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Graphs

Definition

A graph G is a 4-tuple (G°, G, r,s), where G° is a countable set
of vertices, G! is a countable set of edges, and r,s: G* — G° are
the range and source maps.
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Graphs

Definition

A graph G is a 4-tuple (G°, G, r,s), where G° is a countable set
of vertices, G! is a countable set of edges, and r,s: G* — G° are
the range and source maps.

EC.Qf .vo
6® = {o} G0 = {o,0})
Gl = {e, f} Gl={e,e,...}

s(e)=e,r(e)=e  s(e))=e,r(e) =0
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Graph C*-Algebras

Given a graph G, we let C*(G) denote the universal C*-algebra
generated by pairwise orthogonal projections {p, | u € G°} and
partial isometries {s. | e € G'} subject to the relations

CKO sisf =0, if e # f.

CK1 5:5e = Pr(e)-
CK2 SeS;k < Ps(e)-
CK3

Pu = Z 5e5:7
{e€Gl|s(e)=u}

if 0 < [s71(u)| < oo.
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Examples of Graph C*-Algebras

° The complex numbers.
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Examples of Graph C*-Algebras

° The complex numbers.
(n) C ° The Cuntz algebra O, 2 < n < c0.
° ﬂ ° The unitization of the compact operators.
(00)
N ) )
° ° The Kirchberg algebra with Ky = Z2 and K; = 0.
N~
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Classification and the Graphs

Are graph algebras classified by K-theory?
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Classification and the Graphs

Are graph algebras classified by K-theory?

What does it say about two graphs E and G that C*(E) is (stably)
isomorphic to C*(G)?

Is there a (finite) list of “moves” on graphs that generate the
relation G ~ E if and only if C*(G) is stably isomorphic to C*(E)?
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Graph Operations

Definition

Given a graph G, we let the transitive closure of G be the graph
tG. It has the same vertex set as G and if there is a path from u
to v in G, then there is an edge in tG with source u and range v.

Definition

Given a graph G, we define the amplification of G to be the graph
G with the same vertex set as G, but with the property that if
there is an edge from u to v in G, then there are infinitely many
edges from u to v in G.
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Graph Operations - Pictures
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Graph Operations - Pictures

NN

— e

(o0)

oe<—20
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Graph Operations - Pictures
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Graph Operations - Pictures

(o0)
.CO C.C.@ (m)Co?o@(oo)
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The Main Result

Let G and E be finite graphs. The following are equivalent:
(i) C*(G) = C*(E).
(i) C*(G) and C*(E) have the same filtered K-theory.

(iii) C*(tG) and C*(tE) have the same filtered K-theory.
(iv) tG = tE
(v) C*(£G) = C*(tE)
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The Main Result

Let G and E be finite graphs. The following are equivalent:

) C*(G) = C*(E).
) C*(G) and C*(E) have the same filtered K-theory.

i) C*(tG) and C*(tE) have the same filtered K-theory.
)
)

FK(C*(tG)) = FK(C*(tE)) = tG ~tE.
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Is It Interesting?

e Cons:
e Specialized graphs.
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Is It Interesting?

e Cons:

e Specialized graphs.

e Very boring K-theory (Ko(C*(G)) = 7/, Ki(C*(G)) =0).
e Pros:
C*(G) can have any (finite) ideal structure.
Graphical classification.
Nice generalizations (graphs where all vertices are singular).
Permanence results (if it looks like an amplified graph algebra,
and it quacks like an amplified graph algebra, then it must be
an amplified graph algebra).
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Move (T)

Theorem

Let G be a graph, u € G° an infinite emitter, and v a vertex that u
emits infinitely to. Fix an edge f € sgl(v). Let E be the graph
with vertex set G°, edge set

E'=G'U{f" | ne N},

and range and source maps that extend those of G and have
r(f") = r(f) and s(f") = u. Then C*(E) = C*(F).
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Let G be a graph, u € G° an infinite emitter, and v a vertex that u
emits infinitely to. Fix an edge f € sgl(v). Let E be the graph
with vertex set G°, edge set

E'=G'U{f" | ne N},

and range and source maps that extend those of G and have
r(f") = r(f) and s(f") = u. Then C*(E) = C*(F).

Example

\|

*ﬁo%.
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Proof of Lemma A

Lemma

Let « = a1 - - - oy be a path in a graph G. Let E be the graph
with vertex set G°, edge set

E'=G'u{a™| meN},

and obvious range and source maps. If there are infinitely many
edges parallel to oy then C*(G) = C*(E).
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Proof of Lemma A

Lemma

Let « = a1 - - - oy be a path in a graph G. Let E be the graph
with vertex set G°, edge set

E'=G'u{a™| meN},

and obvious range and source maps. If there are infinitely many
edges parallel to oy then C*(G) = C*(E).

Lemma A
If G is a finite graph then C*(G) = C*(tG).
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A Note On Lemma B

FK(C*(tG)) 2 FK(C*(tE)) = tG = tE.

Sketch of Proof
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utovoru=uv.

e For amplified graphs, the relation > is encoded in the ideal
structure.

e Use Prim(C*(tG)) = Prim(C*(tE)) to find a bijection
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Sketch of Proof

e For two vertices, u and v, write u > v if there is a path from
utovoru=yv.

e For amplified graphs, the relation > is encoded in the ideal
structure.

e Use Prim(C*(tG)) = Prim(C*(tE)) to find a bijection
¥: TG — tE such that u> v < P(u) > P(v).

e We are done if we can show that a vertex supports a simple
loop in tG if and only if it does in tE.
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A Note On Lemma B

FK(C*(tG)) 2 FK(C*(tE)) = tG = tE.

Sketch of Proof

e For two vertices, u and v, write u > v if there is a path from
utovoru=yv.

e For amplified graphs, the relation > is encoded in the ideal
structure.

e Use Prim(C*(tG)) = Prim(C*(tE)) to find a bijection
$: G — tE° such that u > v <= ¥(u) > (V).

e We are done if we can show that a vertex supports a simple
loop in tG if and only if it does in tE.

e The ordered Kp-group is used to tell us this.
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Classification From the Outside

Definition

Let C be the class of separable, nuclear, simple, purely infinite
C*-algebras 2 satisfying the UCT, and with K1(2() = 0 and Ko ()
free.

Definition
Let Ciree be the class of C*-algebras 2 such that Prim(2() is finite,
and for every simple sub-quotient B of 2l we have

e ‘B is unital or stable, and in C or stably isomorphic to K, and,

e if B is unital, then there exists an isomorphism
Ko(*B) = €, Z such that [1x] is sent to (1, ).
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Classification From the Outside

Let C be the class of separable, nuclear, simple, purely infinite
C*-algebras 2 satisfying the UCT, and with K1(2() = 0 and Ko ()
free.

Let Ciree be the class of C*-algebras 2 such that Prim(2() is finite,
and for every simple sub-quotient B of 2l we have

e ‘B is unital or stable, and in C or stably isomorphic to K, and,

e if B is unital, then there exists an isomorphism
Ko(*B) = €, Z such that [1x] is sent to (1, ).

The elements of Cg.ee are classified by filtered K-theory.
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The Payoff

Proposition

Let G be a graph with finitely many vertices, no breaking vertices,
and with the property that every vertex in G is either an infinite
emitter or a sink. We have C*(G) € Ctree-
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Theorem

Let A be a unital C*-algebra in Croe with Ko(21) finitely generated.

There exists a finite graph G such that A = C*(G).
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The Payoff

Let G be a graph with finitely many vertices, no breaking vertices,
and with the property that every vertex in G is either an infinite
emitter or a sink. We have C*(G) € Ctree-

Let A be a unital C*-algebra in Croe with Ko(21) finitely generated.

There exists a finite graph G such that A = C*(G).

Let Gy and Gy be finite graphs. If 2 is a unital C*-algebra and 2
fits into the following exact sequence

0 C(G)®K—=A— C(G)—0

then 2 € Cgoe. Consequently, A = C*(G) for some finite graph G.
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This Is the End
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