Symbolic dynamics and homeomorphisms of
the Cantor set

Søren Eilers and Klaus Thomsen, organizers
Summer school, University of Copenhagen, June 23-27, 2008

1 Program

1.1 Open problems in symbolic dynamics

Mike Boyle, University of Maryland

This will be a series of eight lectures around some open problems in sym-

bolic dynamics. I’ve chosen problems where there is something interesting

and useful to learn about as context, and where it is practical to get some

understanding of the situation in the time allotted. Most of the time will

be spent on that. The lectures will cover most or all of the following, with

statements of associated problems:

• Classification theory and problems for \(\mathbb{Z} \) shifts of finite type (shift

 equivalence, strong shift equivalence, gyration function, dimension rep-

 resentation, Wagoner’s strong shift equivalence CW complex, counter-

 example to Williams’ Shift Equivalence Conjecture, the positive ra-

 tional shift equivalence conjecture and the Kim-Roush method of in-

 variant tetrahedra)

• The Generalized Spectral Conjecture (a conjectured characterization of

 the stable algebraic structure of primitive matrices over a unital subring

 of the reals)

• One sided shifts: classifications and embeddings (an easy classification;

 a hard classification; an open problem; the embedding contrast for one

 and two sided SFTs)
• Expansive subdynamics of \mathbb{Z}^d actions
• Commuting SFTs and textile systems
• \mathbb{Z}^d SFTs: the uncovered recursive landscape, following especially Hochman and Meyerovitch

1.2 Cantor minimal systems and their orbit structure

Christian Skau, Norwegian University of Science and Technology

A Cantor minimal system is a topological dynamical system (X, T), where X is the Cantor set and T is a homeomorphism on X such that all the orbits are dense in X. Such systems have a universal property: Every minimal system (Y, S), where Y is a compact metric space is a factor of a Cantor minimal system.

We will present complete invariants for the orbit structure of Cantor minimal systems. These invariants are of (ordered) K-theoretic nature and can be defined in purely dynamical terms, even though they are intimately related to the K_0 group of the associated C^*-crossed product, and are so-called (simple) dimension groups. Bratteli diagrams, dynamically interpreted, will be the crucial tool for getting a grasp on the orbit structure. Important examples of Cantor minimal systems will be given, like odometers, substitution systems and Toeplitz systems.

We will then study the orbit structure of Cantor minimal \mathbb{Z}^d systems, i.e. a (minimal) action of the d-dimensional ($d > 1$) free abelian group on d generators. In other words, we have d commuting homeomorphisms of the Cantor set such that all the orbits are dense. We will show that such a system is orbit equivalent to a Cantor minimal system, i.e. to a minimal \mathbb{Z}-action. A complete orbit invariant for such systems is again a simple dimension group.

Finally, we will list some challenging open problems in this area.

1.3 C^*-algebras associated to symbolic dynamics

Toke Meier Carlsen, University of Southern Denmark

I plan to go through the definition of C^*-algebras associated to shift spaces as universal C^*-algebras and show that the C^*-algebra of a shift space is invariant up to one-sided conjugacy, and that the stabilized C^*-algebra of a shift space is invariant up to two-sided conjugacy and flow equivalence. I
will also look at the K-theory of the C^*-algebra of a shift space and show how this give rise to new (and some old) invariants for shift spaces, and I will look at some examples, such as shifts of finite type, sofic shifts, shift spaces of substitutions (there will be some connection with Cantor minimal systems here) and beta-shifts and discuss what we can learn about these shift spaces and their classification by studying the corresponding C^*-algebras.

I plan to organize my lectures so the can be followed without any previous knowledge about C^*-algebras.