Amplified Graph Algebras

Adam P. W. Sørensen
Joint work with
Søren Eilers and Efren Ruiz
Graphs

Definition

A graph G is a 4-tuple (G^0, G^1, r, s), where G^0 is a countable set of vertices, G^1 is a countable set of edges, and $r, s : G^1 \to G^0$ are the range and source maps.

<table>
<thead>
<tr>
<th>G^0</th>
<th>G^1</th>
<th>r</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bullet</td>
<td>${e, f}$</td>
<td>\bullet</td>
<td>\bullet</td>
</tr>
<tr>
<td>\bullet</td>
<td>${e_1, e_2, \ldots}$</td>
<td>\bullet</td>
<td>\circ</td>
</tr>
<tr>
<td>\circ</td>
<td>\bullet</td>
<td>\bullet</td>
<td>\circ</td>
</tr>
</tbody>
</table>
Graphs

Definition

A graph G is a 4-tuple (G^0, G^1, r, s), where G^0 is a countable set of vertices, G^1 is a countable set of edges, and $r, s : G^1 \rightarrow G^0$ are the range and source maps.

Example

$$e \rightarrow \bullet \rightarrow f$$

$G^0 = \{ \bullet \}$

$G^1 = \{ e, f \}$

$s(e) = \bullet, r(e) = \bullet$

$s(f) = \bullet, r(f) = \bullet$
Graphs

Definition

A graph G is a 4-tuple (G^0, G^1, r, s), where G^0 is a countable set of vertices, G^1 is a countable set of edges, and $r, s : G^1 \rightarrow G^0$ are the range and source maps.

Example

$G^0 = \{\bullet\}$

$G^1 = \{e, f\}$

$s(e) = \bullet, r(e) = \bullet$

$s(f) = \bullet, r(f) = \bullet$

$G^0 = \{\bullet, \circ\}$

$G^1 = \{e_1, e_2, \ldots\}$

$s(e_1) = \bullet, r(e_1) = \circ$

$s(e_2) = \bullet, r(e_2) = \circ$
Graph C^*-Algebras

Definition

Given a graph G, we let $C^*(G)$ denote the universal C^*-algebra generated by pairwise orthogonal projections $\{p_u \mid u \in G^0\}$ and partial isometries $\{s_e \mid e \in G^1\}$ subject to the relations

- **CK0** $s_e^*s_f = 0$, if $e \neq f$.
- **CK1** $s_e^*s_e = p_{r(e)}$.
- **CK2** $s_es_e^* \leq p_{s(e)}$.
- **CK3**

$$p_u = \sum_{\{e \in G^1 \mid s(e) = u\}} s_es_e^*,$$

if $0 < |s^{-1}(u)| < \infty$.

Adam P. W. Sørensen — Amplified Graph Algebras — September, 2011

Slide 3/15
Examples of Graph C^*-Algebras

- The complex numbers.
- The Cuntz algebra \mathcal{O}_n, $2 \leq n \leq \infty$.
- The unitization of the compact operators.
- The Kirchberg algebra with $K_0 = \mathbb{Z}^2$ and $K_1 = 0$.
Examples of Graph C^*-Algebras

- The complex numbers.
- The Cuntz algebra \mathcal{O}_n, $2 \leq n \leq \infty$.
- The unitization of the compact operators.
- The Kirchberg algebra with $K_0 = \mathbb{Z}^2$ and $K_1 = 0$.
Examples of Graph C^*-Algebras

- The complex numbers.
- The Cuntz algebra \mathcal{O}_n, $2 \leq n \leq \infty$.
- The unitization of the compact operators.
- The Kirchberg algebra with $K_0 = \mathbb{Z}^2$ and $K_1 = 0$.
Examples of Graph C^*-Algebras

- The complex numbers.
- The Cuntz algebra \mathcal{O}_n, $2 \leq n \leq \infty$.
- The unitization of the compact operators.
- The Kirchberg algebra with $K_0 = \mathbb{Z}^2$ and $K_1 = 0$.
Classification and the Graphs

Question

Are graph algebras classified by K-theory?

Question

What does it say about two graphs E and G that $C^*(E)$ is (stably) isomorphic to $C^*(G)$?

Question

Is there a (finite) list of “moves” on graphs that generate the relation $G \sim E$ if and only if $C^*(G)$ is stably isomorphic to $C^*(E)$?
Classification and the Graphs

Question

Are graph algebras classified by K-theory?

Question

What does it say about two graphs E and G that $\mathcal{C}^*(E)$ is (stably) isomorphic to $\mathcal{C}^*(G)$?

Question

Is there a (finite) list of “moves” on graphs that generate the relation $G \sim E$ if and only if $\mathcal{C}^*(G)$ is stably isomorphic to $\mathcal{C}^*(E)$?
Classification and the Graphs

Question
Are graph algebras classified by K-theory?

Question
What does it say about two graphs E and G that $C^*(E)$ is (stably) isomorphic to $C^*(G)$?

Question
Is there a (finite) list of “moves” on graphs that generate the relation $G \sim E$ if and only if $C^*(G)$ is stably isomorphic to $C^*(E)$?
Graph Operations

Definition

Given a graph G, we let the transitive closure of G be the graph tG. It has the same vertex set as G and if there is a path from u to v in G, then there is an edge in tG with source u and range v.

Definition

Given a graph G, we define the amplification of G to be the graph \overline{G} with the same vertex set as G, but with the property that if there is an edge from u to v in G, then there are infinitely many edges from u to v in \overline{G}.
Graph Operations - Pictures

\[
\begin{array}{ccc}
G & \quad tG & \quad \overline{tG} \\
\end{array}
\]
Graph Operations - Pictures
Graph Operations - Pictures

\[G \quad tG \quad \bar{tG} \]
Graph Operations - Pictures

\[G \quad tG \quad \overline{tG} \]

\[\begin{array}{c}
\bullet \\
\downarrow \\
\bullet \\
\rightarrow \\
\bullet
\end{array} \quad \begin{array}{c}
\bullet \\
\downarrow \\
\bullet \\
\rightarrow \\
\bullet
\end{array} \quad \begin{array}{c}
(\infty) \\
\downarrow \\
(\infty) \\
\rightarrow \\
(\infty)
\end{array} \]
Graph Operations - Pictures

\[G \quad tG \quad \overline{tG} \]

Diagram:

- Three graphs labeled G, tG, and \overline{tG} are shown with various nodes and edges.
- The nodes are represented as dots, and the edges are shown as arrows.
- The diagram illustrates different graph operations or transformations.
Graph Operations - Pictures

\[G \quad tG \quad \overline{tG} \]
The Main Result

Theorem

Let G and E be finite graphs. The following are equivalent:

(i) $C^*(\overline{G}) \simeq C^*(\overline{E})$.

(ii) $C^*(\overline{G})$ and $C^*(\overline{E})$ have the same filtered K-theory.

(iii) $C^*(t\overline{G})$ and $C^*(t\overline{E})$ have the same filtered K-theory.

(iv) $t\overline{G} \simeq t\overline{E}$.

(v) $C^*(t\overline{G}) \simeq C^*(t\overline{E})$.

Lemma A

$C^*(\overline{G}) \simeq C^*(t\overline{G})$.

Lemma B

$FK(C^*(t\overline{G})) \simeq FK(C^*(t\overline{E})) \implies t\overline{G} \simeq t\overline{E}$.

Adam P. W. Sørensen — Amplified Graph Algebras — September, 2011
Slide 8/15
The Main Result

Theorem

Let G and E be finite graphs. The following are equivalent:

(i) $C^*(\overline{G}) \cong C^*(\overline{E})$.

(ii) $C^*(\overline{G})$ and $C^*(\overline{E})$ have the same filtered K-theory.

(iii) $C^*(\overline{tG})$ and $C^*(\overline{tE})$ have the same filtered K-theory.

(iv) $\overline{tG} \cong \overline{tE}$.

(v) $C^*(\overline{tG}) \cong C^*(\overline{tE})$.

Lemma A

$C^*(\overline{G}) \cong C^*(\overline{tG})$.

Lemma B

$FK(C^*(\overline{tG})) \cong FK(C^*(\overline{tE}))$ $\implies \overline{tG} \cong \overline{tE}$.
The Main Result

Theorem

Let G and E be finite graphs. The following are equivalent:

(i) $C^*(\overline{G}) \cong C^*(\overline{E})$.

(ii) $C^*(\overline{G})$ and $C^*(\overline{E})$ have the same filtered K-theory.

(iii) $C^*(\overline{tG})$ and $C^*(\overline{tE})$ have the same filtered K-theory.

(iv) $\overline{tG} \cong \overline{tE}$.

(v) $C^*(\overline{tG}) \cong C^*(\overline{tE})$.

Lemma A

$C^*(\overline{G}) \cong C^*(\overline{tG})$.

Lemma B

$FK(C^*(\overline{tG})) \cong FK(C^*(\overline{tE})) \implies \overline{tG} \cong \overline{tE}$.
The Main Result

Theorem

Let G and E be finite graphs. The following are equivalent:

(i) $C^*(\overrightarrow{G}) \simeq C^*(\overrightarrow{E})$.

(ii) $C^*(\overrightarrow{G})$ and $C^*(\overrightarrow{E})$ have the same filtered K-theory.

(iii) $C^*(\overline{tG})$ and $C^*(\overline{tE})$ have the same filtered K-theory.

(iv) $\overline{tG} \simeq \overline{tE}$.

(v) $C^*(\overline{tG}) \simeq C^*(\overline{tE})$.

Lemma A

$C^*(\overrightarrow{G}) \simeq C^*(\overline{tG})$.

Lemma B

$FK(C^*(\overline{tG})) \simeq FK(C^*(\overline{tE})) \implies \overline{tG} \simeq \overline{tE}$.
The Main Result

Theorem

Let G and E be finite graphs. The following are equivalent:

(i) $C^*(\overline{G}) \cong C^*(\overline{E})$.
(ii) $C^*(\overline{G})$ and $C^*(\overline{E})$ have the same filtered K-theory.
(iii) $C^*(\overline{tG})$ and $C^*(\overline{tE})$ have the same filtered K-theory.
(iv) $\overline{tG} \cong \overline{tE}$.
(v) $C^*(\overline{tG}) \cong C^*(\overline{tE})$.

Lemma A

$C^*(\overline{G}) \cong C^*(\overline{tG})$.

Lemma B

$FK(C^*(\overline{tG})) \cong FK(C^*(\overline{tE})) \implies \overline{tG} \cong \overline{tE}$.
The Main Result

Theorem

Let G and E be finite graphs. The following are equivalent:

(i) $C^*(\overline{G}) \cong C^*(\overline{E})$.
(ii) $C^*(\overline{G})$ and $C^*(\overline{E})$ have the same filtered K-theory.
(iii) $C^*(\overline{tG})$ and $C^*(\overline{tE})$ have the same filtered K-theory.
(iv) $\overline{tG} \cong \overline{tE}$.
(v) $C^*(\overline{tG}) \cong C^*(\overline{tE})$.

Lemma A

$C^*(\overline{G}) \cong C^*(\overline{tG})$.

Lemma B

$\text{FK}(C^*(\overline{tG})) \cong \text{FK}(C^*(\overline{tE})) \implies \overline{tG} \cong \overline{tE}$.
Is It Interesting?

- **Cons:**
 - Specialized graphs.
 - Very boring K-theory ($K_0(C^*(G)) = \mathbb{Z}^{|G^0|}$, $K_1(C^*(G)) = 0$).

- **Pros:**
 - $C^*(G)$ can have any (finite) ideal structure.
 - Graphical classification.
 - Nice generalizations (graphs where all vertices are singular).
 - Permanence results (if it looks like an amplified graph algebra, and it quacks like an amplified graph algebra, then it must be an amplified graph algebra).
Is It Interesting?

• Cons:
 • Specialized graphs.
 • Very boring K-theory ($K_0(C^*(\mathcal{G})) = \mathbb{Z}|G^0|$, $K_1(C^*(\mathcal{G})) = 0$).

• Pros:
 • $C^*(\mathcal{G})$ can have any (finite) ideal structure.
 • Graphical classification.
 • Nice generalizations (graphs where all vertices are singular).
 • Permanence results (if it looks like an amplified graph algebra, and it quacks like an amplified graph algebra, then it must be an amplified graph algebra).
Is It Interesting?

- **Cons:**
 - Specialized graphs.
 - Very boring K-theory ($K_0(C^*(\overline{G})) = \mathbb{Z}^{|G^0|}$, $K_1(C^*(\overline{G})) = 0$).

- **Pros:**
 - $C^*(\overline{G})$ can have any (finite) ideal structure.
 - Graphical classification.
 - Nice generalizations (graphs where all vertices are singular).
 - Permanence results (if it looks like an amplified graph algebra, and it quacks like an amplified graph algebra, then it must be an amplified graph algebra).
Is It Interesting?

• Cons:
 • Specialized graphs.
 • Very boring K-theory ($K_0(C^*(\overline{G})) = \mathbb{Z}^{G^0|G^0|}, K_1(C^*(\overline{G})) = 0$).

• Pros:
 • $C^*(\overline{G})$ can have any (finite) ideal structure.
 • Graphical classification.
 • Nice generalizations (graphs where all vertices are singular).
 • Permanence results (if it looks like an amplified graph algebra, and it quacks like an amplified graph algebra, then it must be an amplified graph algebra).
Is It Interesting?

- Cons:
 - Specialized graphs.
 - Very boring K-theory ($K_0(C^*(\overline{G})) = \mathbb{Z}|G^0|$, $K_1(C^*(\overline{G})) = 0$).

- Pros:
 - $C^*(\overline{G})$ can have any (finite) ideal structure.
 - Graphical classification.
 - Nice generalizations (graphs where all vertices are singular).
 - Permanence results (if it looks like an amplified graph algebra, and it quacks like an amplified graph algebra, then it must be an amplified graph algebra).
Is It Interesting?

- **Cons:**
 - Specialized graphs.
 - Very boring K-theory ($K_0(C^*(\overline{G})) = \mathbb{Z}^{|G^0|}$, $K_1(C^*(\overline{G})) = 0$).

- **Pros:**
 - $C^*(\overline{G})$ can have any (finite) ideal structure.
 - Graphical classification.
 - Nice generalizations (graphs where all vertices are singular).
 - Permanence results (if it looks like an amplified graph algebra, and it quacks like an amplified graph algebra, then it must be an amplified graph algebra).
Theorem

Let G be a graph, $u \in G^0$ an infinite emitter, and v a vertex that u emits infinitely to. Fix an edge $f \in s_G^{-1}(v)$. Let E be the graph with vertex set G^0, edge set

$$E^1 = G^1 \cup \{f^n | n \in \mathbb{N}\},$$

and range and source maps that extend those of G and have $r(f^n) = r(f)$ and $s(f^n) = u$. Then $C^*(E) \cong C^*(F)$.

Example

![Diagram](image-url)
Theorem

Let G be a graph, $u \in G^0$ an infinite emitter, and v a vertex that u emits infinitely to. Fix an edge $f \in s_{\overline{G}}^{-1}(v)$. Let E be the graph with vertex set G^0, edge set

$$E^1 = G^1 \cup \{f^n \mid n \in \mathbb{N}\},$$

and range and source maps that extend those of G and have $r(f^n) = r(f)$ and $s(f^n) = u$. Then $C^*(E) \cong C^*(F)$.

Example
Move (T)

Theorem

Let G be a graph, $u \in G^0$ an infinite emitter, and v a vertex that u emits infinitely to. Fix an edge $f \in s_{G}^{-1}(v)$. Let E be the graph with vertex set G^0, edge set

$$E^1 = G^1 \cup \{ f^n | n \in \mathbb{N} \},$$

and range and source maps that extend those of G and have $r(f^n) = r(f)$ and $s(f^n) = u$. Then $C^*(E) \cong C^*(F)$.

Example

Adam P. W. Sørensen — Amplified Graph Algebras — September, 2011
Slide 10/15
Proof of Lemma A

Lemma

Let $\alpha = \alpha_1 \alpha_2 \cdots \alpha_n$ be a path in a graph G. Let E be the graph with vertex set G^0, edge set

$$E^1 = G^1 \cup \{\alpha^m \mid m \in \mathbb{N}\},$$

and obvious range and source maps. If there are infinitely many edges parallel to α_1 then $C^*(G) \cong C^*(E)$.

Lemma A

If G is a finite graph then $C^*(\overline{G}) \cong C^*(\overline{tG})$.
Proof of Lemma A

Lemma

Let $\alpha = \alpha_1 \alpha_2 \cdots \alpha_n$ be a path in a graph G. Let E be the graph with vertex set G^0, edge set

$$E^1 = G^1 \cup \{\alpha^m \mid m \in \mathbb{N}\},$$

and obvious range and source maps. If there are infinitely many edges parallel to α_1 then $C^*(G) \cong C^*(E)$.

Lemma A

If G is a finite graph then $C^*(\overline{G}) \cong C^*(\overline{tG})$.
A Note On Lemma B

Lemma B

\[\text{FK}(C^*(\overline{tG})) \cong \text{FK}(C^*(\overline{tE})) \implies \overline{tG} \cong \overline{tE}. \]

Sketch of Proof

- For two vertices, \(u \) and \(v \), write \(u \geq v \) if there is a path from \(u \) to \(v \) or \(u = v \).
- For amplified graphs, the relation \(\geq \) is encoded in the ideal structure.
- Use \(\text{Prim}(C^*(\overline{tG})) \cong \text{Prim}(C^*(\overline{tE})) \) to find a bijection \(\psi: \overline{tG}^0 \rightarrow \overline{tE}^0 \) such that \(u \geq v \iff \psi(u) \geq \psi(v) \).
- We are done if we can show that a vertex supports a simple loop in \(\overline{tG} \) if and only if it does in \(\overline{tE} \).
- The ordered \(K_0 \)-group is used to tell us this.
A Note On Lemma B

Lemma B

\[FK(C^*(tG)) \cong FK(C^*(tE)) \implies tG \cong tE. \]

Sketch of Proof

- For two vertices, \(u \) and \(v \), write \(u \geq v \) if there is a path from \(u \) to \(v \) or \(u = v \).
- For amplified graphs, the relation \(\geq \) is encoded in the ideal structure.
- Use \(\text{Prim}(C^*(tG)) \cong \text{Prim}(C^*(tE)) \) to find a bijection \(\psi: tG^0 \to tE^0 \) such that \(u \geq v \iff \psi(u) \geq \psi(v) \).
- We are done if we can show that a vertex supports a simple loop in \(tG \) if and only if it does in \(tE \).
- The ordered \(K_0 \)-group is used to tell us this.
A Note On Lemma B

Lemma B

\[FK(C^*(\bar{t}G)) \cong FK(C^*(\bar{t}E)) \implies \bar{t}G \cong \bar{t}E. \]

Sketch of Proof

- For two vertices, \(u \) and \(v \), write \(u \geq v \) if there is a path from \(u \) to \(v \) or \(u = v \).
- For amplified graphs, the relation \(\geq \) is encoded in the ideal structure.
- Use \(\text{Prim}(C^*(\bar{t}G)) \cong \text{Prim}(C^*(\bar{t}E)) \) to find a bijection \(\psi: \bar{t}G^0 \to \bar{t}E^0 \) such that \(u \geq v \iff \psi(u) \geq \psi(v) \).
- We are done if we can show that a vertex supports a simple loop in \(\bar{t}G \) if and only if it does in \(\bar{t}E \).
- The ordered \(K_0 \)-group is used to tell us this.
A Note On Lemma B

Lemma B

\[\text{FK}(C^*(\overline{tG})) \cong \text{FK}(C^*(\overline{tE})) \quad \implies \quad \overline{tG} \cong \overline{tE}. \]

Sketch of Proof

- For two vertices, \(u \) and \(v \), write \(u \geq v \) if there is a path from \(u \) to \(v \) or \(u = v \).
- For amplified graphs, the relation \(\geq \) is encoded in the ideal structure.
- Use \(\text{Prim}(C^*(\overline{tG})) \cong \text{Prim}(C^*(\overline{tE})) \) to find a bijection \(\psi : \overline{tG}^0 \to \overline{tE}^0 \) such that \(u \geq v \iff \psi(u) \geq \psi(v) \).
- We are done if we can show that a vertex supports a simple loop in \(\overline{tG} \) if and only if it does in \(\overline{tE} \).
- The ordered \(K_0 \)-group is used to tell us this.
Lemma B

\[FK(C^*(\overline{tG})) \cong FK(C^*(\overline{tE})) \implies \overline{tG} \cong \overline{tE}. \]

Sketch of Proof

• For two vertices, \(u \) and \(v \), write \(u \geq v \) if there is a path from \(u \) to \(v \) or \(u = v \).

• For amplified graphs, the relation \(\geq \) is encoded in the ideal structure.

• Use \(\text{Prim}(C^*(\overline{tG})) \cong \text{Prim}(C^*(\overline{tE})) \) to find a bijection \(\psi : \overline{tG^0} \rightarrow \overline{tE^0} \) such that \(u \geq v \iff \psi(u) \geq \psi(v) \).

• We are done if we can show that a vertex supports a simple loop in \(\overline{tG} \) if and only if it does in \(\overline{tE} \).

• The ordered \(K_0 \)-group is used to tell us this.
A Note On Lemma B

Lemma B

\[FK(C^*(\overline{tG})) \cong FK(C^*(\overline{tE})) \implies \overline{tG} \cong \overline{tE}. \]

Sketch of Proof

- For two vertices, \(u \) and \(v \), write \(u \geq v \) if there is a path from \(u \) to \(v \) or \(u = v \).
- For amplified graphs, the relation \(\geq \) is encoded in the ideal structure.
- Use \(\text{Prim}(C^*(\overline{tG})) \cong \text{Prim}(C^*(\overline{tE})) \) to find a bijection \(\psi: \overline{tG}^0 \to \overline{tE}^0 \) such that \(u \geq v \iff \psi(u) \geq \psi(v) \).
- We are done if we can show that a vertex supports a simple loop in \(\overline{tG} \) if and only if it does in \(\overline{tE} \).
- The ordered \(K_0 \)-group is used to tell us this.
Classification From the Outside

Definition

Let C be the class of separable, nuclear, simple, purely infinite C^*-algebras \mathfrak{A} satisfying the UCT, and with $K_1(\mathfrak{A}) = 0$ and $K_0(\mathfrak{A})$ free.

Definition

Let C_{free} be the class of C^*-algebras \mathfrak{A} such that Prim(\mathfrak{A}) is finite, and for every simple sub-quotient \mathfrak{B} of \mathfrak{A} we have

- \mathfrak{B} is unital or stable, and in C or stably isomorphic to \mathcal{K}, and,
- if \mathfrak{B} is unital, then there exists an isomorphism $K_0(\mathfrak{B}) \cong \bigoplus_n \mathbb{Z}$ such that $[1_{\mathfrak{B}}]$ is sent to $(1, \lambda)$.

Theorem

The elements of C_{free} are classified by filtered K-theory.
Classification From the Outside

Definition

Let \mathcal{C} be the class of separable, nuclear, simple, purely infinite C^*-algebras \mathfrak{A} satisfying the UCT, and with $K_1(\mathfrak{A}) = 0$ and $K_0(\mathfrak{A})$ free.

Definition

Let $\mathcal{C}_{\text{free}}$ be the class of C^*-algebras \mathfrak{A} such that $\text{Prim}(\mathfrak{A})$ is finite, and for every simple sub-quotient \mathfrak{B} of \mathfrak{A} we have

- \mathfrak{B} is unital or stable, and in \mathcal{C} or stably isomorphic to \mathcal{K}, and,
- if \mathfrak{B} is unital, then there exists an isomorphism $K_0(\mathfrak{B}) \cong \bigoplus_n \mathbb{Z}$ such that $[1_{\mathfrak{B}}]$ is sent to $(1, \lambda)$.

Theorem

The elements of $\mathcal{C}_{\text{free}}$ are classified by filtered K-theory.
The Payoff

Proposition

Let G be a graph with finitely many vertices, no breaking vertices, and with the property that every vertex in G is either an infinite emitter or a sink. We have $C^*(G) \in C_{\text{free}}$.

Theorem

Let \mathcal{A} be a unital C^*-algebra in C_{free} with $K_0(\mathcal{A})$ finitely generated. There exists a finite graph G such that $\mathcal{A} \cong C^*(G)$.

Theorem

Let G_1 and G_2 be finite graphs. If \mathcal{A} is a unital C^*-algebra and \mathcal{A} fits into the following exact sequence

$$0 \to C^*(G_1) \otimes K \to \mathcal{A} \to C^*(G_2) \to 0$$

then $\mathcal{A} \in C_{\text{free}}$. Consequently, $\mathcal{A} \cong C^*(G)$ for some finite graph G.
The Payoff

Proposition

Let G be a graph with finitely many vertices, no breaking vertices, and with the property that every vertex in G is either an infinite emitter or a sink. We have $\mathcal{C}^*(G) \in \mathcal{C}_{\text{free}}$.

Theorem

Let \mathcal{A} be a unital \mathcal{C}^*-algebra in $\mathcal{C}_{\text{free}}$ with $K_0(\mathcal{A})$ finitely generated. There exists a finite graph G such that $\mathcal{A} \cong \mathcal{C}^*(G)$.

Theorem

Let G_1 and G_2 be finite graphs. If \mathcal{A} is a unital \mathcal{C}^*-algebra and \mathcal{A} fits into the following exact sequence

$$0 \rightarrow \mathcal{C}^*(\overline{G}_1) \otimes \mathcal{K} \rightarrow \mathcal{A} \rightarrow \mathcal{C}^*(\overline{G}_2) \rightarrow 0$$

then $\mathcal{A} \in \mathcal{C}_{\text{free}}$. Consequently, $\mathcal{A} \cong \mathcal{C}^*(G)$ for some finite graph G.
Proposition

Let G be a graph with finitely many vertices, no breaking vertices, and with the property that every vertex in G is either an infinite emitter or a sink. We have $C^*(G) \in C_{\text{free}}$.

Theorem

Let \mathcal{A} be a unital C^*-algebra in C_{free} with $K_0(\mathcal{A})$ finitely generated. There exists a finite graph G such that $\mathcal{A} \cong C^*(\overline{G})$.

Theorem

Let G_1 and G_2 be finite graphs. If \mathcal{A} is a unital C^*-algebra and \mathcal{A} fits into the following exact sequence

$$0 \to C^*(\overline{G_1}) \otimes \mathcal{K} \to \mathcal{A} \to C^*(\overline{G_2}) \to 0$$

then $\mathcal{A} \in C_{\text{free}}$. Consequently, $\mathcal{A} \cong C^*(\overline{G})$ for some finite graph G.
This Is the End