr}}(B)$ of any countable group Λ , there is a II₁ factor M_{α} with $\mathcal{F}(M_{\alpha}) = \operatorname{mod}(\operatorname{Centr}_{\operatorname{Out}(B)}(\Lambda))$ For every II₁ factor M, $\mathcal{F}(M) = \operatorname{mod}(\operatorname{Centr}_{\operatorname{Out}(M^{\infty})}(\{\operatorname{id}\}))$

Gives an alternative characterization of all fundamental groups

- in terms of outer actions on abritrary II_{∞} factors *B*: harder
- conjecture: we can assume that $B = L(\mathbb{F}_{\infty})^{\infty}$

History

- We replace (Y, ν) by a II_{∞} factor (B, Tr).
- We replace $\Lambda \curvearrowright (Y, \nu)$ by an outer action $\alpha : \Lambda \rightarrow \operatorname{Out}_{\mathsf{Tr}}(B)$.
- ▶ We replace Centr_{Aut(Y)}(Λ) by Centr_{Out(B)}(Λ)

Corollary

- Gives an alternative characterization of all fundamental groups
- in terms of outer actions on abritrary II_{∞} factors B: harder
- conjecture: we can assume that $B = L(\mathbb{F}_{\infty})^{\infty}$

History

- We replace (Y, ν) by a II_{∞} factor (B, Tr).
- We replace $\Lambda \curvearrowright (Y, \nu)$ by an outer action $\alpha : \Lambda \rightarrow \operatorname{Out}_{\mathsf{Tr}}(B)$.
- ▶ We replace Centr_{Aut(Y)}(Λ) by Centr_{Out(B)}(Λ)

Corollary

- Gives an alternative characterization of all fundamental groups
- ▶ in terms of outer actions on abritrary II_{∞} factors B: harder
- conjecture: we can assume that $B = \mathsf{L}(\mathbb{F}_\infty)^\infty$