Radial Multipliers on Reduced Free Products

Sören Möller

IMADA
University of Southern Denmark, Odense

September 15th, 2011

Radial
Multipliers on
Reduced Free Products

Sören Möller

Introduction
Free product
Problem
Class C
Known results
Main result
Example
Sketch of proof

Reduction to B(H)
Equivalence
$\Phi_{X, V}^{(i)}$
Open
questions

1 Introduction
■ Free product

- Problem
- Class \mathcal{C}

■ Known results
2 Main result

- Example

3 Sketch of proof

- Reduction to $\mathrm{B}(\mathrm{H})$
- Equivalence
- $\Phi_{x, y}^{(i)}$

4 Open questions

Freenes

Radial
Multipliers on
Reduced Free Products

Introduction
Free product
Problem
Class C
Known results
Main result
Example
Sketch of proof
we have

$$
\omega\left(a_{1} a_{2} \cdots a_{n}\right)=0
$$

Definition

For $\left(\mathcal{A}_{i}\right) \subseteq(\mathcal{A}, \omega)$ unital C^{*}-subalgebras we say $\left(\mathcal{A}_{i}\right)$ are free in \mathcal{A} if

$$
\forall n \in \mathbb{N} \quad \forall a_{j} \in \mathcal{A}_{i j}, 1 \leq j \leq n, i_{j} \neq i_{j+1}, \omega\left(a_{j}\right)=0
$$

Reduction to B(H)
Equivalence
$\Phi_{x, y}^{(i)}$

Reduced free product

Radial
Multipliers on
Reduced Free Products

Sören Möller

Introduction
Free product
Problem
Class C
Known results
Main result
Example
Sketch of
proof
Reduction to
B(H)
Equivalence
$\Phi_{x, y}^{(i)}$
Open
questions

Given unital C^{*}-algebras $\left(\mathcal{A}_{i}, \omega_{i}\right)$ construct algebra (\mathcal{A}, ω) such that

- $\left(\mathcal{A}_{i}\right)$ free in (\mathcal{A}, ω)

■ $\left.\omega\right|_{\mathcal{A}_{i}}=\omega_{i}$

Reduced free product

Radial
Multipliers on
Reduced Free Products

Sören Möller

Introduction
Free product
Problem
Class C
Known results
Main result
Example
Sketch of
proof
Reduction to
B(H)
Equivalence
$\Phi_{x, y}^{(i)}$

$$
(\mathcal{A}, \omega)=*_{i}\left(\mathcal{A}_{i}, \omega_{i}\right)
$$

Given unital C^{*}-algebras $\left(\mathcal{A}_{i}, \omega_{i}\right)$ construct algebra (\mathcal{A}, ω) such that

- $\left(\mathcal{A}_{i}\right)$ free in (\mathcal{A}, ω)

■ $\left.\omega\right|_{\mathcal{A}_{i}}=\omega_{i}$

Notation

Properties of reduced free product

Radial
Multipliers on
Reduced Free Products

Sören Möller

Introduction
Free product
Problem

- $\forall i: \mathcal{A}_{i} \subseteq B\left(H_{i}\right) \Rightarrow \mathcal{A}$ acts on $*_{i} H_{i}$

Properties of reduced free product

Radial
Multipliers on
Reduced Free Products

Sören Möller

Introduction
Free product
Problem
Class C
Known results
$\square \forall i: \mathcal{A}_{i} \subseteq B\left(H_{i}\right) \Rightarrow \mathcal{A}$ acts on $*_{i} H_{i}$

- $*_{i} C_{r}^{*}\left(G_{i}\right)=C_{r}^{*}\left(*_{i} G_{i}\right)$

Main result
Example
Sketch of
proof
Reduction to B(H)
Equivalence
$\Phi_{x, y}^{(i)}$
Open
questions

Properties of reduced free product

Radial
Multipliers on
Reduced Free Products

Sören Möller

Introduction
Free product
Problem
Class C
Known results
Main result
Example
Sketch of
proof
Reduction to B(H)
Equivatence
$\Phi_{x, y}^{(i)}$
Open
questions

- $\forall i: \mathcal{A}_{i} \subseteq B\left(H_{i}\right) \Rightarrow \mathcal{A}$ acts on $*_{i} H_{i}$
- $*_{i} C_{r}^{*}\left(G_{i}\right)=C_{r}^{*}\left(*_{i} G_{i}\right)$
- $*_{i} L\left(G_{i}\right)=L\left(*_{i} G_{i}\right)$

Properties of reduced free product

Radial
Multipliers on
Reduced Free Products

Sören Möller

Introduction
Free product
Problem
Class C
Known results
Main result
Example
Sketch of proof

Reduction to B(H)
Equivalence
$\Phi_{x, y}^{(i)}$
Open
questions

- $\forall i: \mathcal{A}_{i} \subseteq B\left(H_{i}\right) \Rightarrow \mathcal{A}$ acts on $*_{i} H_{i}$
- $*_{i} C_{r}^{*}\left(G_{i}\right)=C_{r}^{*}\left(*_{i} G_{i}\right)$
- $*_{i} L\left(G_{i}\right)=L\left(*_{i} G_{i}\right)$
- Dense subset $A=\mathbb{C} 1 \oplus \bigoplus_{n} \bigoplus_{i_{1}, \ldots i_{n}, i_{j} \neq i_{j+1}} \check{\mathcal{A}}_{i_{1}} \otimes \cdots \otimes{\stackrel{\mathcal{A}}{i_{n}}}$ where $\mathscr{\mathcal { A }}_{i}=\operatorname{ker} \omega_{i}$

Problem

Radial
Multipliers on
Reduced Free Products

Sören Möller

Introduction
Free product
Problem
Class C
Known results
Main result
Example
Sketch of
proof
Reduction to
B(H)
Equivalence
$\Phi_{X, V}^{(i)}$
Open
questions

Let $\phi: \mathbb{N}_{0} \rightarrow \mathbb{C}$ and $\mathcal{A}=*_{i} \mathcal{A}_{i}$ and define

$$
M_{\phi}\left(a_{1} \ldots a_{n}\right)=\phi(n) a_{1} \ldots a_{n} .
$$

Problem

Radial
Multipliers on
Reduced Free Products

Sören Möller

Introduction
Free product
Problem
Class C
Known results
Main result
Example
Sketch of
proof
Reduction to B(H)
Equivalence
$\Phi_{X, V}^{(i)}$
Open
questions

Let $\phi: \mathbb{N}_{0} \rightarrow \mathbb{C}$ and $\mathcal{A}=*_{i} \mathcal{A}_{i}$ and define

$$
M_{\phi}\left(a_{1} \ldots a_{n}\right)=\phi(n) a_{1} \ldots a_{n}
$$

■ Is M_{ϕ} welldefined on \mathcal{A} ?

Problem

Radial
Multipliers on
Reduced Free Products

Sören Möller

Introduction
Free product
Problem
Class C
Known results
Main result
Example
Sketch of
proof
Reduction to B(H)
Equivalence
$\Phi_{x, y}^{(i)}$
Open
questions

Let $\phi: \mathbb{N}_{0} \rightarrow \mathbb{C}$ and $\mathcal{A}=*_{i} \mathcal{A}_{i}$ and define

$$
M_{\phi}\left(a_{1} \ldots a_{n}\right)=\phi(n) a_{1} \ldots a_{n} .
$$

■ Is M_{ϕ} welldefined on \mathcal{A} ?
■ When is M_{ϕ} completely bounded?

Problem

Radial
Multipliers on
Reduced Free Products

Sören Möller

Introduction
Free product
Problem
Class C
Known results
Main result
Example
Sketch of
proof
Reduction to B(H)
Equivalence
$\Phi_{X, V}^{(i)}$
Open
questions

Let $\phi: \mathbb{N}_{0} \rightarrow \mathbb{C}$ and $\mathcal{A}=*_{i} \mathcal{A}_{i}$ and define

$$
M_{\phi}\left(a_{1} \ldots a_{n}\right)=\phi(n) a_{1} \ldots a_{n} .
$$

■ Is M_{ϕ} welldefined on \mathcal{A} ?

- When is M_{ϕ} completely bounded?
- For which \mathcal{A}_{i} ?

Problem

Radial
Multipliers on
Reduced Free Products

Sören Möller

Introduction
Free product
Problem
Class C
Known results
Main result
Example
Sketch of
proof
Reduction to B(H)
Equivalence
$\Phi_{x, v}^{(i)}$
Open
questions

Let $\phi: \mathbb{N}_{0} \rightarrow \mathbb{C}$ and $\mathcal{A}=*_{i} \mathcal{A}_{i}$ and define

$$
M_{\phi}\left(a_{1} \ldots a_{n}\right)=\phi(n) a_{1} \ldots a_{n}
$$

■ Is M_{ϕ} welldefined on \mathcal{A} ?
$■$ When is M_{ϕ} completely bounded?

- For which \mathcal{A}_{i} ?
- For which ϕ ?

Problem

Radial
Multipliers on Reduced Free Products

Sören Möller

Introduction
Free product
Problem
Class C
Known results
Main result
Example
Sketch of proof
Reduction to B(H)
Equivalence
$\Phi_{X, V}^{(i)}$
Open
questions

Let $\phi: \mathbb{N}_{0} \rightarrow \mathbb{C}$ and $\mathcal{A}=*_{i} \mathcal{A}_{i}$ and define

$$
M_{\phi}\left(a_{1} \ldots a_{n}\right)=\phi(n) a_{1} \ldots a_{n}
$$

■ Is M_{ϕ} welldefined on \mathcal{A} ?
$■$ When is M_{ϕ} completely bounded?

- For which \mathcal{A}_{i} ?

■ For which ϕ ?

- $\left\|M_{\phi}\right\|_{c b}=$?

Class \mathcal{C}

Radial

Definition

Let \mathcal{C} denote the set of functions $\phi: \mathbb{N}_{0} \rightarrow \mathbb{C}$ for which the Hankel matrices

$$
\begin{aligned}
& h=(\phi(i+j)-\phi(i+j+1))_{i, j \geq 0} \\
& k=(\phi(i+j+1)-\phi(i+j+2))_{i, j \geq 0}
\end{aligned}
$$

are of trace class and $c=\lim _{n \rightarrow \infty} \phi(n)$ exists.
For $\phi \in \mathcal{C}$ put

$$
\|\phi\|_{\mathcal{C}}=\|h\|_{1}+\|k\|_{1}+|c|
$$

Known results

Radial

Introduction
Free product
Problem
Class C
Known results
Main result
Example
Sketch of
proof
Reduction to
B(H)
Equivalence
$\phi_{x, y}^{(i)}$

Theorem (Wysoczanski 1995)
Let $G=*_{i \in I} G_{i}$ and $\phi \in \mathcal{C}$ then $M_{\phi}: C_{r}^{*}(G) \rightarrow C_{r}^{*}(G)$ is welldefined and

$$
\left\|M_{\phi}\right\|_{c b} \leq\|\phi\|_{\mathcal{C}} .
$$

Theorem (Ricard-Xu 2006)
Let $\mathcal{A}=*_{i} \mathcal{A}_{i}$ and $\phi(n)=s^{n}, s \in(0,1)$ then $M_{\phi}: \mathcal{A} \rightarrow \mathcal{A}$ is welldefined and

$$
\left\|M_{\phi}\right\|_{c b} \leq 1
$$

Our result

Radial Multipliers on Reduced Free Products

Sören Möller

Introduction
Free product
Problem
Class C
Known results
Main result
Example
Sketch of
proof
Reduction to
B(H)
Equivalence

Theorem (Haagerup-M 2010)

Let $\mathcal{A}=*_{i \in I}\left(\mathcal{A}_{i}, \omega_{i}\right)$ be the reduced free product of unital C^{*}-algebras $\left(\mathcal{A}_{i}\right)_{i \in I}$ with respect to states $\left(\omega_{i}\right)_{i \in I}$ for which the GNS-representation $\pi_{\omega_{i}}$ is faithful for all $i \in I$. If $\phi \in \mathcal{C}$, then there is an unique linear completely bounded map

$$
M_{\phi}: \mathcal{A} \rightarrow \mathcal{A}
$$

such that $M_{\phi}(1)=\phi(0) 1$ and

$$
M_{\phi}\left(a_{1} a_{2} \ldots a_{n}\right)=\phi(n) a_{1} a_{2} \ldots a_{n}
$$

whenever $a_{j} \in \mathscr{\mathcal { A }}_{i_{j}}=\operatorname{ker}\left(\omega_{i_{j}}\right)$ and $i_{1} \neq i_{2} \neq \cdots \neq i_{n}$. Moreover $\left\|M_{\phi}\right\|_{c b} \leq\|\phi\|_{\mathcal{C}}$.

Example

Radial
Multipliers on
Reduced Free Products

Sören Möller

Introduction
Free product
Problem
Class C
Known results

Main result

Example
Sketch of
proof
Reduction to
B(H)
Equivalence
$\Phi_{x, y}^{(i)}$
Open
questions

Let $\mathbb{D}=\{s \in \mathbb{C}| | s \mid<1\}$. For every $s \in \mathbb{D}$

$$
\phi_{s}(n)=s^{n}
$$

defines a radial multiplier M_{ϕ} on $\mathcal{A}=*_{i \in I}\left(\mathcal{A}_{i}, \omega_{i}\right)$ with

$$
\left\|M_{\phi_{s}}\right\|_{c b} \leq \frac{|1-s|}{1-|s|}
$$

Strategy

Radial
Multipliers on
Reduced Free Products

Sören Möller

Introduction
Free product
Problem
Class C
Known results
Main result
Example
Sketch of proof
Reduction to $\mathrm{B}(\mathrm{H})$
Equivalence
$\Phi_{X}^{(i)}$

- Uniqueness of M_{ϕ}
- Reduce to $A_{i}=B\left(H_{i}\right)$

■ Equivalent description of M_{ϕ}

- Construct $\Phi_{x, y}^{i}$

■ Construct T_{1}, T_{2}, T

- Show T is M_{ϕ}

■ Estimate $\|T\|_{c b}$

Reduce to $A_{i}=B\left(H_{i}\right)$

Radial
Multipliers on
Reduced Free Products

Sören Möller
■ Assume the theorem holds for $\left(B\left(H_{i}\right), \omega_{\Omega_{i}}\right)$
Introduction
Free product
Problem
Class C
Known results
Main result
Example
Sketch of
proof
Reduction to
B(H)
Equivalence
$\Phi_{x, y}^{(i)}$
Open
questions

Reduce to $A_{i}=B\left(H_{i}\right)$

Radial
Multipliers on
Reduced Free Products

Sören Möller
■ Assume the theorem holds for $\left(B\left(H_{i}\right), \omega_{\Omega_{i}}\right)$
$■$ Let $(A, \omega)=*_{i}\left(A_{i}, \omega_{i}\right)$

Reduce to $A_{i}=B\left(H_{i}\right)$

Radial
Multipliers on
Reduced Free Products

■ Assume the theorem holds for $\left(B\left(H_{i}\right), \omega_{\Omega_{i}}\right)$
$■$ Let $(A, \omega)=*_{i}\left(A_{i}, \omega_{i}\right)$
■ Let $\left(H_{i}, \Omega_{i}\right)=\left(H_{\omega_{i}}, \xi_{\omega_{i}}\right)$ from GNS-representation of $\left(A_{i}, \omega_{i}\right)$ Denote by $(H, \Omega)=*_{i}\left(H_{i}, \Omega_{i}\right)$

Reduce to $A_{i}=B\left(H_{i}\right)$

Radial
Multipliers on
Reduced Free Products

Sören Möller

Introduction
Free product
Problem
Class C
Known results
Main result
Example
Sketch of proof
Reduction to B(H)
Equivalence
$\phi_{x, y}^{(i)}$
Open
questions

■ Assume the theorem holds for $\left(B\left(H_{i}\right), \omega_{\Omega_{i}}\right)$
\square Let $(A, \omega)=*_{i}\left(A_{i}, \omega_{i}\right)$

- Let $\left(H_{i}, \Omega_{i}\right)=\left(H_{\omega_{i}}, \xi_{\omega_{i}}\right)$ from GNS-representation of $\left(A_{i}, \omega_{i}\right)$ Denote by $(H, \Omega)=*_{i}\left(H_{i}, \Omega_{i}\right)$
■ Now $\left(A_{i}, \omega_{i}\right)$ can be realized as subalgebra of $B(H, \Omega)$

Reduce to $A_{i}=B\left(H_{i}\right)$

Radial
Multipliers on
Reduced Free Products

Sören Möller

Introduction
Free product
Problem
Class C
Known results
Main result
Example
Sketch of
proof
Reduction to B(H)
Equivalence
$\Phi_{X, v}^{(i)}$
Open
questions

■ Assume the theorem holds for $\left(B\left(H_{i}\right), \omega_{\Omega_{i}}\right)$
\square Let $(A, \omega)=*_{i}\left(A_{i}, \omega_{i}\right)$
■ Let $\left(H_{i}, \Omega_{i}\right)=\left(H_{\omega_{i}}, \xi_{\omega_{i}}\right)$ from GNS-representation of $\left(A_{i}, \omega_{i}\right)$ Denote by $(H, \Omega)=*_{i}\left(H_{i}, \Omega_{i}\right)$
■ Now $\left(A_{i}, \omega_{i}\right)$ can be realized as subalgebra of $B(H, \Omega)$

- Use the theorem to find $M_{\phi}: B(H) \rightarrow B(H)$

Reduce to $A_{i}=B\left(H_{i}\right)$

■ Assume the theorem holds for $\left(B\left(H_{i}\right), \omega_{\Omega_{i}}\right)$
\square Let $(A, \omega)=*_{i}\left(A_{i}, \omega_{i}\right)$
■ Let $\left(H_{i}, \Omega_{i}\right)=\left(H_{\omega_{i}}, \xi_{\omega_{i}}\right)$ from GNS-representation of $\left(A_{i}, \omega_{i}\right)$ Denote by $(H, \Omega)=*_{i}\left(H_{i}, \Omega_{i}\right)$

- Now $\left(A_{i}, \omega_{i}\right)$ can be realized as subalgebra of $B(H, \Omega)$
- Use the theorem to find $M_{\phi}: B(H) \rightarrow B(H)$
- Then $\left.M_{\phi}\right|_{A}: A \rightarrow A$ with right behaviour

Reduce to $A_{i}=B\left(H_{i}\right)$

■ Assume the theorem holds for $\left(B\left(H_{i}\right), \omega_{\Omega_{i}}\right)$
\square Let $(A, \omega)=*_{i}\left(A_{i}, \omega_{i}\right)$
■ Let $\left(H_{i}, \Omega_{i}\right)=\left(H_{\omega_{i}}, \xi_{\omega_{i}}\right)$ from GNS-representation of $\left(A_{i}, \omega_{i}\right)$ Denote by $(H, \Omega)=*_{i}\left(H_{i}, \Omega_{i}\right)$
■ Now $\left(A_{i}, \omega_{i}\right)$ can be realized as subalgebra of $B(H, \Omega)$

- Use the theorem to find $M_{\phi}: B(H) \rightarrow B(H)$
- Then $\left.M_{\phi}\right|_{A}: A \rightarrow A$ with right behaviour
- $\left\|\left.M_{\phi}\right|_{\mathcal{A}}\right\|_{c b} \leq\left\|M_{\phi}\right\|_{c b} \leq\|\phi\|_{\mathcal{C}}$

Notation

Radial
Multipliers on
Reduced Free Products

Sören Möller

Introduction
Free product
Problem
Class C
Known results
Main result
Example
Sketch of
proof
Reduction to B(H)
Equivalence
$\Phi_{x, y}^{(i)}$
Open
questions

$$
H=\mathbb{C} \Omega \oplus \bigoplus_{n=0}^{\infty} \bigoplus_{i_{1} \neq \cdots \neq i_{n}}{\stackrel{\circ}{i_{1}}}^{\infty} \cdots \otimes{\stackrel{\circ}{i_{n}}}_{i_{n}}
$$

and denote basis by

$$
\Lambda=\{\Omega\} \cup \bigcup_{n=1}^{\infty}\left\{\gamma_{1} \otimes \cdots \otimes \gamma_{n} \mid \gamma_{j} \in \stackrel{\circ}{\Gamma}_{i_{j}}, i_{1} \neq \cdots \neq i_{n}\right\}
$$

Notation

Radial
Multipliers on
Reduced Free Products

Sören Möller

Introduction
Free product
Problem
Class C
Known results
Main result
Example
Sketch of
proof
Reduction to B(H)
Equivalence
$\Phi_{x, y}^{(i)}$
Open
questions

$$
H=\mathbb{C} \Omega \oplus \bigoplus_{n=0}^{\infty} \bigoplus_{i_{1} \neq \cdots \neq i_{n}} \dot{H}_{i_{1}} \otimes \cdots \otimes \check{H}_{i_{n}} .
$$

and denote basis by

$$
\Lambda=\{\Omega\} \cup \bigcup_{n=1}^{\infty}\left\{\gamma_{1} \otimes \cdots \otimes \gamma_{n} \mid \gamma_{j} \in \stackrel{\circ}{\Gamma}_{i_{j}}, i_{1} \neq \cdots \neq i_{n}\right\}
$$

■ For $\gamma \in H$, define $L_{\gamma} \in B(H)$ as

$$
L_{\gamma}(\chi)=\left\{\begin{array}{cl}
\gamma \otimes \chi & \text { if } i \neq i_{1} \\
0 & \text { if } i=i_{1}
\end{array}\right.
$$

For $\eta, \xi \in H$ let case 2 if $\eta_{|\eta|}, \xi_{|\xi|} \in H_{i}$ and case 1 otherwise.

Equivalent description of M_{ϕ}

Radial
Multipliers on Reduced Free Products

Sören Möller

Introduction
Free product
Problem
Class C
Known results
Main result
Example
Sketch of
proof
Reduction to
B(H)
Equivalence
$\Phi_{X, y}^{(i)}$
Open
questions

Lemma

Let $T: B(H) \rightarrow B(H)$ be a bounded linear normal map, and let $\phi: \mathbb{N}_{0} \rightarrow \mathbb{C}$ be a function on \mathbb{N}_{0}. TFAE

Equivalent description of M_{ϕ}

Radial
Multipliers on Reduced Free Products

Sören Möller

Introduction
Free product
Problem
Class C
Known results
Main result
Example
Sketch of
proof
Reduction to B(H)
Equivalence

Lemma

Let $T: B(H) \rightarrow B(H)$ be a bounded linear normal map, and let $\phi: \mathbb{N}_{0} \rightarrow \mathbb{C}$ be a function on \mathbb{N}_{0}. TFAE
(a) $T(1)=\phi(0) 1$ and

$$
T\left(a_{1} a_{2} \ldots a_{n}\right)=\phi(n) a_{1} a_{2} \ldots a_{n}
$$

whenever $a_{j} \in B\left(\dot{H}_{i_{j}}\right)=\operatorname{ker}\left(\omega_{i_{j}}\right)$ and $i_{1} \neq i_{2} \neq \cdots \neq i_{n}$.

Equivalent description of M_{ϕ}

Radial Multipliers on Reduced Free Products

Sören Möller
ntroduction
Free product
Problem
Class C
Known results
Main result Example

Sketch of proof

Reduction to B(H)
Equivalence

Lemma

Let $T: B(H) \rightarrow B(H)$ be a bounded linear normal map, and let $\phi: \mathbb{N}_{0} \rightarrow \mathbb{C}$ be a function on \mathbb{N}_{0}. TFAE
(a) $T(1)=\phi(0) 1$ and

$$
T\left(a_{1} a_{2} \ldots a_{n}\right)=\phi(n) a_{1} a_{2} \ldots a_{n}
$$

whenever $a_{j} \in B\left(\check{H}_{i_{j}}\right)=\operatorname{ker}\left(\omega_{i_{j}}\right)$ and $i_{1} \neq i_{2} \neq \cdots \neq i_{n}$.
(b) For all $k, l \in \mathbb{N}_{0}$ and $\xi \in \Lambda(k), \eta \in \Lambda(I)$ we have

$$
T\left(L_{\xi} L_{\eta}^{*}\right)= \begin{cases}\phi(k+I) L_{\xi} L_{\eta}^{*} & \text { in case } 1 \\ \phi(k+I-1) L_{\xi} L_{\eta}^{*} & \text { in case } 2 .\end{cases}
$$

More notation

Radial
Multipliers on
Reduced Free Products

Sören Möller

Introduction
Free product
Problem
Class C
Known results
Main result
Example
Sketch of
proof
Reduction to
B(H)
Equivalence
$\Phi_{x, y}^{(i)}$
Open
questions

■ For $\gamma \in H$, define $R_{\gamma} \in B(H)$ as

$$
R_{\gamma}(\chi)=\left\{\begin{array}{cl}
\chi \otimes \gamma & \text { if } i \neq i_{1} \\
0 & \text { if } i=i_{1}
\end{array}\right.
$$

More notation

Radial
Multipliers on
Reduced Free Products

Sören Möller

Introduction
Free product
Problem
Class C
Known results
Main result
Example
Sketch of
proof
Reduction to B(H)
Equivalence
$\Phi_{x, y}^{(i)}$
Open
questions

■ For $\gamma \in H$, define $R_{\gamma} \in B(H)$ as

$$
R_{\gamma}(\chi)=\left\{\begin{array}{cc}
\chi \otimes \gamma & \text { if } i \neq i_{1} \\
0 & \text { if } i=i_{1}
\end{array}\right.
$$

■ For $a=\left(a_{i}\right) \in I^{\infty}\left(\mathbb{N}_{0}\right)$ let

$$
D_{a}\left(\xi_{1} \otimes \cdots \otimes \xi_{n}\right)=a_{n} \xi_{1} \otimes \cdots \otimes \xi_{n} \text { and } D_{a}(\Omega)=a_{0} \Omega
$$

More notation

Radial
Multipliers on
Reduced Free Products

Sören Möller

Introduction
Free product
Problem
Class C
Known results
Main result
Example
Sketch of proof
Reduction to B(H)
Equivalence $\Phi_{x, y}^{(i)}$
Open questions

■ For $\gamma \in H$, define $R_{\gamma} \in B(H)$ as

$$
R_{\gamma}(\chi)=\left\{\begin{array}{cc}
\chi \otimes \gamma & \text { if } i \neq i_{1} \\
0 & \text { if } i=i_{1}
\end{array}\right.
$$

■ For $a=\left(a_{i}\right) \in I^{\infty}\left(\mathbb{N}_{0}\right)$ let
$D_{a}\left(\xi_{1} \otimes \cdots \otimes \xi_{n}\right)=a_{n} \xi_{1} \otimes \cdots \otimes \xi_{n}$ and $D_{a}(\Omega)=a_{0} \Omega$

- $\rho(a)=\sum_{\gamma \in \Lambda(1)} R_{\gamma} a R_{\gamma}^{*}$

More notation

Radial
Multipliers on
Reduced Free Products

Sören Möller

Introduction
Free product
Problem
Class C
Known results
Main result
Example
Sketch of
proof
Reduction to B(H)
Equivalence
$\Phi_{x, y}^{(i)}$
Open
questions

- For $\gamma \in H$, define $R_{\gamma} \in B(H)$ as

$$
R_{\gamma}(\chi)=\left\{\begin{array}{cc}
\chi \otimes \gamma & \text { if } i \neq i_{1} \\
0 & \text { if } i=i_{1}
\end{array}\right.
$$

■ For $a=\left(a_{i}\right) \in I^{\infty}\left(\mathbb{N}_{0}\right)$ let
$D_{a}\left(\xi_{1} \otimes \cdots \otimes \xi_{n}\right)=a_{n} \xi_{1} \otimes \cdots \otimes \xi_{n}$ and $D_{a}(\Omega)=a_{0} \Omega$

- $\rho(a)=\sum_{\gamma \in \Lambda(1)} R_{\gamma} a R_{\gamma}^{*}$
- $\epsilon(a)=\sum_{i \in I} q_{i} a q_{i}$ for q_{i} the projection on

$$
\operatorname{span}\left\{\xi \in \Lambda(n) \mid n \geq 1, \xi=\gamma_{1} \otimes \cdots \otimes \gamma_{n}, \gamma_{n} \in \check{\Gamma}_{i}\right\}
$$

Construction of maps

Radial
Multipliers on
Reduced Free Products

Sören Möller
For $x, y \in I^{2}\left(\mathbb{N}_{0}\right)$ and $a \in B(H)$ put
■ $\Phi_{x, y}^{(1)}(a)=\sum_{n=0}^{\infty} D_{\left(S^{*}\right)^{n} x} a D_{\left(S^{*}\right)^{n} y}^{*}+\sum_{n=1}^{\infty} D_{S^{n} x} \rho^{n}(a) D_{S^{n} y}^{*}$

Construction of maps

Radial
Multipliers on
Reduced Free Products

Sören Möller

Introduction
Free product
Problem
Class C
Known results
Main result Example

Sketch of proof

For $x, y \in I^{2}\left(\mathbb{N}_{0}\right)$ and $a \in B(H)$ put
■ $\Phi_{x, y}^{(1)}(a)=\sum_{n=0}^{\infty} D_{\left(S^{*}\right)^{n} x} a D_{\left(S^{*}\right)^{n} y}^{*}+\sum_{n=1}^{\infty} D_{S^{n} x} \rho^{n}(a) D_{S^{n} y}^{*}$

- $\Phi_{x, y}^{(2)}(a)=$
$\sum_{n=0}^{\infty} D_{\left(S^{*}\right)^{n} \times} a D_{\left(S^{*}\right)^{n} y}^{*}+\sum_{n=1}^{\infty} D_{S^{n} x} \rho^{n-1}(\epsilon(a)) D_{S^{n} y}^{*}$

Construction of maps

Radial
Multipliers on Reduced Free Products

Sören Möller

Introduction
Free product
Problem
Class \mathcal{C}
Known results
Main result
Example
Sketch of
proof
Reduction to
B(H)
Equivalence
$\Phi_{x, y}^{(i)}$
Open
questions

For $x, y \in I^{2}\left(\mathbb{N}_{0}\right)$ and $a \in B(H)$ put
■ $\Phi_{x, y}^{(1)}(a)=\sum_{n=0}^{\infty} D_{\left(S^{*}\right)^{n} x} a D_{\left(S^{*}\right)^{n} y}^{*}+\sum_{n=1}^{\infty} D_{S^{n} x} \rho^{n}(a) D_{S^{n} y}^{*}$

- $\Phi_{x, y}^{(2)}(a)=$

$$
\sum_{n=0}^{\infty} D_{\left(S^{*}\right)^{n} x} a D_{\left(S^{*}\right)^{n} y}^{*}+\sum_{n=1}^{\infty} D_{S^{n} x} \rho^{n-1}(\epsilon(a)) D_{S^{n} y}^{*}
$$

Lemma

For $\xi \in \Lambda(k), \eta \in \Lambda(I)$ we have

$$
\begin{aligned}
\rho^{n}\left(L_{\xi} L_{\eta}^{*}\right) & =L_{\xi} L_{\eta}^{*} P_{\{\zeta \in H\| \| \zeta \mid \leq 1+n\}} \\
\epsilon\left(L_{\xi} L_{\eta}^{*}\right) & = \begin{cases}\rho\left(L_{\xi} L_{\eta}^{*}\right) & \text { in case } 1 \\
L_{\xi} L_{\eta}^{*} & \text { in case } 2\end{cases}
\end{aligned}
$$

Properties of $\phi_{x, y}^{(i)}$

Radial
Multipliers on Reduced Free Products

Sören Möller

Introduction
Free product
Problem
Class C
Known results
Main result
Example
Sketch of proof

Reduction to
B(H)
Equivalence
$\Phi_{x, y}^{(i)}$
Open questions

Lemma

$$
\text { If } \xi \in \Lambda(k), \eta \in \Lambda(I) \text { then }
$$

$$
\Phi_{x, y}^{(1)}\left(L_{\xi} L_{\eta}^{*}\right)=\left(\sum_{t=0}^{\infty} x(k+t) \overline{y(I+t)}\right) L_{\xi} L_{\eta}^{*}
$$

and

$$
\Phi_{x, y}^{(2)}\left(L_{\xi} L_{\eta}^{*}\right)= \begin{cases}\sum_{t=0}^{\infty} x(k+t) \overline{y(I+t)} L_{\xi} L_{\eta}^{*} & \text { case } 1 \\ \sum_{t=0}^{\infty} x(k+t-1) \overline{y(I+t-1)} L_{\xi} L_{\eta}^{*} & \text { case } 2\end{cases}
$$

Properties of $\phi \in \mathcal{C}$

Radial
Multipliers on Reduced Free Products

Introduction
Free product
Problem
Class C
Known results
Main result
Example
Sketch of
proof
Reduction to
B(H)
Equivalence
$\Phi_{x, y}^{(i)}$
Open
questions

Lemma

With

$$
\begin{gather*}
\phi(n)=\psi_{1}(n)+\psi_{2}(n)+c \\
\psi_{1}(k+I)=\sum_{i=1}^{\infty} \sum_{t=0}^{\infty} x_{i}(k+t) \overline{y_{i}(I+t)} \tag{1}\\
\psi_{2}(k+I)=\sum_{i=1}^{\infty} \sum_{t=0}^{\infty} z_{i}(k+t) \overline{w_{i}(I+t)} .
\end{gather*}
$$

for $h=\sum_{i=1}^{\infty} x_{i} \odot y_{i}$ and $k=\sum_{i=1}^{\infty} z_{i} \odot w_{i}$

Construction of maps 2

Radial
Multipliers on
Reduced Free Products

Sören Möller

Introduction
Free product
Problem
Class C
Known results
Main result
Example
Sketch of
proof
Reduction to
B(H)
Equivalence
$\Phi_{x, y}^{(i)}$
Open
questions

Define

- $T_{1}=\sum_{i=1}^{\infty} \Phi_{x_{i}, y_{i}}^{(1)}$ for $h=\sum_{i=1}^{\infty} x_{i} \odot y_{i}$

Construction of maps 2

Radial
Multipliers on Reduced Free Products

Main result
Example
Sketch of proof

Reduction to B(H)
Equivalence
$\Phi_{X, y}^{(i)}$
Open
questions

Define

- $T_{1}=\sum_{i=1}^{\infty} \Phi_{x_{i}, y_{i}}^{(1)}$ for $h=\sum_{i=1}^{\infty} x_{i} \odot y_{i}$
- $T_{2}=\sum_{i=1}^{\infty} \Phi_{z_{i}, w_{i}}^{(2)}$ for $k=\sum_{i=1}^{\infty} z_{i} \odot w_{i}$

Construction of maps 2

Radial
Multipliers on Reduced Free Products

Main result
Example
Sketch of proof

Reduction to B(H)
Equivalence
$\Phi_{x, y}^{(i)}$
Open
questions

Define

- $T_{1}=\sum_{i=1}^{\infty} \Phi_{x_{i}, y_{i}}^{(1)}$ for $h=\sum_{i=1}^{\infty} x_{i} \odot y_{i}$
- $T_{2}=\sum_{i=1}^{\infty} \Phi_{z_{i}, w_{i}}^{(2)}$ for $k=\sum_{i=1}^{\infty} z_{i} \odot w_{i}$

■ $T=T_{1}+T_{2}+c l$

Construction of maps 2

Radial
Multipliers on
Reduced Free Products

Sören Möller

Introduction
Free product
Problem
Class C
Known results
Main result
Example
Sketch of
proof
Reduction to
B(H)
Equivalence
$\Phi_{x, y}^{(i)}$
Open
questions

Define

- $T_{1}=\sum_{i=1}^{\infty} \Phi_{x_{i}, y_{i}}^{(1)}$ for $h=\sum_{i=1}^{\infty} x_{i} \odot y_{i}$
- $T_{2}=\sum_{i=1}^{\infty} \Phi_{z_{i}, w_{i}}^{(2)}$ for $k=\sum_{i=1}^{\infty} z_{i} \odot w_{i}$
- $T=T_{1}+T_{2}+c l$

■ . . T has the right behavior

Estimate $\|T\|_{c b}$

Radial
Multipliers on
Reduced Free Products

Sören Möller

Introduction
Free product
Problem
Class C
Known results
Main result
Example
Sketch of
proof
Reduction to
B(H)
Equivalence
$\Phi_{x, y}^{(i)}$
Open
questions

- $\left\|\Phi_{x_{i}, y_{i}}^{(1)}\right\|_{c b} \leq\left\|x_{i}\right\|_{2}\left\|y_{i}\right\|_{2}$

Estimate $\|T\|_{c b}$

Radial
Multipliers on
Reduced Free Products

Sören Möller

Introduction
Free product
Problem
Class C
Known results

- $\left\|\Phi_{x_{i}, y_{i}}^{(1)}\right\|_{c b} \leq\left\|x_{i}\right\|_{2}\left\|y_{i}\right\|_{2}$
- $\left\|\Phi_{z_{i}, w_{i}}^{(2)}\right\|_{c b} \leq\left\|z_{i}\right\|_{2}\left\|w_{i}\right\|_{2}$

Estimate $\|T\|_{c b}$

Radial
Multipliers on
Reduced Free Products

Sören Möller

Introduction
Free product
Problem
Class C
Known results
Main result
Example
Sketch of proof

Reduction to
B(H)
Equivalence
$\Phi_{x, y}^{(i)}$
Open
questions

- $\left\|\Phi_{x_{i}, y_{i}}^{(1)}\right\|_{c b} \leq\left\|x_{i}\right\|_{2}\left\|y_{i}\right\|_{2}$
- $\left\|\Phi_{z_{i}, w_{i}}^{(2)}\right\|_{c b} \leq\left\|z_{i}\right\|_{2}\left\|w_{i}\right\|_{2}$
- $\left\|T_{1}\right\|_{c b} \leq \sum_{i=1}^{\infty}\left\|\Phi_{x_{i}, y_{i}}^{(1)}\right\|_{c b} \leq\|h\|_{1}$

Estimate $\|T\|_{c b}$

Radial
Multipliers on
Reduced Free
Products
Sören Möller

Introduction
Free product
Problem
Class C
Known results
Main result
Example
Sketch of
proof
Reduction to
B(H)
Equivalence
$\Phi_{x, y}^{(i)}$
Open
questions

- $\left\|\Phi_{x_{i}, y_{i}}^{(1)}\right\|_{c b} \leq\left\|x_{i}\right\|_{2}\left\|y_{i}\right\|_{2}$
- $\left\|\Phi_{z_{i}, w_{i}}^{(2)}\right\|_{c b} \leq\left\|z_{i}\right\|_{2}\left\|w_{i}\right\|_{2}$
- $\left\|T_{1}\right\|_{c b} \leq \sum_{i=1}^{\infty}\left\|\Phi_{x_{i} y_{i}}^{(1)}\right\|_{c b} \leq\|h\|_{1}$
- $\left\|T_{2}\right\|_{c b} \leq \sum_{i=1}^{\infty}\left\|\Phi_{z_{i}, w_{i}}^{(2)}\right\|_{c b} \leq\|k\|_{1}$

Estimate $\|T\|_{c b}$

Radial
Multipliers on
Reduced Free
Products
Sören Möller

Introduction
Free product
Problem
Class \mathcal{C}
Known results
Main result
Example
Sketch of
proof
Reduction to
B(H)
Equivalence $\Phi_{x, y}^{(i)}$
Open
questions

- $\left\|\Phi_{x_{i}, y_{i}}^{(1)}\right\|_{c b} \leq\left\|x_{i}\right\|_{2}\left\|y_{i}\right\|_{2}$
- $\left\|\Phi_{z_{i}, w_{i}}^{(2)}\right\|_{c b} \leq\left\|z_{i}\right\|_{2}\left\|w_{i}\right\|_{2}$
- $\left\|T_{1}\right\|_{c b} \leq \sum_{i=1}^{\infty}\left\|\Phi_{x_{i} y_{i}}^{(1)}\right\|_{c b} \leq\|h\|_{1}$
- $\left\|T_{2}\right\|_{c b} \leq \sum_{i=1}^{\infty}\left\|\Phi_{z i, w_{i}}^{(2)}\right\|_{c b} \leq\|k\|_{1}$
- \|T $\left\|_{c b} \leq\right\| T_{1}\left\|_{c b}+\right\| T_{2}\left\|_{c b}+\right\| c l d\left\|_{c b} \leq\right\| \phi \|_{C}$

Radial Multipliers on Reduced Free Products

Sören Möller

Introduction Free product Problem Class C
Known results
Main result Example

Sketch of proof

Reduction to B(H)
Equivalence $\Phi_{X, y}^{(i)}$

Theorem (Haagerup-M 2010)
Let $(\mathcal{M}, \omega)=\bar{\star}_{i \in I}\left(\mathcal{M}_{i}, \omega_{i}\right)$ be the w^{*}-reduced free product of von Neumann algebras $\left(\mathcal{M}_{i}\right)_{i \in I}$ with respect to normal states $\left(\omega_{i}\right)_{i \in I}$ for which the GNS-representation $\pi_{\omega_{i}}$ is faithful for all $i \in l$.
If $\phi \in \mathcal{C}$, then there is an unique linear completely bounded normal map

$$
M_{\phi}: \mathcal{M} \rightarrow \mathcal{M}
$$

such that $M_{\phi}(1)=\phi(0) 1$ and

$$
M_{\phi}\left(a_{1} a_{2} \ldots a_{n}\right)=\phi(n) a_{1} a_{2} \ldots a_{n}
$$

whenever $a_{j} \in \dot{\mathcal{M}}_{i_{j}}=\operatorname{ker}\left(\omega_{i_{j}}\right)$ and $i_{1} \neq i_{2} \neq \cdots \neq i_{n}$. Moreover $\left\|M_{\phi}\right\|_{c b} \leq\|\phi\|_{\mathcal{C}}$.

Open questions

Radial
Multipliers on
Reduced Free Products

■ For which $\left(A_{i}, \omega_{i}\right)_{i \in I}$ holds $\left\|M_{\phi}\right\|_{c b}=\|\phi\|_{\mathcal{C}}$ for all $\phi \in \mathcal{C}$?
■ [Wysoczanski 1995] True if $A_{i}=C_{r}^{*}\left(G_{i}\right),\left|G_{i}\right|=\infty$, $|I|=\infty$

Open questions

Radial
Multipliers on
Reduced Free Products

■ For which $\left(A_{i}, \omega_{i}\right)_{i \in I}$ holds $\left\|M_{\phi}\right\|_{c b}=\|\phi\|_{\mathcal{C}}$ for all $\phi \in \mathcal{C}$?
■ [Wysoczanski 1995] True if $A_{i}=C_{r}^{*}\left(G_{i}\right),\left|G_{i}\right|=\infty$, $|I|=\infty$
■ Use $\left(\phi_{k}\right)_{k} \subset \mathcal{C}$ with finite support, pointwise converging to 1 on CCAP

Open questions

■ For which $\left(A_{i}, \omega_{i}\right)_{i \in I}$ holds $\left\|M_{\phi}\right\|_{c b}=\|\phi\|_{\mathcal{C}}$ for all $\phi \in \mathcal{C}$?
■ [Wysoczanski 1995] True if $A_{i}=C_{r}^{*}\left(G_{i}\right),\left|G_{i}\right|=\infty$, $|I|=\infty$
■ Use $\left(\phi_{k}\right)_{k} \subset \mathcal{C}$ with finite support, pointwise converging to 1 on CCAP

■ Almagamated counterpart

- scalar valued ϕ
- B-valued ϕ

