Faculty of Science

On Polish Groups of Finite Type

Hiroshi Ando (Kyoto/Copenhagen)

Joint work with Yasumichi Matsuzawa(Hokkaido/Leipzig)

September, 2011 Slide 1/19

My study interests: Polish groups related to operator algebras, $\mathcal{U}(M)$, $\operatorname{Aut}(M)$, etc.

Definition

- (1) A topological space is called *Polish* if it is separable and completely metrizable.
- (2) A Polish group is a topological group whose topology is Polish.
 - Structures of U(M), Aut(M) are closely related to the structure of M (e.g. Connes' classification of injective factors)
 - Such groups provide rich examples of (exotic) Polish Groups. (e.g. extremely amenable groups)

My study interests: Polish groups related to operator algebras, U(M), Aut(M), etc.

Definition

- (1) A topological space is called *Polish* if it is separable and completely metrizable.
- $(2)\,$ A Polish group is a topological group whose topology is Polish.
 - Structures of U(M), Aut(M) are closely related to the structure of M (e.g. Connes' classification of injective factors)
 - Such groups provide rich examples of (exotic) Polish Groups. (e.g. extremely amenable groups)

In the previous work we proved

Theorem

Let M be a finite von Neumann algebra(vNa). $G \subset U(M)$ sot-closed subgroup. Then

$$\mathfrak{g} := \{A^* = -A; e^{tA} \in G, \forall t \in \mathbb{R}\}$$

is a complete topological Lie algebra w.r.t strong resolvent topology.

So if $A, B \in \mathfrak{g}$ (possibly unbounded), A + B and AB - BA exist in \mathfrak{g} and these operations are SRT-continuous.

Problem

What kind of Polish group G can be embeddable into some U(M), M finite vNa? Examples of fintie type groups?

Definition (Popa'06)

A Polish group G is called of *finite type* if it is isomorphic onto a sot-closed subgroup of some U(M), M finite vNa.

We denote the above condition as $G \hookrightarrow \mathcal{U}(M)$.

Problem

What kind of Polish group G can be embeddable into some U(M), M finite vNa? Examples of fintie type groups?

Definition (Popa'06)

A Polish group G is called of *finite type* if it is isomorphic onto a sot-closed subgroup of some U(M), M finite vNa.

We denote the above condition as $G \hookrightarrow \mathcal{U}(M)$.

Embeddings into the unitary group of II_1 factor

Proposition (Popa, Haagerup-Winsløw)

Let G be a Polish Group. TFAE.

- (1) G is of finite type: $G \hookrightarrow \mathcal{U}(M)$, M finite vNa.
- (2) $G \hookrightarrow \mathcal{U}(M)$, M separable II₁ factor.

We first observe the known result for $G \hookrightarrow \mathcal{U}(\ell^2)$.

Definition

A Polish Group G is called *unitarily representable* (UR) if $G \hookrightarrow \mathcal{U}(\ell^2)$.

Definition

A Polish Group G is called *unitarily representable* (UR) if $G \hookrightarrow \mathcal{U}(\ell^2)$.

OBS: If $G \hookrightarrow \mathcal{U}(\ell^2)$. Suppose $g_n \to g$ in G. Then $\forall \xi \in \ell^2 \setminus \{0\}$,

$$\varphi_{\xi}(g_n) = \langle g_n \xi, \xi \rangle \to \langle g \xi, \xi \rangle = \varphi_{\xi}(g).$$

Definition

A Polish Group G is called *unitarily representable* (UR) if $G \hookrightarrow \mathcal{U}(\ell^2)$.

OBS: If $G \hookrightarrow \mathcal{U}(\ell^2)$. Suppose $g_n \to g$ in G. Then $\forall \xi \in \ell^2 \setminus \{0\}$,

$$\varphi_{\xi}(g_n) = \langle g_n \xi, \xi \rangle \rightarrow \langle g \xi, \xi \rangle = \varphi_{\xi}(g).$$

Conversely, if $\varphi_{\xi}(g_n) o \varphi_{\xi}(g) \; \forall \xi$, then by polarization

$$\langle g_n \xi, \eta \rangle \to \langle g \xi, \eta \rangle, \quad \forall \xi, \eta.$$

so $g_n \rightarrow g$ weakly(=strongly).

Hiroshi Ando — On Polish Groups of Finite Type — September, 2011 Slide 6/19

Definition

A Polish Group G is called *unitarily representable* (UR) if $G \hookrightarrow \mathcal{U}(\ell^2)$.

OBS: If $G \hookrightarrow \mathcal{U}(\ell^2)$. Suppose $g_n \to g$ in G. Then $\forall \xi \in \ell^2 \setminus \{0\}$,

$$\varphi_{\xi}(g_n) = \langle g_n \xi, \xi \rangle \rightarrow \langle g \xi, \xi \rangle = \varphi_{\xi}(g).$$

Conversely, if $\varphi_{\xi}(g_n) o \varphi_{\xi}(g) \; \forall \xi$, then by polarization

$$\langle g_n \xi, \eta \rangle \to \langle g \xi, \eta \rangle, \quad \forall \xi, \eta.$$

so
$$g_n
ightarrow g$$
 weakly(=strongly).
 $\Rightarrow \{\varphi_{\xi}\}$ generates the topology of G .

Hiroshi Ando — On Polish Groups of Finite Type — September, 2011 Slide 6/19

Definition

A Polish Group G is called *unitarily representable* (UR) if $G \hookrightarrow \mathcal{U}(\ell^2)$.

The following result has been known to specialists, without explicitly mentioned until the work of Gao('03)

Theorem (Gao+ ??)

For a Polish group G. TFAE.

- (1) G is UR.
- (2) ∃f positive definite function on G which generates the topology of G: g_n → g ⇔ f(g_n) → f(g).
- (3) ∃f positive definite function on G which separates each closed set A(≇ 1) and 1: sup_{g∈A} |f(g)| < f(1)

Characterization of Finite Type Groups Let G be a group. A function $f : G \to \mathbb{C}$ is called *invariant* if $f(g^{-1}xg) = f(x)$ holds $\forall g, x \in G$.

Theorem

Let G be a Polish Group. TFAE.

- (1) G is of finite type.
- (2) $\exists \{f_i\}_{i \in I}$ conti. pos. def. invariant functions on G generating nbd basis of 1: $g_n \to 1 \Leftrightarrow f_i(g_n) \to f_i(1), \forall i \in I$.
- (3) $\exists f : G \to \mathbb{C}$ conti. pos. def. inv, which generates nbd basis of 1.
- (4) $\exists f : G \to \mathbb{C}$ conti. pos. def. inv. which separates each closed set $A(\not \ni 1)$ and 1: $\sup_{g \in A} |f(g)| < f(1)$.

Characterization of Finite Type Groups Let G be a group. A function $f : G \to \mathbb{C}$ is called *invariant* if $f(g^{-1}xg) = f(x)$ holds $\forall g, x \in G$.

Theorem

Let G be a Polish Group. TFAE.

- (1) G is of finite type.
- (2) $\exists \{f_i\}_{i \in I}$ conti. pos. def. invariant functions on G generating nbd basis of 1: $g_n \to 1 \Leftrightarrow f_i(g_n) \to f_i(1), \forall i \in I$.
- (3) $\exists f : G \to \mathbb{C}$ conti. pos. def. inv, which generates nbd basis of 1.
- (4) $\exists f : G \to \mathbb{C}$ conti. pos. def. inv. which separates each closed set $A(\not \supseteq 1)$ and 1: $\sup_{g \in A} |f(g)| < f(1)$.

Remark

Unlike UR case, f in (3) or (4) cannot generate the whole topology of G in general.

Hiroshi Ando — On Polish Groups of Finite Type — September, 2011 Slide 8/19

Another Characterization

Suppose $G \hookrightarrow \mathcal{U}(M)$, $M \amalg_1$ factor with a normal faithful trace τ . Then G has a bi-invariant metric d:

$$d(u,v):=||u-v||_2, u,v\in G.$$

Here, $||x||_2 := \tau(x^*x)^{\frac{1}{2}}, \ x \in M.$

Definition

A topological group G is called a SIN-group if it admits a basic neighborhood system $\{V_i\}_{i \in I}$ of 1 which are invariant: $g^{-1}V_ig = V_i, \forall g \in G, \forall i \in I.$

Remark

a Polish group G is SIN iff G admits a compatible bi-invariant metric.

Another Characterization

Suppose $G \hookrightarrow \mathcal{U}(M)$, $M \amalg_1$ factor with a normal faithful trace τ . Then G has a bi-invariant metric d:

$$d(u,v) := ||u-v||_2, u, v \in G.$$

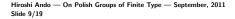
Here, $||x||_2 := \tau(x^*x)^{\frac{1}{2}}, \ x \in M.$

Definition

A topological group G is called a SIN-group if it admits a basic neighborhood system $\{V_i\}_{i \in I}$ of 1 which are invariant: $g^{-1}V_ig = V_i, \forall g \in G, \forall i \in I.$

Remark

a Polish group G is SIN iff G admits a compatible bi-invariant metric.



Another Characterization

Suppose $G \hookrightarrow \mathcal{U}(M)$, $M \amalg_1$ factor with a normal faithful trace τ . Then G has a bi-invariant metric d:

$$d(u,v) := ||u-v||_2, u, v \in G.$$

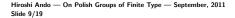
Here, $||x||_2 := \tau(x^*x)^{\frac{1}{2}}, \ x \in M.$

Definition

A topological group G is called a SIN-group if it admits a basic neighborhood system $\{V_i\}_{i \in I}$ of 1 which are invariant: $g^{-1}V_ig = V_i, \forall g \in G, \forall i \in I.$

Remark

a Polish group G is SIN iff G admits a compatible bi-invariant metric.



Popa's Question

Sorin Popa asked the following question from the viewpoint of his cocycle superrigidity theory:

Problem (Popa('05))

If a Polish SIN group G is unitarily representable $(G \hookrightarrow U(\ell^2))$, is it of fintie type?

We have partial answers to this problem.

Locally Compact Case

It iw known that for the case of locally compact groups, Popa's question has an affirmative answer (Kadison-Singer+ others) We give a simpler proof using the characterization of finiteness. Note: locally compact group is always unitarily representable (UR).

Theorem

A second countable locally compact group is of finite type iff it is a SIN-group.

Proof.

For each U compact invariant nbd at 1, define an pos. def. function

$$\varphi_U(g) := \langle \chi_U, \lambda(g) \chi_U \rangle = \mu \left(U \cap g U \right), \quad g \in G.$$

By the invariance of U and unimodular property of G, it is invariant: And then the family $\{\varphi_U\}_U$ generates a nbd basis of 1.

Hiroshi Ando — On Polish Groups of Finite Type — September, 2011 Slide $11/19\,$

Locally Compact Case

It iw known that for the case of locally compact groups, Popa's question has an affirmative answer (Kadison-Singer+ others) We give a simpler proof using the characterization of finiteness. Note: locally compact group is always unitarily representable (UR).

Theorem

A second countable locally compact group is of finite type iff it is a SIN-group.

Proof.

For each U compact invariant nbd at 1, define an pos. def. function

$$\varphi_U(g) := \langle \chi_U, \lambda(g) \chi_U \rangle = \mu \left(U \cap gU \right), \quad g \in G.$$

By the invariance of U and unimodular property of G, it is invariant: And then the family $\{\varphi_U\}_U$ generates a nbd basis of 1.

Hiroshi Ando — On Polish Groups of Finite Type — September, 2011 Slide $11/19\,$

Locally Compact Case

It iw known that for the case of locally compact groups, Popa's question has an affirmative answer (Kadison-Singer+ others) We give a simpler proof using the characterization of finiteness. Note: locally compact group is always unitarily representable (UR).

Theorem

A second countable locally compact group is of finite type iff it is a SIN-group.

Proof.

For each U compact invariant nbd at 1, define an pos. def. function

$$\varphi_U(g) := \langle \chi_U, \lambda(g) \chi_U \rangle = \mu (U \cap gU), \quad g \in G.$$

By the invariance of U and unimodular property of G, it is invariant: And then the family $\{\varphi_U\}_U$ generates a nbd basis of 1.

Hiroshi Ando — On Polish Groups of Finite Type — September, 2011 Slide 11/19

UR Amenable Groups

A Hausdorff topological group G is called *amenable* if it admits an (left) invariant mean: $\exists m \in LUCB(G)^*_+, m(1) = 1$ with $m(\lambda_g(f)) = m(f), \forall g \in G$. Here, LUCB(G) := the set of all left-uniformly continuous functions on G and $\lambda_g(f)(x) := f(g^{-1}x)$.

Theorem

A UR amenable group is of finite iff it is a SIN-group.

UR Amenable Groups

A Hausdorff topological group G is called *amenable* if it admits an (left) invariant mean: $\exists m \in LUCB(G)^*_+, m(1) = 1$ with $m(\lambda_g(f)) = m(f), \forall g \in G$. Here, LUCB(G) := the set of all left-uniformly continuous functions on G and $\lambda_g(f)(x) := f(g^{-1}x)$.

Theorem

A UR amenable group is of finite iff it is a SIN-group.

UR Amenable Groups

Theorem

A UR amenable group is of finite iff it is a SIN-group.

Proof.

By UR, $\exists f$ pos def on G which generates the top of G. Define

$$\Psi_{x,f}(g):=f(g^{-1}xg), \ x,g\in G.$$

Then one can show $\Psi_{x,f} \in LUCB(G)$. Then

$$\psi_f(x) := m(\Psi_{x,f}), x \in G$$

is conti. pos. def. inv on G and one can show that it separates closed set $A(\not \supseteq 1)$ and 1.

Hiroshi Ando — On Polish Groups of Finite Type — September, 2011 Slide 13/19

Examples of Finite Type Polish Groups

Definition

Let M be a separable semifinite vNa with normal faithful semifinite trace τ . The group $\mathcal{U}(M)_2 := \{u \in \mathcal{U}(M); 1 - u \in L^2(M, \tau)\}$ is called a L^2 -unitary group of M. It is equipped with a metric

$$d(u,v):=||u-v||_2, u, v \in \mathcal{U}(M)_2.$$

Theorem

 $(\mathcal{U}(M)_2, d)$ is a Polish group of finite type.

Examples of Finite Type Polish Groups

Definition

Let *M* be a separable semifinite vNa with normal faithful semifinite trace τ . The group $\mathcal{U}(M)_2 := \{u \in \mathcal{U}(M); 1 - u \in L^2(M, \tau)\}$ is called a L^2 -unitary group of *M*. It is equipped with a metric

$$d(u,v):=||u-v||_2, u, v \in \mathcal{U}(M)_2.$$

Theorem

 $(\mathcal{U}(M)_2, d)$ is a Polish group of finite type.

L^2 -Unitary Group $\mathcal{U}(M)_2$

Theorem

 $(\mathcal{U}(M)_2, d)$ is a Polish group of finite type.

Proof.

Completeness of d: Let $\{u_n\}$ Cauchy seq in $\mathcal{U}(M)_2$. $\exists 1 - U = \lim(1 - u_n) \in L^2(M, \tau)$ Show: U bounded. Use measurability: $D := \operatorname{dom}(U) \cap M$ dense. Then one can show U is isometric on D, so it is actually unitary.

L^2 -Unitary Group $\mathcal{U}(M)_2$

Theorem

 $(\mathcal{U}(M)_2, d)$ is a Polish group of finite type.

Proof.

Completeness of d: Let $\{u_n\}$ Cauchy seq in $\mathcal{U}(M)_2$. $\exists 1 - U = \lim(1 - u_n) \in L^2(M, \tau)$ Show: U bounded. Use measurability: $D := \operatorname{dom}(U) \cap M$ dense. Then one can show U is isometric on D, so it is actually unitary. Finiteness: $f(u) := e^{-||u-1||_2^2}$, $u \in \mathcal{U}(M)_2$ works.

II_1 factor with Property (T)

Definition

II₁ factor (M, τ) has property (T) $\Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0 \text{ and } \mathcal{F} \subset M$ finite s.t. if $\varphi : M \to M$ is τ -preserving ucp map s.t. $||\varphi(x) - x||_2 < \delta$ $\forall x \in \mathcal{F}$, then $||\varphi(a) - a||_2 < \varepsilon ||a|| \forall a \in M$.

Let (M, τ) sep. II₁ factor. Then Aut(M) with the topology of pointwise $|| \cdot ||_2$ -convergence is a UR Polish SIN group. Recently, the following result was communicated to us by Uffe Haagerup.

Theorem

Let M be a separable II_1 factor with property (T). Then Aut(M) is a Polish group of finite type.

II_1 factor with Property (T)

Definition

II₁ factor (M, τ) has property (T) $\Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0 \text{ and } \mathcal{F} \subset M$ finite s.t. if $\varphi : M \to M$ is τ -preserving ucp map s.t. $||\varphi(x) - x||_2 < \delta$ $\forall x \in \mathcal{F}$, then $||\varphi(a) - a||_2 < \varepsilon ||a|| \forall a \in M$.

Let (M, τ) sep. II₁ factor. Then Aut(M) with the topology of pointwise $|| \cdot ||_2$ -convergence is a UR Polish SIN group. Recently, the following result was communicated to us by Uffe Haagerup.

Theorem

Let M be a separable II_1 factor with property (T). Then Aut(M) is a Polish group of finite type.

II_1 factor with Property (T)

Definition

II₁ factor (M, τ) has property (T) $\Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0 \text{ and } \mathcal{F} \subset M$ finite s.t. if $\varphi : M \to M$ is τ -preserving ucp map s.t. $||\varphi(x) - x||_2 < \delta$ $\forall x \in \mathcal{F}$, then $||\varphi(a) - a||_2 < \varepsilon ||a|| \forall a \in M$.

Let (M, τ) sep. II₁ factor. Then Aut(M) with the topology of pointwise $|| \cdot ||_2$ -convergence is a UR Polish SIN group. Recently, the following result was communicated to us by Uffe Haagerup.

Theorem

Let M be a separable II_1 factor with property (T). Then Aut(M) is a Polish group of finite type.

Permanence Properties

Operation	Finite Type?
Closed subgroup $H < G$	YES
Countable direct product $\prod_{n\geq 1} G_n$	YES
Quotient G/N	NO
Extension $1 \rightarrow N \rightarrow G \rightarrow K \rightarrow 1$	NO
Projective limit $\lim_{\leftarrow} G_n$	YES

Permanence Properties

Operation	Finite Type?
Closed subgroup $H < G$	YES
Countable direct product $\prod_{n\geq 1} G_n$	YES
Quotient G/N	NO
Extension $1 \rightarrow N \rightarrow G \rightarrow K \rightarrow 1$	NO
Projective limit $\lim_{\leftarrow} G_n$	YES

inductive limit? Gao-van den Dries Polish SIN-group?

Problem (Popa('05))

If a Polish SIN group G is unitarily representable $(G \hookrightarrow U(\ell^2))$, is it of fintie type?

Problem (Popa('05))

If a Polish SIN group G is unitarily representable $(G \hookrightarrow U(\ell^2))$, is it of fintie type?

Gao-van den Dries('09) constructed a Polish SIN group $G_0 = \overline{\mathbb{Q} * \mathbb{Q}}^{\delta}$, $\exists \delta$ bi-inv metric on $\mathbb{Q} * \mathbb{Q}$ s.t. : $\exists X(\cdot), Y(\cdot)$ conti. one-para subgroups of G_0 s.t. the limit

$$\lim_{n\to\infty}\left\{X\left(\frac{t}{n}\right)Y\left(\frac{t}{n}\right)\right\}^n$$

does NOT exist.

Problem (Popa('05))

If a Polish SIN group G is unitarily representable $(G \hookrightarrow U(\ell^2))$, is it of fintie type?

Gao-van den Dries('09) constructed a Polish SIN group $G_0 = \overline{\mathbb{Q} * \mathbb{Q}}^{\delta}$, $\exists \delta$ bi-inv metric on $\mathbb{Q} * \mathbb{Q}$ s.t. : $\exists X(\cdot), Y(\cdot)$ conti. one-para subgroups of G_0 s.t. the limit

$$\lim_{n\to\infty}\left\{X\left(\frac{t}{n}\right)Y\left(\frac{t}{n}\right)\right\}^n$$

does NOT exist.

But we showed ('10): if G_0 is of finite type, the above limit always exists for \forall one-para subgroups (Lie sum exists)!

Hiroshi Ando — On Polish Groups of Finite Type — September, 2011 Slide 18/19

$$G_0 = \overline{\mathbb{Q} * \mathbb{Q}}^{\delta}$$
 Gao-van den Dries group.

Question

Does $G_0 \hookrightarrow \mathcal{U}(\ell^2)$ hold?

$$G_0 = \overline{\mathbb{Q} * \mathbb{Q}}^{\delta}$$
 Gao-van den Dries group.

Question

Does $G_0 \hookrightarrow \mathcal{U}(\ell^2)$ hold?

We are still working on the problem...