Localities

Example: G a finite group, $S \in \text{Syl}_p(G)$, $T = T^*_S(G)$, $S \Delta \leq \text{Sub}(G)$, Δ-invariant, closed with respect to overgroups.

$L = L_G^{\Delta}(G) = \{ \Delta \text{-locality of } G \}$

\[= \{ g \in G \mid S \Delta^{g}\Delta S \in \Delta \} \]

\[\Delta = \{ (g_1, \ldots, g_n) \in W(G) \mid \prod_{i=1}^{k} P_{i} \in W(G) \} \]

\[\Pi : \Delta \rightarrow L \text{ (multivariate product on } G) \]

\[(g_1, \ldots, g_n) \mapsto g_1 g_2 \cdots g_n \]

This is an example of a "partial group" and, moreover, of an "objective partial group" (to be defined later).

If $\Gamma \in \Delta$ (with some conditions) then we have the notion of L/Γ.

Problem: Given a "rigid automorphism" β of L (to be defined), when does β extend to an automorphism of G?

Special example $G = V \times \text{GL}_3(2)$ (V vector space over \mathbb{F}_2) with faithful action $\Delta = \{ Q_1, Q_2, S \}$, $Q_1 \cap V = Q_2$,

$L = S \cap (Q_1)$, $\forall N_G(Q_i)$, β a "rigid automorphism" means automorphism which centralizes S.

Andrew Cherwak
All such "rigid automorphisms" are given by pairs \(G_i^2 \) (\(i = 1, 2 \)) with \(z \in G_i(\mathbb{F}) = \mathbb{C}_V(S) \), acting on \(N_G(\mathbb{Q}) \).

Exercise. If \(V = \text{Steinberg module for } GL_3(2) \) and \(\{z_1, z_2\} \in \mathbb{C}_V(S) \), then \(\beta \) has no extension to an automorphism of \(G \). If \(V = \text{natural module (28)} \) then \(\beta \) has an extension.

**Def 2.1 (Partial group) \(\mathcal{M} \neq \emptyset, W = W(\mathcal{M}) \), \(\Delta \subseteq W \), \(\Pi : \Delta \rightarrow \mathcal{M} \) satisfying:

1. \(\mathcal{M} \subseteq \Delta \) and \(u \circ v \in \Delta \Rightarrow u, v \in \Delta \)
2. \(u \circ v \in \Delta \Rightarrow (\Pi(u), \Pi(v)) \in \Delta \) and \(\Pi((\Pi(u), \Pi(v))) = \Pi(u, v) ; \Pi(\Pi(u) = \text{id}_{\mathcal{M}} \)
3. Write \(1 \) for \(\Pi(\emptyset) \). Then we have if \(u \circ v \in \Delta \), then \(u \circ 0 \circ v \in \Delta \)

(Exercise: \(\Pi(u \circ v) = \Pi(u \circ 0 \circ v) \)).

An involution is an involutory bijection \(x \mapsto x' \) on \(\Delta \) with the map on \(W \) given by \((x_1, x_2, ..., x_n)^{-1} = (x_1^{-1}, ..., x_n^{-1}) \).

4. \(u \circ 1 = \Pi(u) \in \Delta \) and \(\Pi(u \circ 0(\mathcal{M}) = 1 \).

A partial group is a triple \((\mathcal{M}, \Pi, 1)\).

**Def 2.2 (Partial subgroup) \(\mathcal{N} \subseteq \mathcal{M} \) with \(\mathcal{N} \neq \emptyset \), \(\mathcal{N} \) closed under inversion, \(u \in W(\mathcal{N}) \).

\(\Pi(u) \in \mathcal{N} \)

Conjugation: For each \(\mathcal{F} \subseteq \mathcal{M} \), set \(\mathbf{1}(\mathcal{F}) \) be the set of all \(x \in \mathcal{M} \) s.t. \((\mathcal{F}, x, \mathcal{F}) \in \Delta \).
Then write x^f for $\Pi (f^{-1}, x, f)$

Def. 2.5 All a partial group, $\Delta \leq \text{Sub}(M)$ (the set of "objects"). Set D_Δ is the set of all words $w = (f_1, \ldots, f_n) \in W(M)$ such that $f_i(x_0, \ldots, x_n) \in W(D)$ with $f_i(x_i) = x_i$ for all i, $1 \leq i \leq n$.

(M, Δ) is an objective partial group if

1. $D_\Delta = 0_D$
2. Given $X, Z \in \Delta$ and $f \in M$ with $X^f \subseteq Z$ then $N_X (X^f) \in \Delta$ for every subgroup Y of Z containing X^f.

(In particular $X^f \in \Delta$)

$N_M (X)$ is a subgroup M, if $X \in \Delta$

$x \xrightarrow{f} x \xrightarrow{f} x \xrightarrow{f} x \ldots \xrightarrow{f} x$

Example $M_{13} \leq \text{Alt} (13)$

Conway, Elkies, Martin (2005)
12 tiles + 1 hole on $P(3)$

Def. 2.8 Let p be a prime, S a finite p-subgroup of L, Δ a partial group. Then (L, S) is a locality if L is finite and the exists $\Delta \leq \text{Sub}(S)$, $S \in \Delta$ such that

1. (L, Δ) is objective
2. S is maximal in the poset of finite p-subgroup of L

Let $S = F_q (L)$ = fusion system on S generated
by all \(L \) conjugation maps between subgroups of \(S \). \(L \) is a \(\Delta \)-linking system if
\[
\Delta \subseteq T^\circ \text{ and } \Omega^\Delta(X(P)) = 1 \text{ for all } P \in \Delta
\]
effective linking system \(\iff T^\circ \text{ - effective.} \)

Let \(\Delta(L,S) = \frac{1}{2} |\Delta| / \Delta \) work in def 2.8.

Def. \(L \) is **complete** if for each \(f \in L \) and each \(\Delta \in \Delta(L,S) \) the set
\[
S_f = \{ x \in S \mid x f \in S \} \subseteq \Delta
\]

Prop 2.9. Every locality is complete.

Proof: Given \((L, \Delta, S) \) a locality and \(f \\in L \).

Then \((f) \in \Delta = \Delta \Delta \) so \(P_f = Q \) \((P, Q \in \Delta) \).

Step 1. Let \(a \in S_f \). Then \(P^a \leq S_f \).

Set \(b = a f \), then
\[
(\ast) \quad (a^{-1}, f, b) \in \Delta \quad P \xrightarrow{\theta^{-1}} P^a \xrightarrow{f} Q \xrightarrow{b} Q^a.
\]

So \((f, b) \in \Delta \). But also \((a, f) \in \Delta \) via \(P^a \).

Given that \(f^{-1} a f = b \) we have \(a f = f b \) (uncancellation rule).

Then \(\psi \psi b = a^{-1} (a f) = f \cdot \psi(\psi a f) \leq S \)
and \(P^a \leq S_f \), \(P_f \in \Delta \).

Step 2. Let \(x, y \in S_f \). Step 1 \(\Rightarrow P^x \leq S_f \), \((P^x) \psi \leq S_f \).

\[w = (x, y, f), (x, f, y), (y, f) \in \Delta \text{ via } P^{-f}. \]

\[\pi(w) = x y f = (xy)^{-1} f. \] This shows that \(S_f \) is closed under product (closure under inverses).
Corollary 2.19 (a) Subgroups of localities are local subgroups \(H \leq L \Rightarrow H \leq \mathbb{L}_P(P) \), for some object \(P \).

(b) Every \(p \)-subgroup of a locality \((L, S) \) is conjugate into \(S \).

Definition 3.1. Let \(\mathcal{M}, \mathcal{M}' \) be partial groups. A mapping \(\beta: \mathcal{M} \rightarrow \mathcal{M}' \) is a homomorphism of partial groups if \(\beta\, B \leq \mathcal{M}' \) (where \(B \) is the induced map \(\mathbb{W} \rightarrow \mathbb{W}' \) of free monoids) and \(\Pi'(w B') = \Pi(w) \beta \) for all \(w \in \mathcal{M} \).

\[\text{Ker}(\beta) = \{ f \in \mathcal{M}' : \beta\, f = 1 \} \] . Here \(\cdot \text{Ker}(\beta) \cdot \text{Lker} \).

Definition 4. Let \((\mathcal{L}, \Delta) \), \((\mathcal{L}', \Delta') \) be objective partial groups. A homomorphism \((\mathcal{L}, \Delta) \rightarrow (\mathcal{L}', \Delta') \) of objective partial groups consists of \(\beta: \mathcal{L} \rightarrow \mathcal{L}' \) (homomorphism of partial groups) such there exists \(f: \Delta \rightarrow \Delta' \) with \(w \in \Delta \) via \(\beta = w B \in \Delta' \) via \(\beta \).

This makes a category of partial groups and objective partial groups.

Isomorphism = invertible homomorphism.

Rigid isomorphism between \((L, S, \Delta) \) and \((L', S', \Delta') \) = isomorphism with \(f = \text{id}_\Delta \) and \(\beta' = \text{id}_S \).
The method of descent.

Def. A fusion system F on S is saturated if:

1. **(1)** $\forall P \leq S$ has a fully normalized F-conjugate Q, i.e., $\forall R \approx_F Q$. If $\exists R \leq Q$ such that $\exists (R, Q)$ that extends to $N_S(R)$:
 \[
 N_S(R) \xrightarrow{\psi} N_S(Q)
 \]

2. **(2)** For every fully normalized $Q \leq F$, there exists a finite group M with $Syl_p\sigma_p$ subgroup $N_S(Q)$ and with:
 \[
 F_{N_S(Q)}(M) = N_{\overline{F}}(Q)
 \]

3. **(3)** F is generated by $\cup_{Q \leq F} N_{\overline{F}}(Q)$.

Special case of existence and uniqueness conditions "constrained" fusion systems.

$F = F_S(M)$ where M is finite, $S \in Syl_p(M)$ and $\exists Q \leq F$ with $Q \leq M$ and $Q \cap (M) = 1$.

6.1 **Def.** Let $L = (L, A, S)$ be a locality and let F be a fusion system on S.

Then L is F-natural if $Hom_L(AQ) = Hom(F_AQ)$ for all A, Q in A.

6.3 **Hypothesis:** We are given a fusion system F on S, an F-natural locality.
and a subgroup $T \leq S$, fully normalized in F, $T \not \subseteq \Delta$, but with the properties that $\langle u, v \rangle \in \Delta$ for any two $u, v \in T$ with $u \neq v$.

Set $\Delta^+ = \Delta \cup \{ P \leq S \mid U \leq P \text{ for some } U \in T \}$

6.4 Lemma. Let $U \in \Delta^+$

(a) If $U \leq P \in \Delta$ then $N_P(U) \in \Delta$

(b) $x \in S^T$ such that $T^x = U$ and $N_T(U) = N_G(U)$

Proof.
(a) (exercise) distinguish the case $U \leq P$ and $U \not \subseteq P$. The second case by induction on $LP: U$.

(b) T fully normalized $\Rightarrow \exists y \in F \setminus U \setminus \Delta$ and $N_T(U) = N_G(U)$. Here $N_G(U) \in \Delta$ by (a).

As x is F-natural, there exists $y \in L$ such that $U = \langle y \rangle$. Take $x = y^{-1}$.

Assume (with 6.3) a finite group M with $N_S(T) e \text{Sy}_{gp}(M)$ and with $F_{N_S(T)}(M) = N_S(T)$.

Exercise (see 2.17) $(N_S(T), \Delta_T, N_S(T))$ is a locality $(\Delta_T = \{ P \in \Delta \mid T \leq P \})$.

Assume also: we have a rigid isomorphism $\lambda : N_S(T) \to \mathbb{L}_{\Delta_T}(M)$.
Thm 6.5 With above hypotheses (6.3. and 7.12).
(a) There exists an F-natural L^+-locality
\[L^+ = (L^+, \Delta^+, \varepsilon) = L^+(\lambda), \text{ so that} \\
L^+|_{\Delta} = L \text{ and } \lambda \text{ extends to an isomorphism} \\
(\text{in a canonical way}) \text{ to } \lambda^*: N^+_F(\tau) \rightarrow M. \\
(b) All F-natural localities with set Δ^+ of objects arise in this way. (for some) \\
(c) $L^+(\lambda) \cong L^+(\lambda')$ (use the same M for λ and λ') \\
iff $\lambda^{-1}\lambda'$ extends to an automorphism of M.
(d) (Existence and uniqueness of L^+ ...).

What is L^+?
Let Φ be the set of all triples $\tau = (x^-, g, y) \in L^+ \times M \times L$ such that

1. $T \leq S_x \cap S_y$ \(\Upsilon = T \times, \psi = T \psi \)
2. $N^x_\psi(T) = N^y_\psi(U), N^y_\psi(T) = N^x_\psi(U) \)

Define a relation \sim on Φ by
\[(x^-, g, y) \sim (x^-, \tilde{g}, \tilde{y}), \text{ if } (\tilde{x}^-, \tilde{g}, \tilde{y}).\]

\[U \xrightarrow{x^-} T \xrightarrow{g} T \xrightarrow{y} V \]
\[\Upsilon \xrightarrow{(x^-, \tilde{g}, \tilde{y})} \Upsilon \]
\[U \xrightarrow{x^-} T \xrightarrow{\tilde{g}} T \xrightarrow{\tilde{y}} V \]

Then \sim is an equivalence relation.

Define also \sim by $f \sim (x^-, (xy)^{-1}y, y)$
\[U \xrightarrow{x^-} T \xrightarrow{g^{-1}(xy)^{-1}y} T \xrightarrow{y} V \]

Let \sim be the equivalence relation generated by \sim and \sim.
Set $L_0^+ = \{ u L_0 \} / \sim$ where $L_0 = \{ \frac{1}{n} \in \mathbb{Z}^+ \mid u \neq \emptyset \}$ for some $u \in \mathbb{Z}^+$.

Set $L_1^+ = L \setminus L_0$ and $L^+ = L_0 + u L_1^+$.

Let $\Delta^+ = \{ (c_1, \ldots, c_n) \in W(L_0^+) \mid \exists \text{ representatives } y_i = (x_i, g_i, y_i) \in \mathcal{C}_i \text{ with } w_0 = (g_1, (y_1, x_1^{-1}), g_2, \ldots, (y_n-x_n), g_n) \}$ making sense.

Show that the product is well defined.

Show that Π_0^+ and Π agree on $\Delta^+ \cap \Pi_0$.

$\Pi_0^+(\Delta^+) = \{ (c_1, \ldots, c_n) \in \Delta^+ \mid \text{each } c_i \text{ has a representative } f_i \in \mathcal{L} \text{ which is unique} \}$.

Take $\Delta^+ = \Delta_0^+ \cup \Delta$, $\Pi_0^+ \cup \Pi$ and in this way obtain a partial group Π^+.

To show that (L^+, Δ^+) is a locally need to prove that (L^+, Δ^+) is objective.

This is difficult.

At issue: Given $C = [x^{-1}, g, y]$ and $u, v \in \mathbb{F}$, with $u C = v$ (i.e. $\forall u \in \mathcal{C}$, $\Pi^+(C^{-1}, u, C)$ is defined and is in V), one needs to show that a representative $[x^{-1}, g, y]$ can be
chosen with \(U \xrightarrow{T} T' \xrightarrow{T} T'' \xrightarrow{Y} V \) as in condition (1) in definition of \(D \).

Scheme for \(T \) and uniqueness.

- **Start with** \((L_0, \Delta_0, S)\) where
 - \(L_0\) is a model for \(\text{N}_{\text{tf}}(f(S)) \), here
 - \(f(S) \) is generated by abelian subgroups of \(S \) of maximal order;
 - \(\Delta_0 = \{ P \leq S \mid f(S) \leq P \} \).

- **Choice of** \(T_1, \lambda_1 \) and then
 - construct \((L_1, \Delta_1, S)\) with \(L_1 = L_0 \circ (1) \) and
 - \(\Delta_1 = \Delta_0 \), and how to iterate.