Multiplier correspondences and applications to crossed products
Overview of the presentation.

- C^{*}-correspondences and Cuntz-Pimsner algebras
- Multiplier correspondences
- Crossed product C^{*}-correspondences

Let X be a Banach space and A be a C^{*}-algebra. Suppose we have a right action $X \times A \rightarrow X$ of A on X and an A valued inner-product $\langle\cdot, \cdot\rangle: X \times X \rightarrow A$ that satisfies

- $\langle\xi, \eta \cdot a\rangle=\langle\xi, \eta\rangle \cdot a$
- $\langle\eta, \xi\rangle=\langle\xi, \eta\rangle^{*}$
- $\langle\xi, \xi\rangle \geq 0$ and $\|\xi\|_{X}=\sqrt{\|\langle\xi, \xi\rangle\|_{A}}$. for all $\xi, \eta \in X, a \in A$.

Then we say X is a right Hilbert A-module.

Let X, Y be right Hilbert A-modules.
We say a linear operator $T: X \rightarrow Y$ is adjointable if there exists an operator $T^{*}: Y \rightarrow X$ such that

$$
\langle T(\xi), \eta\rangle=\left\langle\xi, T^{*}(\eta)\right\rangle
$$

for all $\xi \in X, \eta \in Y$.
We write $\mathcal{L}(X, Y)$ for the collection of all adjointable operators $T: X \rightarrow Y$.
$\mathcal{L}(X):=\mathcal{L}(X, X)$ is a C^{*}-algebra.

For $\xi \in X, \eta \in Y$, define $\theta_{\eta, \xi}: X \rightarrow Y$ to be the operator satisfying

$$
\theta_{\eta, \xi}(\zeta)=\eta \cdot\langle\xi, \zeta\rangle
$$

for all $\zeta \in X$.
This is an adjointable operator with $\left(\theta_{\eta, \xi}\right)^{*}=\theta_{\xi, \eta}$. We call

$$
\mathcal{K}(X, Y)=\overline{\operatorname{span}}\left\{\theta_{\eta, \xi}: \xi \in X, \eta \in Y\right\}
$$

the compact operators.
Then $\mathcal{K}(X):=\mathcal{K}(X, X)$ is a closed two-sided ideal in $\mathcal{L}(X)$ and $\mathcal{L}(X)=M(\mathcal{K}(X))$.

Definition

A C^{*}-correspondence is a pair (X, A) where X is a Hilbert A-module, equipped with a $*$-homomorphism

$$
\phi_{X}: A \rightarrow \mathcal{L}(X)
$$

We call ϕ_{X} the left action of A on X and for $a \in A, \xi \in X$ we write $a \cdot \xi$ for $\phi_{X}(a)(\xi)$.

We say a C^{*}-correspondence (X, A) is nondegenerate if $\phi_{X}: A \rightarrow \mathcal{L}(X)=M(\mathcal{K}(X))$ is nondegenerate.

Let D be a C^{*}-algebra. Then (D, D) is a C^{*}-correspondence with

- $\langle a, b\rangle=a^{*} b$,
- $a \cdot b=a b$,
- $b \cdot a=b a$
for $a, b \in D$.
In this case we have isomorphisms $\mathcal{K}(D) \cong D$ and $\mathcal{L}(D) \cong M(D)$.

A morphism $\left(\psi_{X}, \psi_{A}\right):(X, A) \rightarrow(Y, B)$ is a pair of maps with $\psi_{X}: X \rightarrow Y$ linear and $\psi_{A}: A \rightarrow B$ a C^{*}-homomorphism satisfying

- $\left\langle\psi_{X}(\xi), \psi_{X}(\eta)\right\rangle=\psi_{A}(\langle\xi, \eta\rangle)$ for all $\xi, \eta \in X$,
- $\psi_{X}\left(\phi_{X}(a) \xi\right)=\phi_{Y}\left(\psi_{A}(a)\right) \psi_{X}(\xi)$ for all $\xi \in X$ and $a \in A$.

Given a morphism, there exists a $*$-homomorphism $\psi_{X}^{(1)}: \mathcal{K}(X) \rightarrow \mathcal{K}(Y)$ satisfying

$$
\psi_{X}^{(1)}\left(\theta_{\eta, \xi}\right)=\theta_{\psi_{X}(\eta), \psi_{X}(\xi)} .
$$

Definition (Katsura 2003)

Define an ideal J_{X} of A by

$$
J_{X}:=\left\{a \in A: \phi_{X}(a) \in \mathcal{K}(X) \text { and } a b=0 \text { for all } b \in \operatorname{ker} \phi_{X}\right\}
$$

We say a morphism $\left(\psi_{X}, \psi_{A}\right):(X, A) \rightarrow(Y, B)$ is covariant if it satisfies

- $\psi_{A}\left(J_{X}\right) \subset J_{Y}$,
- $\psi_{X}^{(1)}\left(\phi_{X}(a)\right)=\phi_{Y}\left(\psi_{A}(a)\right)$ for all $a \in J_{X}$.

A covariant representation of (X, A) on a C^{*}-algebra D is a covariant morphism

$$
\left(\pi_{X}, \pi_{A}\right):(X, A) \rightarrow(D, D)
$$

Definition (Katsura 2003)

The Cuntz-Pimsner algebra is \mathcal{O}_{X} is defined as $\mathcal{O}_{X}=C^{*}\left(k_{X}(X), k_{A}(A)\right)$ where $\left(k_{X}, k_{A}\right)$ is the universal covariant representation of (X, A).

Given a covariant morphism $\left(\psi_{X}, \psi_{A}\right):(X, A) \rightarrow(Y, B)$, there exists a C^{*}-homomorphism

$$
\mathcal{O}_{\psi_{X}}: \mathcal{O}_{X} \rightarrow \mathcal{O}_{Y}
$$

such that

commutes.
In this way, \mathcal{O} defines a covariant functor from the category of C^{*}-correspondences to the category of C^{*}-algebras.

Multipliers

Let (X, A) be a nondegenerate C^{*}-correspondence. The multipliers of X are defined as

$$
M(X):=\mathcal{L}(A, X)
$$

Proposition

$(M(X), M(A))$ is a C^{*}-correspondence with

- $\langle S, T\rangle=S^{*} \circ T \in \mathcal{L}(A)=M(A)$,
- $S \cdot m=S \circ m$
- $m \cdot S=\overline{\phi_{X}}(m) \circ S$.
where $S, T \in \mathcal{L}(A, X), m \in M(A)=\mathcal{L}(A)$ and $\overline{\phi_{X}}$ is the extension of ϕ_{X} to $M(A)$.

If (X, A) is a nondegenerate C^{*}-correspondence and $\kappa: C \rightarrow M(A)$ is a nondegenerate homomorphism, the C-multipliers of X are

$$
M_{C}(X):=\{T \in M(X): \kappa(C) \cdot T \cup T \cdot \kappa(C) \subset X\}
$$

The C-strict topology on $M_{C}(X)$ is generated by the seminorms

$$
m \mapsto\|\kappa(c) \cdot m\| \text { and } m \mapsto\|m \cdot \kappa(c)\| \text { for } c \in C
$$

Extension theorem

Theorem (Deaconu-Kumjian-Quigg 2011)

Let (X, A) and (Y, B) be nondegenerate C^{*}-correspondences, let $\kappa: C \rightarrow M(A)$ and $\sigma: D \rightarrow M(B)$ be nondegenerate homomorphisms and let $\left(\psi_{X}, \psi_{A}\right):(X, A) \rightarrow\left(M_{D}(Y), M_{D}(B)\right)$ be a morphism. If there is a nondegenerate homomorphism $\lambda: C \rightarrow M(\sigma(D))$ such that

$$
\psi_{A}(\kappa(c) a)=\lambda(c) \psi_{A}(a) \text { for } c \in C, a \in A
$$

then there is a unique C-strict to D-strictly continuous correspondence homomorphism $\left(\overline{\psi_{X}}, \overline{\psi_{A}}\right)$ making the following diagram commute.

$$
\begin{gathered}
(X, A) \xrightarrow{\left(\psi_{X}, \psi_{A}\right)}\left(M_{D}(Y), M_{D}(B)\right) \\
\int_{C}^{\downarrow} \underset{-\overline{-}\left(\overline{\psi_{x}}, \overline{\psi_{A}}\right)}{\left(M_{C}(X), M_{C}(A)\right)}
\end{gathered}
$$

Definition (Kaliszewski-Quigg-R 2011)

Let (X, A) and (Y, B) be nondegenerate C^{*}-correspondences. We say a homomorphism $\left(\psi_{X}, \psi_{A}\right):(X, A) \rightarrow(M(Y), M(B))$ is multiplier covariant if

- $\psi_{X}(X) \subset M_{B}(Y)$,
- $\psi_{A}: A \rightarrow M(B)$ is nondegenerate,
- $\psi_{A}\left(J_{X}\right) \subset\left\{m \in M(B): m B \cup B m \subset J_{Y}\right\}$, and
- the diagram

$$
\begin{aligned}
& J_{X} \xrightarrow{\psi_{A}} M(B) \\
& \varphi_{X} \downarrow{ }_{\downarrow} \quad{ }^{\overline{\varphi_{Y}}} \\
& \mathcal{K}(X) \underset{\psi_{X}^{(1)}}{\longrightarrow} M_{B}(\mathcal{K}(Y))
\end{aligned}
$$

commutes.

Theorem (Kaliszewski-Quigg-R)

Let (X, A) and (Y, B) be nondegenerate C^{*}-correspondences, and let $\left(\psi_{X}, \psi_{A}\right):(X, A) \rightarrow(M(Y), M(B))$ be a multiplier covariant homomorphism. Then there is a unique homomorphism Ψ_{X} making the diagram

$$
\begin{aligned}
&(X, A) \xrightarrow{\left(\psi_{X}, \psi_{A}\right)}\left(M_{B}(Y), M(B)\right) \\
&\left(k_{X}, k_{A}\right) \\
& \mathcal{O}_{X} \xrightarrow{\psi_{X}} \xrightarrow{\left(\overline{k_{Y},}, \overline{k_{B}}\right)} \\
& M_{B}\left(\mathcal{O}_{Y}\right)
\end{aligned}
$$

commute. Moreover, Ψ_{X} is nondegenerate, and is injective if ψ_{A} is.

Let (X, A) be a nondegenerate C^{*}-correspondence, G a locally compact topological group.

Let $\left(\gamma_{X}, \gamma_{A}\right)$ be an action of G on (X, A). For $\xi, \eta \in C_{c}(G, X), f \in C_{c}(G, A)$ set

$$
\begin{aligned}
& (\xi \cdot f)(s)=\int_{G} \xi(t) \gamma_{A}(t)\left(f\left(t^{-1} s\right)\right) d t \\
& \langle\xi, \eta\rangle(s)=\int_{G} \gamma_{A}\left(t^{-1}\right)(\langle\xi(t), \eta(s t)\rangle) d t
\end{aligned}
$$

Then $X \rtimes_{\gamma_{X}} G$ defined to be the completion of $C_{c}(G, X)$ is a right Hilbert $A \rtimes_{\gamma_{A}} G$-module.

The triple $\left(\mathcal{K}(X), \gamma_{X}^{(1)}, G\right)$ defines a C^{*}-dynamical system, and

$$
\mathcal{K}\left(X \rtimes_{\gamma_{X}} G\right) \cong \mathcal{K}(X) \rtimes_{\gamma_{X}^{(1)}} G
$$

Define the left action on $f \otimes a \in C_{c}(G) \otimes A \cong C_{c}(G, A)$ by

$$
\begin{aligned}
\phi_{X_{\rtimes_{\gamma_{X}}} G}(f \otimes a) & =f \otimes \phi_{X}(a) \\
& \in M\left(\mathcal{K}(X) \rtimes_{\gamma_{X}^{(1)}}^{(1)} G\right) \\
& =\mathcal{L}\left(X \rtimes_{\gamma_{X}} G\right)
\end{aligned}
$$

Then $\left(X \rtimes_{\gamma_{X}} G, A \rtimes_{\gamma_{A}} G\right)$ is a C^{*}-correspondence

Covariant maps

We have the canonical embeddings

$$
i_{G}: G \rightarrow M\left(A \rtimes_{\gamma_{G}} G\right)
$$

and

$$
i_{A}: A \rightarrow M\left(A \rtimes_{\gamma_{A}} G\right)
$$

We can define a map

$$
\begin{aligned}
& i_{X}: X \rightarrow M_{A \rtimes_{\gamma_{A}}} G\left(X \rtimes_{\gamma_{X}} G\right) \\
& \left(i_{X}(\xi) f\right)(s)=x \cdot f(s)
\end{aligned}
$$

for $\xi \in X, f \in C_{c}(G, A), s \in G$.

The pair

$$
\left(i_{x}, i_{A}\right):(X, A) \rightarrow\left(M_{A \rtimes_{\gamma_{A}} G}\left(X \rtimes_{\gamma_{X}} G\right), M\left(A \rtimes_{\gamma_{A}} G\right)\right)
$$

defines a multiplier covariant morphism.
Applying the Theorem we get

$$
I_{X}: \mathcal{O}_{X} \rightarrow M\left(\mathcal{O}_{X_{\gamma_{\gamma_{X}}} G}\right)
$$

If we define $u:=\overline{k_{\lambda_{\gamma_{\gamma_{A}} G}}} \circ i_{G}: G \rightarrow M\left(\mathcal{O}_{X_{\rtimes_{\gamma X}} G}\right)$ then $\left(I_{X}, u\right)$ is a covariant homomorphism of $\left(\mathcal{O}_{x}, \mathcal{O}_{\gamma_{X}}, G\right)$ in $\mathcal{O}_{X_{\rtimes_{\gamma}}} G$.

The integrated form

$$
I_{X} \times u: \mathcal{O}_{X} \rtimes_{\mathcal{O}_{\gamma_{X}}} G \rightarrow \mathcal{O}_{X \rtimes_{\gamma_{X}} G}
$$

is surjective.

Theorem (Hao-Ng 2008, Kaliszewski-Quigg-R 2011)
When G is amenable there is an isomorphism

$$
\mathcal{O}_{X} \rtimes_{\mathcal{O}_{\gamma_{X}}} G \cong \mathcal{O}_{\text {® }_{\gamma_{X}} G}
$$

THANKYOU

