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Graphs

Definition

A graph G is a 4-tuple (G 0,G 1, r , s), where G 0 is a countable set
of vertices, G 1 is a countable set of edges, and r , s : G 1 → G 0 are
the range and source maps.

Example

•e
$$

fdd • 4488
))##... ◦

G 0 = {•} G 0 = {•, ◦}

G 1 = {e, f } G 1 = {e1, e2, . . .}

s(e) = •, r(e) = • s(e1) = •, r(e1) = ◦

s(f ) = •, r(f ) = • s(e2) = •, r(e2) = ◦
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Graph C ∗-Algebras

Definition

Given a graph G , we let C∗(G ) denote the universal C∗-algebra
generated by pairwise orthogonal projections {pu | u ∈ G 0} and
partial isometries {se | e ∈ G 1} subject to the relations

CK0 s∗e sf = 0, if e 6= f .

CK1 s∗e se = pr(e).

CK2 ses∗e ≤ ps(e).

CK3
pu =

∑
{e∈G 1|s(e)=u}

ses∗e ,

if 0 < |s−1(u)| <∞.
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Examples of Graph C ∗-Algebras

• The complex numbers.

•(n)
$$

The Cuntz algebra On, 2 ≤ n ≤ ∞.

•
(∞) // • The unitization of the compact operators.

•

(∞)

""
•

(∞)

cc The Kirchberg algebra with K0 = Z2 and K1 = 0.
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Classification and the Graphs

Question
Are graph algebras classified by K -theory?

Question

What does it say about two graphs E and G that C∗(E ) is (stably)
isomorphic to C∗(G )?

Question

Is there a (finite) list of “moves” on graphs that generate the
relation G ∼ E if and only if C∗(G ) is stably isomorphic to C∗(E )?
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Graph Operations

Definition
Given a graph G , we let the transitive closure of G be the graph
tG . It has the same vertex set as G and if there is a path from u
to v in G , then there is an edge in tG with source u and range v .

Definition
Given a graph G , we define the amplification of G to be the graph
G with the same vertex set as G , but with the property that if
there is an edge from u to v in G , then there are infinitely many
edges from u to v in G .
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Graph Operations - Pictures

G tG tG

•

��
• // •

•

�� ��
• // •

•
(∞)

��

(∞)

��
•

(∞)
// •

• (( •hh • (($$
•hh
zz

•
(∞)
((

(∞)
$$

•
(∞)

hh (∞)
zz
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The Main Result

Theorem
Let G and E be finite graphs. The following are equivalent:

(i) C∗(G ) ∼= C∗(E ).

(ii) C∗(G ) and C∗(E ) have the same filtered K -theory.

(iii) C∗(tG ) and C∗(tE ) have the same filtered K -theory.

(iv) tG ∼= tE .

(v) C∗(tG ) ∼= C∗(tE ).

Lemma A

C∗(G ) ∼= C∗(tG ).

Lemma B

FK(C∗(tG )) ∼= FK(C∗(tE )) =⇒ tG ∼= tE .

Adam P. W. Sørensen — Amplified Graph Algebras — September, 2011

Slide 8/15



The Main Result

Theorem
Let G and E be finite graphs. The following are equivalent:

(i) C∗(G ) ∼= C∗(E ).

(ii) C∗(G ) and C∗(E ) have the same filtered K -theory.

(iii) C∗(tG ) and C∗(tE ) have the same filtered K -theory.

(iv) tG ∼= tE .

(v) C∗(tG ) ∼= C∗(tE ).

Lemma A

C∗(G ) ∼= C∗(tG ).

Lemma B

FK(C∗(tG )) ∼= FK(C∗(tE )) =⇒ tG ∼= tE .

Adam P. W. Sørensen — Amplified Graph Algebras — September, 2011

Slide 8/15



The Main Result

Theorem
Let G and E be finite graphs. The following are equivalent:

(i) C∗(G ) ∼= C∗(E ).

(ii) C∗(G ) and C∗(E ) have the same filtered K -theory.

(iii) C∗(tG ) and C∗(tE ) have the same filtered K -theory.

(iv) tG ∼= tE .

(v) C∗(tG ) ∼= C∗(tE ).

Lemma A

C∗(G ) ∼= C∗(tG ).

Lemma B

FK(C∗(tG )) ∼= FK(C∗(tE )) =⇒ tG ∼= tE .

Adam P. W. Sørensen — Amplified Graph Algebras — September, 2011

Slide 8/15



The Main Result

Theorem
Let G and E be finite graphs. The following are equivalent:

(i) C∗(G ) ∼= C∗(E ).

(ii) C∗(G ) and C∗(E ) have the same filtered K -theory.

(iii) C∗(tG ) and C∗(tE ) have the same filtered K -theory.

(iv) tG ∼= tE .

(v) C∗(tG ) ∼= C∗(tE ).

Lemma A

C∗(G ) ∼= C∗(tG ).

Lemma B

FK(C∗(tG )) ∼= FK(C∗(tE )) =⇒ tG ∼= tE .

Adam P. W. Sørensen — Amplified Graph Algebras — September, 2011

Slide 8/15



The Main Result

Theorem
Let G and E be finite graphs. The following are equivalent:

(i) C∗(G ) ∼= C∗(E ).

(ii) C∗(G ) and C∗(E ) have the same filtered K -theory.

(iii) C∗(tG ) and C∗(tE ) have the same filtered K -theory.

(iv) tG ∼= tE .

(v) C∗(tG ) ∼= C∗(tE ).

Lemma A

C∗(G ) ∼= C∗(tG ).

Lemma B

FK(C∗(tG )) ∼= FK(C∗(tE )) =⇒ tG ∼= tE .

Adam P. W. Sørensen — Amplified Graph Algebras — September, 2011

Slide 8/15



The Main Result

Theorem
Let G and E be finite graphs. The following are equivalent:

(i) C∗(G ) ∼= C∗(E ).

(ii) C∗(G ) and C∗(E ) have the same filtered K -theory.

(iii) C∗(tG ) and C∗(tE ) have the same filtered K -theory.

(iv) tG ∼= tE .

(v) C∗(tG ) ∼= C∗(tE ).

Lemma A

C∗(G ) ∼= C∗(tG ).

Lemma B

FK(C∗(tG )) ∼= FK(C∗(tE )) =⇒ tG ∼= tE .

Adam P. W. Sørensen — Amplified Graph Algebras — September, 2011

Slide 8/15



Is It Interesting?

• Cons:
• Specialized graphs.

• Very boring K -theory (K0(C∗(G)) = Z|G
0|,K1(C∗(G)) = 0).

• Pros:
• C∗(G) can have any (finite) ideal structure.
• Graphical classification.
• Nice generalizations (graphs where all vertices are singular).
• Permanence results (if it looks like an amplified graph algebra,

and it quacks like an amplified graph algebra, then it must be
an amplified graph algebra).
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Move (T)

Theorem

Let G be a graph, u ∈ G 0 an infinite emitter, and v a vertex that u
emits infinitely to. Fix an edge f ∈ s−1G (v). Let E be the graph
with vertex set G 0, edge set

E 1 = G 1 ∪ {f n | n ∈ N},

and range and source maps that extend those of G and have
r(f n) = r(f ) and s(f n) = u. Then C∗(E ) ∼= C∗(F ).

Example

◦

?
(∞)
// ◦

????

// •

◦

?
(∞)
//

(∞) 00

◦ //

????

•
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Proof of Lemma A

Lemma
Let α = α1α2 · · ·αn be a path in a graph G . Let E be the graph
with vertex set G 0, edge set

E 1 = G 1 ∪ {αm | m ∈ N},

and obvious range and source maps. If there are infinitely many
edges parallel to α1 then C∗(G ) ∼= C∗(E ).

Lemma A

If G is a finite graph then C∗(G ) ∼= C∗(tG ).
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A Note On Lemma B

Lemma B

FK(C∗(tG )) ∼= FK(C∗(tE )) =⇒ tG ∼= tE .

Sketch of Proof
• For two vertices, u and v , write u ≥ v if there is a path from

u to v or u = v .

• For amplified graphs, the relation ≥ is encoded in the ideal
structure.

• Use Prim(C∗(tG )) ∼= Prim(C∗(tE )) to find a bijection

ψ : tG
0 → tE

0
such that u ≥ v ⇐⇒ ψ(u) ≥ ψ(v).

• We are done if we can show that a vertex supports a simple
loop in tG if and only if it does in tE .

• The ordered K0-group is used to tell us this.
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Classification From the Outside

Definition
Let C be the class of separable, nuclear, simple, purely infinite
C∗-algebras A satisfying the UCT, and with K1(A) = 0 and K0(A)
free.

Definition

Let Cfree be the class of C∗-algebras A such that Prim(A) is finite,
and for every simple sub-quotient B of A we have

• B is unital or stable, and in C or stably isomorphic to K, and,

• if B is unital, then there exists an isomorphism
K0(B) ∼=

⊕
n Z such that [1B] is sent to (1, λ).

Theorem
The elements of Cfree are classified by filtered K -theory.
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The Payoff

Proposition

Let G be a graph with finitely many vertices, no breaking vertices,
and with the property that every vertex in G is either an infinite
emitter or a sink. We have C∗(G ) ∈ Cfree.

Theorem

Let A be a unital C∗-algebra in Cfree with K0(A) finitely generated.
There exists a finite graph G such that A ∼= C∗(G ).

Theorem
Let G1 and G2 be finite graphs. If A is a unital C∗-algebra and A
fits into the following exact sequence

0→ C∗(G1)⊗K → A→ C∗(G2)→ 0

then A ∈ Cfree. Consequently, A ∼= C∗(G ) for some finite graph G.
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This Is the End
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