Universal coefficient theorems for C^* -algebras over finite topological spaces

Rasmus Bentmann University of Copenhagen

NordForsk Network Junior Workshop Copenhagen September 2011

Theorem (Rosenberg-Schochet 1987)

Let A and B be separable C^* -algebras. If A belongs to the bootstrap category, then there is a short exact sequence of $\mathbb{Z}/2$ -graded Abelian groups

 $\operatorname{Ext}^{1}(\operatorname{K}_{*+1}(A),\operatorname{K}_{*}(B)) \rightarrowtail \operatorname{KK}_{*}(A,B) \twoheadrightarrow \operatorname{Hom}(\operatorname{K}_{*}(A),\operatorname{K}_{*}(B)).$

Corollary

If A and B are in the bootstrap class then an isomorphism $K_*(A) \cong K_*(B)$ lifts to a KK-equivalence $A \simeq B$.

Theorem (Kirchberg-Phillips 2000)

A KK-equivalence between two stable, nuclear, separable, purely infinite, simple C*-algebras lifts to a *-isomorphism.

Theorem (Rørdam 1997)

Extensions of stable, nuclear, separable, purely infinite, simple C^* -algebras in the bootstrap class are classified by their six-term exact sequence.

Theorem (Restorff 2006)

Cuntz Krieger algebras whose adjacency matrices fulfill condition (II) are classified up to stable isomorphism by filtered K-theory.

Idea: Reprove these theorems using a 2-step classification via an equivariant *KK*-theory!

C^* -algebras over topological spaces

Throughout this talk, X denotes a finite connected T_0 -space.

Definition

A C^{*}-algebra over X is a pair (A, ψ) consisting of a C^{*}-algebra A and a continuous map ψ : Prim $(A) \rightarrow X$.

- An open subset $U \subseteq X$ gives a distinguished ideal A(U) of A.
- A *-homomorphism $f: A \to B$ is X-equivariant if $f(A(U)) \subseteq B(U)$ for all $U \in \mathbb{O}(X)$.
- \rightsquigarrow Category $\mathfrak{C}^*\mathfrak{alg}(X)$ of C^* -algebras over X.

Eberhard Kirchberg constructed an X-equivariant version KK(X) of Kasparov's KK-theory.

Kasparov product

$$\mathsf{KK}_*(X;A,B)\otimes\mathsf{KK}_*(X;B,C) o\mathsf{KK}_*(X;A,C)$$

Definition

Let $\mathfrak{KR}(X)$ be the category of separable C^* -algebras over X with $KK_0(X; \square, \square)$ as morphism groups.

Theorem (Meyer-Nest)

The category $\Re \Re(X)$ is triangulated and has countable coproducts.

Theorem (Kirchberg 2000)

A KK(X)-equivalence between two stable, nuclear, separable, purely infinite, tight C*-algebras over X lifts to an X-equivariant *-isomorphism.

Here a C^* -algebra (A, ψ) over X is called tight if ψ : Prim $(A) \rightarrow X$ is homeomorphic.

Vague Definition

The filtered K-theory FK(A) of a C^* -algebra over X comprises

- the K_{*}-groups of all quotients of distinguished ideals in A,
- all natural maps between these groups.

Alternative picture (Meyer-Nest)

 $FK(A) = KK(X; \mathcal{R}_X, A)$ as module over the ring $KK(X; \mathcal{R}_X, \mathcal{R}_X)$.

• Meyer-Nest also define an equivariant bootstrap class $\mathcal{B}(X) \subseteq \mathfrak{KK}(X)$.

Using the universal property of FK and their machinery of homological algebra in triangulated categories, Meyer-Nest prove:

Theorem (Meyer-Nest)

Let $A, B \in \mathfrak{KK}(X)$. Suppose that FK(A) has a projective resolution of length 1 and that $A \in \mathcal{B}(X)$. Then there are natural short exact sequences

 $\mathsf{Ext}^1(\mathsf{FK}(A)[j+1],\mathsf{FK}(B)) \rightarrowtail \mathsf{KK}_j(X;A,B)$ $\twoheadrightarrow \mathsf{Hom}(\mathsf{FK}(A)[j],\mathsf{FK}(B))$

for $j \in \mathbb{Z}/2$.

Let X be a finite set. There are the following bijections:

History

● X = ●

- $\mathfrak{C}^*\mathfrak{alg}(X) = plain \ C^*-algebras$
- Universal Coefficient Theorem: Rosenberg-Schochet (1987)
- - C*alg(X) = Extensions of C*-algebras, FK = Six-term exact sequence
 - UCT: Bonkat (2002)

• Reproves Rørdam's classification theorem!

3

• $X = \bullet \longrightarrow \bullet \longrightarrow \bullet$

- UCT: Restorff (2008)
- - UCT: Meyer-Nest (2008)

At the same time, Meyer and Nest give a counterexample over the space

They construct: $A, B \in \mathcal{B}(X)$ with $FK(A) \cong FK(B)$ but $A \not\simeq_{KK(X)} B$.

Which finite spaces allow for a UCT using filtered K-theory and which ones do not?

Accordion spaces

Theorem (B-Köhler)

The following statements are equivalent:

- **1** X is an accordion space.
- **2** Let A and B be separable C^* -algebras over X. Suppose $A \in \mathcal{B}(X)$. Then there is a natural short exact UCT sequence

$$\mathsf{Ext}^1(\mathsf{FK}(A)[1],\mathsf{FK}(B)) \rightarrow \mathsf{KK}_*(X;A,B)$$

 $\rightarrow \mathsf{Hom}(\mathsf{FK}(A),\mathsf{FK}(B)).$

3 Let $A, B \in \mathcal{B}(X)$. Then $FK(A) \cong FK(B)$ implies $A \simeq_{KK(X)} B$.

Measuring the failure of projective dimension 1

Theorem (B)

2

For
$$4 \stackrel{5}{\underset{1}{\leftarrow}} 2$$
, $M = FK(A)$ has projective dimension at most 1

if and only if the homology of the following complex is free:

$$\bigoplus_{j=1}^{3} M(j4) \xrightarrow{\begin{pmatrix} i & -i & 0 \\ -i & 0 & i \\ 0 & i & -i \end{pmatrix}} \bigoplus_{k=1}^{3} M(1234 \setminus k) \xrightarrow{(i \ i \ i)} M(1234).$$

Corollary (B)

There is a Cuntz-Krieger algebra with projective dimension 2 in filtered K-theory over its primitive ideal space.

Refining filtered K-theory

For the space

Meyer and Nest construct a refinement of filtered K-theory by adding one more invariant: the K-group of some pullback of distinguished subquotients of A. This invariant has a UCT!

Refining filtered K-theory

The same works for the following spaces (B):

Which finite spaces allow for a UCT using a finite refinement of filtered *K*-theory?

Conjecture (Meyer, Katsura)

Let X be a tree. Then there is a UCT for a finite refinement of filtered K-theory if and only if the associated undirected graph of X is a simply laced Dynkin diagram:

Conjecture (B-Katsura)

Given two finite spaces X and Y with the same number of points, it "frequently" happens that we can construct adjunctions $\Re \Re(X) \longleftrightarrow \Re \Re(Y)$

- with large fixed subcategories,
- preserving the triangulated category structures,
- identifying \mathcal{R}_X and \mathcal{R}_Y .

This should be true:

- if X is a tree and Y arises from X by reversing the direction of one arrow;
- for the two spaces

