Nakahara: [String Topology & BG's], Chateau-Renishan, Westerland

Fix a field F and let $X = BG$, G a finite group or X a 1-connected space with $H^*(X; F)$ finitely generated such as BG, G connected compact Lie groups p-compact groups for $F = F_p$.

Theorem

For X as above, $H^*(LX; F)$ is an HCFT (positive boundary) where $LX = \text{map}(S^1, X)$ (up to (degree))

HCFT: Homological Conformal Field Theory.

Let C be the topological category with $\text{Obj} C = N = 1$ closed 1-dim. manifolds?

$\text{Mor}_C(n, m) =$ moduli space of Riemann cobordisms from n to m circles such as in $\text{Mor}_C(3, 3)$

![Diagram of a cobordism]

i.e. the space of Riemann structures on such cobd.

$$\cong \bigotimes_{k=0}^{n+m} \text{BT} \times \cdots \times \text{BT}$$

Where $\text{BT} \cong D_0 \text{Diff}(S^{2g}, \text{rel} D)$

C is a symmetric monoidal category under disjoint union

Def. A CFT is a monoidal functor

$$\Phi: C \to \text{Hilb}$$

s.t. $\Phi(n+m) = \Phi(n) \otimes \Phi(m)$
Let $C \times C$ be the linear category with the same objects as C but $\text{Mor}_{C \times C}(n, m) = C \times \text{Mor}_C(n, m)$.

Def. A TCFT is a monoidal functor
$$\Phi : C \times C \rightarrow \text{Chain complexes} / \mathbb{F}$$
$s.t.$
$$\Phi(n+m) = \Phi(n) \otimes \Phi(m).$$

Let $H \times C$ be the linear category with the same objects as C but $\text{Mor}_{H \times C}(n, m) = H \times \text{Mor}_C(n, m)$.

Def. An HCFT is a monoidal functor
$$\Phi : H \times C \rightarrow \text{Gr. Vect} / \mathbb{F}$$
$s.t.$
$$\Phi(n+m) = \Phi(n) \otimes \Phi(m).$$
$(\text{Obs: } \Phi(0) = \mathbb{F})$

Let $C^+ \subset C$ be the subcategory with the same objects and morphisms are such that every component of its cobordism have non-empty incoming & outgoing boundary cycle (i.e. $n_i, m_i > 0$).

Rephrased Theorem
The map $n \mapsto H_\ast(LX; \mathbb{F}) \otimes^n$ can be extended to a monoidal functor from $H_\ast C^+$ to graded \mathbb{F}-vector spaces.

In particular we have maps, $\forall g, n, m$

$$H_\ast(T_g, n+m; \mathbb{F}) \otimes H_\ast(LX; \mathbb{F}) \otimes^n \rightarrow H_\ast(LX; \mathbb{F})$$

Classical String Topology

Clan Sullivan. $H_{\ast+d}(LM)$ is a BV-algebra, i.e. there is a commutative product of degree zero and a
Degree one operator

Observe: The BV-structure is exactly the part of an NCFT coming from \otimes giving the product and \otimes_0 of degree 1 giving Δ.

Theorem (Godin)
The Chea-Sullivan BV-structure extends to an NCFT on $H_*(LM)$.

Back to $BG = X$.

Consider the diagrams

1. $$(LX)^n \xrightarrow{\text{in}} \text{Rep}(Sg_{n+m}, X) \xrightarrow{\text{out}} (LX)^m$$

These maps are Diff(Sg_{n+m}) - equivariant where Diff acts trivially on LX. Take this Borel construction.

2. $\text{BDiff} \times (LX)^n \xrightarrow{\pi} E \text{Diff} \times \text{Diff} \text{Rep}(Sg_{n+m}, X) \xrightarrow{} \text{BDiff} \times X^n$.

We want now transfer maps in homology. If so, we set the NCFT by taking the composition. We need to understand the fiber of π.

Proposition

$\text{Rep}(S, X)^m \times (LX)^m$ is a fibration with fiber $(S^m X \times \ast)$ if X is $(n-1)$-connected.
proof: It is a fibration because it is induced by a cofibration. Since \(LX \) is connected (\(X \) is 1-connected), we look at the fiber over the trivial loops \(\{1\} \subseteq X \). It is

\[\tau_{\ast}(S/\{1\}, X) \text{, but } \Sigma_{n} = \{1\} \]

Since we assume \(H_{\ast}(LX; \mathbb{F}) \) is finite, the Dwyer transfer exists.

Corollary: The fiber of \(\pi_{\ast} \) is \((S\times X) - \{1\} \).

Note: If \(x \in F \), since \(\Sigma_{n} = \{1\} \), we have \(\text{map}(\{1\}, B\mathbb{F}) \) easy to describe...

Integration along fibers

If \(H_{\ast}(F; \mathbb{F}) = \# \) is kbp dim., \(\pi_{\ast} B \) acts

basically on \(H_{\ast}(F; \mathbb{F}) \). Be \(SS \rightarrow E \rightarrow B \)

gives

\[H_{p}(B) \cong E_{p,d} = H_{p}(B; H_{\ast}(F; \mathbb{F})) \]

In this case, we get \(d = \text{dim}(S \times X) \)

depends on \(g, n, m \).

The orientability condition holds as well since we have a pull-back

\[\tau_{\ast}(S, X) \rightarrow (LX)^{n} \text{ orientable} \]

\[\tau_{\ast}(S, X) \rightarrow X^{n} \text{ orientable} \]