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Definition
For (A;) C (A, w) unital C*-subalgebras we say (.A4;) are free in
A if

Free product

VneN Vaje A, 1<j<nij#iy1,w(a) =0
we have

w(aiaz---ap) =0.
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= Wl = wi
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SV Given unital C*-algebras (A;,wj) construct algebra (A w) such
that

Free product [ | (A’) free |n (A;w)

= Wl = wi

(Av w) = *i(Ai7wi)
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T gt m Vi: A; C B(H;) = A acts on *;H;
m o, CH(Gj) = G (%iGj)
m xL(G;) = L(%;G))
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Frem et m Vi: A; C B(H;) = A acts on *;H;
m x,C(G)) = CF(*Gj)

m xL(Gj) = L(%G))

m Dense subset A=Cle P, D Ao 0A

A e in

where A; = ker w;
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Let ¢ : Ng — C and A = %;A; and define
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Mg(a1...an) = ¢(n)a1 ... an.

Is My welldefined on A?

When is My completely bounded?
For which A;?

For which ¢?

[Mgllco =7
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Let C denote the set of functions ¢ : Ng — C for which the
Hankel matrices

h=(¢(i +J) — (i +j+1))ij>0
k= (o(i +j+1) = (i +j+2))ij>0

are of trace class and ¢ = limp_,o ¢(n) exists.
For ¢ € C put

olle = [1hllx + [lkllz + |<l.
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<oren v 1@ Theorem (Wysoczanski 1995)

Let G = *jc;G;j and ¢ € C then My : C}(G) — C}(G) is
welldefined and
Known results HM¢||Cb S H¢||C'

Theorem (Ricard-Xu 2006)

Let A= x;A; and ¢(n) =s", s € (0,1) then My : A — A'is
welldefined and

Mgl < 1.
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Séren Maller Let A = xjci(Aj,wj) be the reduced free product of unital
C*-algebras (A;)ic; with respect to states (w;);es for which the
GNS-representation ., is faithful for all i € I.

If ¢ € C, then there is an unique linear completely bounded map

Main result
M¢ A= A
such that My(1) = ¢(0)1 and
Mg(aiaz...an) = ¢(n)a1az. .. a,

whenever a; € A,j = ker(w;;) and iy # i # -+ F# In.
Moreover |[Mg||cp < ||¢]lc-
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Let D = {s € C||s| < 1}. For every s € D
¢s(n) =s"
defines a radial multiplier My on A = *;¢;(Aj, w;) with

\1 !
M
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Uniqueness of M,
Reduce to A; = B(H;)
Equivalent description of M,
Construct <l>;yy

Construct Ty, To, T

Show T is M,

Estimate || 7|

Sketch of
proof
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m Assume the theorem holds for (B(H;),waq,)

m Let (A w) = *i(Ai,w;)

m Let (H;, Q) = (Hy;, &,;) from GNS-representation of
(Ai,wj) Denote by (H,Q) = *;(H;,Q;)

m Now (A;,w;) can be realized as subalgebra of B(H,Q)

m Use the theorem to find M, : B(H) — B(H)

m Then My|a: A— A with right behaviour

m [[Mylaller < [[Mglles < llolle
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Séren Méller H=CQo é @ ,‘O-I,-1 XX f:/,'n.
n=0 i#:--F#in

and denote basis by
N={Q}u U{71®'-~®’yn\’yj€ I:,-j,il F o Fpt.
n=1

m For v € H, define L, € B(H) as

] v®x if i £
Lv(X)_{ 0 if =i

For n,§ € H let case 2 if n,,§¢| € Hi and case 1
otherwise.
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Equivalent description of M,
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e
CNVER et T : B(H) — B(H) be a bounded linear normal map, and
let ¢ : Ng — C be a function on No. TFAE
(a) T(1) =¢(0)1 and

T(a1az...an) = ¢(n)araz...an

whenever aj € B(I:I,-j) = ker(wj;) and iy # i # - -+ F# In.
(b) For all k,I € Ng and & € N(k),n € N(I) we have

Equivalence

o ok + /)LéL;; in case 1
T(Lely) = { Pk +1—1)LeLs in case 2.
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® if i
R’y(X) — { X 0 Y 7£ 1
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ifi=n
m For a=(a;) € I°°(Np) let
Day(§1® - ®&n) = anl1 ® -+ @ &y and Da() = 20Q2
m p(a) = 2 enq) RyaRy
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m For a=(a;) € I°°(Np) let
Da(&1® -+ ®&) = apl1 ® -+ @&, and Dy(Q) = aQ

m p(a) = 2 enq) RyaRy
m ¢(a) = > qiaq; for g; the projection on

span{{ EAN(N)|n>1,( =711 R @Yn,Vn € f,-}
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= 01)(a) =
50 D(syaDis.yny + 322y Dsrp™(e(2)) D,
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SO = 01)(a) = X0 DisyaaDiseyn, + s Dsp"(3)D5,
= 0)(a) =

5% 4 Dis+yrxaDisuyny + 01 Dsnxp™ (€(a)) D,

leora

For & € N(k),n € N(I) we have

p"(LeLy) = LeLy Picerici<i+ny

o _ | p(Lely) in case 1
e(Lely) = { LeLy in case 2
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If& € N(k),n € N(I) then

O (LeLy) = (i x(k+t)y(/ + t)> LeL;

t=0

and

Seoox(k + t)y(I+ t)LeLy case 1

o@)(LeL) =
,y( 3 77) { Z?iox(k_|_t_1)y(/+t—1)L§L;*] case 2
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¢(n) = P1(n) + ¢a(n) + ¢

oo o0

ik +1) =Y xi(k + t)yi(I + t) (1)
i=1 t=0
2(k+1) = iiz, (k + t)w;i(/ + t).
i=1 t=0

forh=3% 2 xi@yiand k=3 72,2 O w,
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Define
T =300, for h=32 x 0y
n T2 = Z?il ¢gi)w,. for k = Z,oil zi © w;
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T =300, for h=32 x 0y
B =000, fork="",z0w,
m T =T1+Tr+cl
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Define
T =300, for h=32 x 0y

n T2 = Z?il ¢gi)w,. for k = Z,oil zi © w;
m T =T1+Tr+cl

m --- T has the right behavior
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1
n 00,

leb < |Ixill2]lyill2

2
m [P lleo < |lzill2lIwill2
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1
n 00,

leb < ||xill2]lyill2
2
m (|00l < |zill2]will2
1
) Talleo < 2220 108 s < 1Al
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m (0%, lls < Ilxill2lyill2
m [ 020 llcb < llzill2llwill2
m | Tallew < 3052 (05, s < 1Al
w [ Tolles < 32500 1050 len < K11
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m (0%, lls < Ilxill2lyill2

m [ 020 llcb < llzill2llwill2

m | Tallew < 3052 (05, s < 1Al

w [ Tolles < 32500 1050 len < K11

B [ Tlleo < I Talles + I Tellew + llcldeo < l|6llc
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M¢ M- M
such that My(1) = ¢(0)1 and
My(araz ... an) = ¢p(n)araz...an

whenever a; € ./\;l,-j = ker(w;;)) and iy # i # - -+ F# In.
Moreover [[My|lcs < |9]lc-
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m For which (A,-,w,-),-e/ holds ||M¢||cb = ||¢5||C for all p € C?
m [Wysoczanski 1995] True if A; = C(G;), |G| = oo,

1] = oo

Open
questions
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m For which (A,-,w,-),-e/ holds ||M¢||cb = ||¢5||C for all p € C?
m [Wysoczanski 1995] True if A; = C(G;), |G| = oo,
|| = o0
m Use (¢k)k C C with finite support, pointwise converging to
1 on CCAP
m Almagamated counterpart

m scalar valued ¢
m B-valued ¢

Open
questions
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