

Faculty of Science

Amplified Graph Algebras

Adam P. W. Sørensen Joint work with Søren Eilers and Efren Ruiz

September, 2011 Slide 1/15

Graphs

Definition

A graph G is a 4-tuple (G^0, G^1, r, s) , where G^0 is a countable set of vertices, G^1 is a countable set of edges, and $r, s \colon G^1 \to G^0$ are the range and source maps.

Graphs

Definition

A graph G is a 4-tuple (G^0, G^1, r, s) , where G^0 is a countable set of vertices, G^1 is a countable set of edges, and $r, s \colon G^1 \to G^0$ are the range and source maps.

Example

Graphs

Definition

A graph G is a 4-tuple (G^0, G^1, r, s) , where G^0 is a countable set of vertices, G^1 is a countable set of edges, and $r, s \colon G^1 \to G^0$ are the range and source maps.

Graph C*-Algebras

Definition

Given a graph *G*, we let $C^*(G)$ denote the universal C^* -algebra generated by pairwise orthogonal projections $\{p_u \mid u \in G^0\}$ and partial isometries $\{s_e \mid e \in G^1\}$ subject to the relations CK0 $s_e^* s_f = 0$, if $e \neq f$. CK1 $s_e^* s_e = p_{r(e)}$. CK2 $s_e s_e^* \leq p_{s(e)}$. CK3 $p_u = \sum_{\{e \in G^1 \mid s(e) = u\}} s_e s_e^*$,

if
$$0 < |s^{-1}(u)| < \infty$$
.

•

 (∞)

•

•

Examples of Graph C*-Algebras

The complex numbers.

The Cuntz algebra \mathcal{O}_n , $2 \leq n \leq \infty$.

The unitization of the compact operators.

(n) (

(∞)

•

.

Examples of Graph C*-Algebras

The unitization of the compact operators.

Examples of Graph C*-Algebras

The complex numbers.

The Cuntz algebra \mathcal{O}_n , $2 \leq n \leq \infty$.

The unitization of the compact operators.

The Kirchberg algebra with $K_0=\mathbb{Z}^2$ and $K_1=0.$

Examples of Graph C*-Algebras

The complex numbers.

The Cuntz algebra \mathcal{O}_n , $2 \leq n \leq \infty$.

The unitization of the compact operators.

The Kirchberg algebra with $K_0 = \mathbb{Z}^2$ and $K_1 = 0$.

Classification and the Graphs

Question

Are graph algebras classified by K-theory?

Question

What does it say about two graphs E and G that $C^*(E)$ is (stably) isomorphic to $C^*(G)$?

Question

Is there a (finite) list of "moves" on graphs that generate the relation $G \sim E$ if and only if $C^*(G)$ is stably isomorphic to $C^*(E)$?

Classification and the Graphs

Question

Are graph algebras classified by K-theory?

Question

What does it say about two graphs E and G that $C^*(E)$ is (stably) isomorphic to $C^*(G)$?

Question

Is there a (finite) list of "moves" on graphs that generate the relation $G \sim E$ if and only if $C^*(G)$ is stably isomorphic to $C^*(E)$?

Classification and the Graphs

Question

Are graph algebras classified by K-theory?

Question

What does it say about two graphs E and G that $C^*(E)$ is (stably) isomorphic to $C^*(G)$?

Question

Is there a (finite) list of "moves" on graphs that generate the relation $G \sim E$ if and only if $C^*(G)$ is stably isomorphic to $C^*(E)$?

Graph Operations

Definition

Given a graph G, we let the transitive closure of G be the graph tG. It has the same vertex set as G and if there is a path from u to v in G, then there is an edge in tG with source u and range v.

Definition

Given a graph G, we define the amplification of G to be the graph \overline{G} with the same vertex set as G, but with the property that if there is an edge from u to v in G, then there are infinitely many edges from u to v in \overline{G} .

Theore<u>m</u>

Let G and E be finite graphs. The following are equivalent:

(i)
$$C^*(\overline{G}) \cong C^*(\overline{E})$$
.

- (ii) $C^*(\overline{G})$ and $C^*(\overline{E})$ have the same filtered K-theory.
- (iii) $C^*(\overline{\tau G})$ and $C^*(\overline{\tau E})$ have the same filtered K-theory.

(iv)
$$\overline{\mathbf{t}G} \cong \overline{\mathbf{t}E}$$
.

$$(v) \ C^*(\overline{tG}) \cong C^*(\overline{tE})$$

Lemma A $C^*(\overline{G}) \cong C^*(\overline{tG}).$

Lemma B

 $\operatorname{FK}(C^*(\overline{\operatorname{t} G}))\cong \operatorname{FK}(C^*(\overline{\operatorname{t} E})) \implies \overline{\operatorname{t} G}\cong \overline{\operatorname{t} E}.$

Let G and E be finite graphs. The following are equivalent:

(i)
$$C^*(\overline{G}) \cong C^*(\overline{E})$$
.

- (ii) $C^*(\overline{G})$ and $C^*(\overline{E})$ have the same filtered K-theory.
- (iii) $C^*(\overline{tG})$ and $C^*(\overline{tE})$ have the same filtered K-theory.

iv)
$$\overline{tG} \cong \overline{tE}$$
.

$$(v) \ C^*(\overline{tG}) \cong C^*(\overline{tE}).$$

Lemma A $C^*(\overline{G}) \cong C^*(\overline{tG}).$

Lemma_B

 $\operatorname{FK}(C^*(\overline{\operatorname{t} G})) \cong \operatorname{FK}(C^*(\overline{\operatorname{t} E})) \implies \overline{\operatorname{t} G} \cong \overline{\operatorname{t} E}.$

Theorem

Let G and E be finite graphs. The following are equivalent:

(i)
$$C^*(\overline{G}) \cong C^*(\overline{E})$$
.

(ii) $C^*(\overline{G})$ and $C^*(\overline{E})$ have the same filtered K-theory.

iii) $C^*(\overline{tG})$ and $C^*(\overline{tE})$ have the same filtered K-theory.

(iv)
$$\overline{tG} \cong \overline{tE}$$
.

v)
$$C^*(\overline{tG}) \cong C^*(\overline{tE}).$$

Lemma A $C^*(\overline{G}) \cong C^*(\overline{tG}).$

Lemma B

 $\operatorname{FK}(C^*(\overline{\operatorname{t} G})) \cong \operatorname{FK}(C^*(\overline{\operatorname{t} E})) \implies \overline{\operatorname{t} G} \cong \overline{\operatorname{t} E}$

Theore<u>m</u>

Let G and E be finite graphs. The following are equivalent:

(i)
$$C^*(\overline{G}) \cong C^*(\overline{E})$$
.

- (ii) $C^*(\overline{G})$ and $C^*(\overline{E})$ have the same filtered K-theory.
- (iii) $C^*(\overline{\tau G})$ and $C^*(\overline{\tau E})$ have the same filtered K-theory.

(iv)
$$\overline{\mathbf{t}G} \cong \overline{\mathbf{t}E}$$
.

$$(v) \ C^*(\overline{tG}) \cong C^*(\overline{tE})$$

Lemma A $C^*(\overline{G}) \cong C^*(\overline{tG}).$

Lemma B

 $\operatorname{FK}(C^*(\overline{\operatorname{t} G}))\cong \operatorname{FK}(C^*(\overline{\operatorname{t} E})) \implies \overline{\operatorname{t} G}\cong \overline{\operatorname{t} E}.$

Theorem

Let G and E be finite graphs. The following are equivalent:

(i)
$$C^*(\overline{G}) \cong C^*(\overline{E}).$$

(ii) $C^*(\overline{G})$ and $C^*(\overline{E})$ have the same filtered K-theory.

(iii) $C^*(\overline{\tau G})$ and $C^*(\overline{\tau E})$ have the same filtered K-theory.

(iv)
$$\overline{tG} \cong \overline{tE}$$
.

$$(\vee) \ C^*(\overline{\mathtt{t}G}) \cong C^*(\overline{\mathtt{t}E}).$$

Lemma A

$$C^*(\overline{G})\cong C^*(\overline{\mathrm{t}G}).$$

Lemma B

 $\operatorname{FK}(C^*(\overline{\operatorname{t} G})) \cong \operatorname{FK}(C^*(\overline{\operatorname{t} E})) \implies \overline{\operatorname{t} G} \cong \overline{\operatorname{t} E}.$

Let G and E be finite graphs. The following are equivalent:

(i)
$$C^*(\overline{G}) \cong C^*(\overline{E}).$$

- (ii) $C^*(\overline{G})$ and $C^*(\overline{E})$ have the same filtered K-theory.
- (iii) $C^*(\overline{\tau G})$ and $C^*(\overline{\tau E})$ have the same filtered K-theory.

(iv)
$$\overline{tG} \cong \overline{tE}$$
.

$$(\vee) \ C^*(\overline{\mathtt{t}G}) \cong C^*(\overline{\mathtt{t}E}).$$

Lemma A

$$C^*(\overline{G})\cong C^*(\overline{\mathtt{t}G}).$$

Lemma B

$$\operatorname{FK}(\mathcal{C}^*(\overline{\operatorname{t} \mathcal{G}}))\cong \operatorname{FK}(\mathcal{C}^*(\overline{\operatorname{t} \mathcal{E}})) \implies \overline{\operatorname{t} \mathcal{G}}\cong \overline{\operatorname{t} \mathcal{E}}$$

• Cons:

• Specialized graphs.

• Very boring K-theory $(K_0(C^*(\overline{G})) = \mathbb{Z}^{|G^0|}, K_1(C^*(\overline{G})) = 0).$

• Pros:

- C^{*}(G) can have any (finite) ideal structure.
- Graphical classification.
- Nice generalizations (graphs where all vertices are singular).
- Permanence results (if it looks like an amplified graph algebra, and it quacks like an amplified graph algebra, then it must be an amplified graph algebra).

• Cons:

- Specialized graphs.
- Very boring K-theory $(K_0(C^*(\overline{G})) = \mathbb{Z}^{|G^0|}, K_1(C^*(\overline{G})) = 0).$

• Pros:

- C^{*}(G) can have any (finite) ideal structure.
- Graphical classification.
- Nice generalizations (graphs where all vertices are singular).
- Permanence results (if it looks like an amplified graph algebra, and it quacks like an amplified graph algebra, then it must be an amplified graph algebra).

• Cons:

- Specialized graphs.
- Very boring K-theory $(K_0(C^*(\overline{G})) = \mathbb{Z}^{|G^0|}, K_1(C^*(\overline{G})) = 0).$
- Pros:

• $C^*(\overline{G})$ can have any (finite) ideal structure.

- Graphical classification.
- Nice generalizations (graphs where all vertices are singular).
- Permanence results (if it looks like an amplified graph algebra, and it quacks like an amplified graph algebra, then it must be an amplified graph algebra).

• Cons:

- Specialized graphs.
- Very boring K-theory $(K_0(C^*(\overline{G})) = \mathbb{Z}^{|G^0|}, K_1(C^*(\overline{G})) = 0).$
- Pros:
 - $C^*(\overline{G})$ can have any (finite) ideal structure.
 - Graphical classification.
 - Nice generalizations (graphs where all vertices are singular).
 - Permanence results (if it looks like an amplified graph algebra, and it quacks like an amplified graph algebra, then it must be an amplified graph algebra).

• Cons:

- Specialized graphs.
- Very boring K-theory $(K_0(C^*(\overline{G})) = \mathbb{Z}^{|G^0|}, K_1(C^*(\overline{G})) = 0).$
- Pros:
 - $C^*(\overline{G})$ can have any (finite) ideal structure.
 - Graphical classification.
 - Nice generalizations (graphs where all vertices are singular).
 - Permanence results (if it looks like an amplified graph algebra, and it quacks like an amplified graph algebra, then it must be an amplified graph algebra).

• Cons:

- Specialized graphs.
- Very boring K-theory $(K_0(C^*(\overline{G})) = \mathbb{Z}^{|G^0|}, K_1(C^*(\overline{G})) = 0).$
- Pros:
 - $C^*(\overline{G})$ can have any (finite) ideal structure.
 - Graphical classification.
 - Nice generalizations (graphs where all vertices are singular).
 - Permanence results (if it looks like an amplified graph algebra, and it quacks like an amplified graph algebra, then it must be an amplified graph algebra).

Move (T)

Theorem

Let G be a graph, $u \in G^0$ an infinite emitter, and v a vertex that u emits infinitely to. Fix an edge $f \in s_G^{-1}(v)$. Let E be the graph with vertex set G^0 , edge set

$$E^1 = G^1 \cup \{f^n \mid n \in \mathbb{N}\},\$$

and range and source maps that extend those of G and have $r(f^n) = r(f)$ and $s(f^n) = u$. Then $C^*(E) \cong C^*(F)$.

Example

Move (T)

Theorem

Let G be a graph, $u \in G^0$ an infinite emitter, and v a vertex that u emits infinitely to. Fix an edge $f \in s_G^{-1}(v)$. Let E be the graph with vertex set G^0 , edge set

$$E^1 = G^1 \cup \{f^n \mid n \in \mathbb{N}\},\$$

and range and source maps that extend those of G and have $r(f^n) = r(f)$ and $s(f^n) = u$. Then $C^*(E) \cong C^*(F)$.

Move (T)

Theorem

Let G be a graph, $u \in G^0$ an infinite emitter, and v a vertex that u emits infinitely to. Fix an edge $f \in s_G^{-1}(v)$. Let E be the graph with vertex set G^0 , edge set

$$E^1 = G^1 \cup \{f^n \mid n \in \mathbb{N}\},\$$

and range and source maps that extend those of G and have $r(f^n) = r(f)$ and $s(f^n) = u$. Then $C^*(E) \cong C^*(F)$.

Proof of Lemma A

Lemma

Let $\alpha = \alpha_1 \alpha_2 \cdots \alpha_n$ be a path in a graph G. Let E be the graph with vertex set G^0 , edge set

 $E^1 = G^1 \cup \{ \alpha^m \mid m \in \mathbb{N} \},\$

and obvious range and source maps. If there are infinitely many edges parallel to α_1 then $C^*(G) \cong C^*(E)$.

Lemma A

If G is a finite graph then $C^*(\overline{G}) \cong C^*(\overline{tG})$.

Proof of Lemma A

Lemma

Let $\alpha = \alpha_1 \alpha_2 \cdots \alpha_n$ be a path in a graph G. Let E be the graph with vertex set G^0 , edge set

 $E^1 = G^1 \cup \{ \alpha^m \mid m \in \mathbb{N} \},\$

and obvious range and source maps. If there are infinitely many edges parallel to α_1 then $C^*(G) \cong C^*(E)$.

Lemma A

If G is a finite graph then $C^*(\overline{G}) \cong C^*(\overline{tG})$.

Lemma B

$$\operatorname{FK}(\mathcal{C}^*(\overline{\operatorname{t} \mathcal{G}}))\cong \operatorname{FK}(\mathcal{C}^*(\overline{\operatorname{t} \mathcal{E}})) \implies \overline{\operatorname{t} \mathcal{G}}\cong \overline{\operatorname{t} \mathcal{E}}.$$

- For two vertices, u and v, write u ≥ v if there is a path from u to v or u = v.
- For amplified graphs, the relation \geq is encoded in the ideal structure.
- Use $\operatorname{Prim}(C^*(\overline{tG})) \cong \operatorname{Prim}(C^*(\overline{tE}))$ to find a bijection $\psi: \overline{tG}^0 \to \overline{tE}^0$ such that $u \ge v \iff \psi(u) \ge \psi(v)$.
- We are done if we can show that a vertex supports a simple loop in \overline{tG} if and only if it does in \overline{tE} .
- The ordered K_0 -group is used to tell us this.

Lemma B

$$\operatorname{FK}(\mathcal{C}^*(\overline{\operatorname{t} \mathcal{G}}))\cong \operatorname{FK}(\mathcal{C}^*(\overline{\operatorname{t} \mathcal{E}})) \implies \overline{\operatorname{t} \mathcal{G}}\cong \overline{\operatorname{t} \mathcal{E}}.$$

- For two vertices, u and v, write u ≥ v if there is a path from u to v or u = v.
- For amplified graphs, the relation \geq is encoded in the ideal structure.
- Use $\operatorname{Prim}(C^*(\overline{tG})) \cong \operatorname{Prim}(C^*(\overline{tE}))$ to find a bijection $\psi: \overline{tG}^0 \to \overline{tE}^0$ such that $u \ge v \iff \psi(u) \ge \psi(v)$.
- We are done if we can show that a vertex supports a simple loop in \overline{tG} if and only if it does in \overline{tE} .
- The ordered K_0 -group is used to tell us this.

Lemma B

$$\operatorname{FK}(\mathcal{C}^*(\overline{\operatorname{t} \mathcal{G}}))\cong \operatorname{FK}(\mathcal{C}^*(\overline{\operatorname{t} \mathcal{E}})) \implies \overline{\operatorname{t} \mathcal{G}}\cong \overline{\operatorname{t} \mathcal{E}}.$$

- For two vertices, u and v, write u ≥ v if there is a path from u to v or u = v.
- For amplified graphs, the relation \geq is encoded in the ideal structure.
- Use $\operatorname{Prim}(C^*(\overline{tG})) \cong \operatorname{Prim}(C^*(\overline{tE}))$ to find a bijection $\psi: \overline{tG}^0 \to \overline{tE}^0$ such that $u \ge v \iff \psi(u) \ge \psi(v)$.
- We are done if we can show that a vertex supports a simple loop in \overline{tG} if and only if it does in \overline{tE} .
- The ordered K_0 -group is used to tell us this.

Lemma B

$$\operatorname{FK}(\mathcal{C}^*(\overline{\operatorname{t} \mathcal{G}}))\cong \operatorname{FK}(\mathcal{C}^*(\overline{\operatorname{t} \mathcal{E}})) \implies \overline{\operatorname{t} \mathcal{G}}\cong \overline{\operatorname{t} \mathcal{E}}.$$

- For two vertices, u and v, write u ≥ v if there is a path from u to v or u = v.
- For amplified graphs, the relation \geq is encoded in the ideal structure.
- Use $\operatorname{Prim}(C^*(\overline{tG})) \cong \operatorname{Prim}(C^*(\overline{tE}))$ to find a bijection $\psi : \overline{tG}^0 \to \overline{tE}^0$ such that $u \ge v \iff \psi(u) \ge \psi(v)$.
- We are done if we can show that a vertex supports a simple loop in \overline{tG} if and only if it does in \overline{tE} .
- The ordered K_0 -group is used to tell us this.

Lemma B

$$\operatorname{FK}(\mathcal{C}^*(\overline{\operatorname{t} \mathcal{G}}))\cong \operatorname{FK}(\mathcal{C}^*(\overline{\operatorname{t} \mathcal{E}})) \implies \overline{\operatorname{t} \mathcal{G}}\cong \overline{\operatorname{t} \mathcal{E}}.$$

- For two vertices, u and v, write u ≥ v if there is a path from u to v or u = v.
- For amplified graphs, the relation \geq is encoded in the ideal structure.
- Use $\operatorname{Prim}(C^*(\overline{tG})) \cong \operatorname{Prim}(C^*(\overline{tE}))$ to find a bijection $\psi : \overline{tG}^0 \to \overline{tE}^0$ such that $u \ge v \iff \psi(u) \ge \psi(v)$.
- We are done if we can show that a vertex supports a simple loop in \overline{tG} if and only if it does in \overline{tE} .
- The ordered *K*₀-group is used to tell us this.

Lemma B

$$\operatorname{FK}(\mathcal{C}^*(\overline{\operatorname{t} \mathcal{G}}))\cong \operatorname{FK}(\mathcal{C}^*(\overline{\operatorname{t} \mathcal{E}})) \implies \overline{\operatorname{t} \mathcal{G}}\cong \overline{\operatorname{t} \mathcal{E}}.$$

- For two vertices, u and v, write u ≥ v if there is a path from u to v or u = v.
- For amplified graphs, the relation \geq is encoded in the ideal structure.
- Use $\operatorname{Prim}(C^*(\overline{tG})) \cong \operatorname{Prim}(C^*(\overline{tE}))$ to find a bijection $\psi : \overline{tG}^0 \to \overline{tE}^0$ such that $u \ge v \iff \psi(u) \ge \psi(v)$.
- We are done if we can show that a vertex supports a simple loop in \overline{tG} if and only if it does in \overline{tE} .
- The ordered K_0 -group is used to tell us this.

Classification From the Outside

Definition

Let C be the class of separable, nuclear, simple, purely infinite C^* -algebras \mathfrak{A} satisfying the UCT, and with $K_1(\mathfrak{A}) = 0$ and $K_0(\mathfrak{A})$ free.

Definition

Let $\mathcal{C}_{\mathrm{free}}$ be the class of C^* -algebras \mathfrak{A} such that $\mathrm{Prim}(\mathfrak{A})$ is finite, and for every simple sub-quotient \mathfrak{B} of \mathfrak{A} we have

- $\mathfrak B$ is unital or stable, and in $\mathcal C$ or stably isomorphic to $\mathcal K,$ and,
- if \mathfrak{B} is unital, then there exists an isomorphism $\mathcal{K}_0(\mathfrak{B}) \cong \bigoplus_n \mathbb{Z}$ such that $[1_{\mathfrak{B}}]$ is sent to $(1, \lambda)$.

Theorem

The elements of C_{free} are classified by filtered K-theory.

Classification From the Outside

Definition

Let C be the class of separable, nuclear, simple, purely infinite C^* -algebras \mathfrak{A} satisfying the UCT, and with $K_1(\mathfrak{A}) = 0$ and $K_0(\mathfrak{A})$ free.

Definition

Let $\mathcal{C}_{\mathrm{free}}$ be the class of C^* -algebras \mathfrak{A} such that $\mathrm{Prim}(\mathfrak{A})$ is finite, and for every simple sub-quotient \mathfrak{B} of \mathfrak{A} we have

- $\mathfrak B$ is unital or stable, and in $\mathcal C$ or stably isomorphic to $\mathcal K,$ and,
- if \mathfrak{B} is unital, then there exists an isomorphism $\mathcal{K}_0(\mathfrak{B}) \cong \bigoplus_n \mathbb{Z}$ such that $[1_{\mathfrak{B}}]$ is sent to $(1, \lambda)$.

Theorem

The elements of $C_{\rm free}$ are classified by filtered K-theory.

The Payoff

Proposition

Let G be a graph with finitely many vertices, no breaking vertices, and with the property that every vertex in G is either an infinite emitter or a sink. We have $C^*(G) \in C_{\text{free}}$.

Theorem

Let \mathfrak{A} be a unital C^* -algebra in C_{free} with $K_0(\mathfrak{A})$ finitely generated. There exists a finite graph G such that $\mathfrak{A} \cong C^*(\overline{G})$.

Theorem

Let G_1 and G_2 be finite graphs. If \mathfrak{A} is a unital C^* -algebra and \mathfrak{A} fits into the following exact sequence

 $0
ightarrow C^*(\overline{G_1}) \otimes \mathcal{K}
ightarrow \mathfrak{A}
ightarrow C^*(\overline{G_2})
ightarrow 0$

then $\mathfrak{A} \in \mathfrak{C}_{\text{free}}$. Consequently, $\mathfrak{A} \cong C^*(\overline{G})$ for some finite graph G

Adam P. W. Sørensen — Amplified Graph Algebras — September, 2011 Slide 14/15

The Payoff

Proposition

Let G be a graph with finitely many vertices, no breaking vertices, and with the property that every vertex in G is either an infinite emitter or a sink. We have $C^*(G) \in C_{\text{free}}$.

Theorem

Let \mathfrak{A} be a unital C^* -algebra in $\mathcal{C}_{\mathrm{free}}$ with $K_0(\mathfrak{A})$ finitely generated. There exists a finite graph G such that $\mathfrak{A} \cong C^*(\overline{G})$.

Theorem

Let G_1 and G_2 be finite graphs. If \mathfrak{A} is a unital C^* -algebra and \mathfrak{A} fits into the following exact sequence

$$0
ightarrow C^*(\overline{G_1}) \otimes \mathcal{K}
ightarrow \mathfrak{A}
ightarrow C^*(\overline{G_2})
ightarrow 0$$

then $\mathfrak{A} \in \mathfrak{C}_{\text{free}}$. Consequently, $\mathfrak{A} \cong C^*(\overline{G})$ for some finite graph G

Adam P. W. Sørensen — Amplified Graph Algebras — September, 2011 Slide 14/15

The Payoff

Proposition

Let G be a graph with finitely many vertices, no breaking vertices, and with the property that every vertex in G is either an infinite emitter or a sink. We have $C^*(G) \in C_{\text{free}}$.

Theorem

Let \mathfrak{A} be a unital C^* -algebra in $\mathcal{C}_{\mathrm{free}}$ with $K_0(\mathfrak{A})$ finitely generated. There exists a finite graph G such that $\mathfrak{A} \cong C^*(\overline{G})$.

Theorem

Let G_1 and G_2 be finite graphs. If \mathfrak{A} is a unital C^* -algebra and \mathfrak{A} fits into the following exact sequence

$$0
ightarrow C^*(\overline{G_1}) \otimes \mathcal{K}
ightarrow \mathfrak{A}
ightarrow C^*(\overline{G_2})
ightarrow 0$$

then $\mathfrak{A} \in \mathfrak{C}_{\mathrm{free}}$. Consequently, $\mathfrak{A} \cong C^*(\overline{G})$ for some finite graph G.

Adam P. W. Sørensen — Amplified Graph Algebras — September, 2011 Slide 14/15

This Is the End

