Midterm Review and Conference
EU-NCG, Non-Commutative Geometry

Program

Monday September 28 at 14:30 - Tuesday September 29 at noon
Title: Midterm review program
Pages: 2-3

Tuesday September 29 at 13.15 - Friday October 2 at 14.25
Title: Conference
Pages: 4-9

Contents

List of speakers in alphabetical order, page 5.
Calendar, pages 6-9.
List of participants, pages 20-21.

Organiseret af Ryszard Nest, Erik Christensen, NCG, SYM.
EU-NCG Mid Term Review: 28 and 29 September, Copenhagen Denmark

Agenda

Monday, 28 September 2.30

1. Introduction Dr Lidija Matija

2. Overview David Evans

3. Team and Young Researcher Reports

Node 1, Cardiff

Co-ordinator: David Evans
Appointees: ESR Claire Shelly
ER Pinhas Grossman

4 minutes
6 minutes
6 minutes

Node 2, DIAS

Co-ordinator: Denjoe O’Connor
Appointees: ESR Thomas Kaltenbrunner

4 minutes
6 minutes

Nodes 3,4, Copenhagen/Odense

Co-ordinator: Ryszard Nest
Appointees: ESR Chiara Esposito
ESR George Napolitano
ESR Stella Anevski
ER Pawel Kasprzak

4 minutes
6 minutes
6 minutes
6 minutes
6 minutes

Node 5, Rome

Co-ordinator: Laszlo Zsido
Appointees: ESR Liviu Păunescu
ER Henning Bostelmann

4 minutes
6 minutes
6 minutes

Node 6, Oslo

Co-ordinator: Sergey Neshveyev
Appointees: ESR Amin Malik

4 minutes
6 minutes

11. IMAR

Co-ordinator: Serban Stratila
Appointees: ER Bernhard Burgstaller

4 minutes
6 minutes
Node 7, CNRS

Co-ordinator: Emmanuel Germain 4 minutes
Appointees: ESR Daniele Pranzetti 6 minutes
ESR Bora Yalkinoglu 6 minutes
ER Ana-Maria Stan 6 minutes

Node 10, ESI

Co-ordinator: Klaus Schmidt 4 minutes
Appointees: ESR Eric Morfa-Morales 6 minutes
ER Gandalf Lechner 6 minutes

Node 9, Leuven

Co-ordinator: Stefaan Vaes 4 minutes
Appointees: ESR Anselm Knebusch 6 minutes

Node 8, Münster

Co-ordinator: Raimar Wulkenhaar 4 minutes
Appointees: ESR Bernardino Spisso 6 minutes
ESR/ER Pierre Clare 6 minutes

Tuesday, 29 September

4 [9.30 am] Meeting between young researchers (ER and ESR) and Project Officer

5 [11.00 am] Open discussion

6 [12.00] Presentation by Project Officer about FP7 and further opportunities for young researchers and networks
Conference in connection with the Mid-Term-Review of the EU grant NCG, Noncommutative Geometry.

September 28 - October 2, 2009, University of Copenhagen

Schedule for the talks:

A number next to a name is the lecture hall number.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00-9:45</td>
<td>NCG</td>
<td>NCG</td>
<td>Radulescu 6</td>
<td>O'Connor 3</td>
<td>Werner 8</td>
<td>9:15-10:00</td>
</tr>
<tr>
<td>9:55 - 10:25</td>
<td>Mid-Term-Review</td>
<td>Mid-Term-Review</td>
<td>Kyed 6</td>
<td>Fidaleo 3</td>
<td>Martinetti 1</td>
<td>10:10-10:40</td>
</tr>
<tr>
<td>10:35-11:20</td>
<td>Meet in 04.4.19</td>
<td>on the top floor</td>
<td>Wulkenhaar 6</td>
<td>Silvestrov 3</td>
<td>Musat 1</td>
<td>10:50-11:35</td>
</tr>
<tr>
<td>11:30-12:00</td>
<td>You may use the facilities.</td>
<td></td>
<td>Grossman 6</td>
<td>Yalkinoglu 3</td>
<td>Clare 1</td>
<td>11:45-12:15</td>
</tr>
<tr>
<td>15:15-15:45</td>
<td>Room 4.19</td>
<td></td>
<td>Deprez 2</td>
<td>Kasprzak 4</td>
<td>Burgstaller 3</td>
<td></td>
</tr>
<tr>
<td>15:55-16:25</td>
<td>may be used during the week.</td>
<td></td>
<td>Morsella 2</td>
<td>Bostelmann 4</td>
<td>Hillier 3</td>
<td></td>
</tr>
<tr>
<td>16:35-17:05</td>
<td>Pranzetti 2</td>
<td></td>
<td>Savinien 4</td>
<td>Jain 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

List of speakers

Aastrup Johannes, time: 13.55-14.25, place: Aud. 1, Friday
Archbold Robert, time: 13.15-14.15, place: Aud. 3, Thursday
Boca Florin, time: 13.15-14.10, place: Aud. 4, Wednesday
Bostelmann Henning, time: 15.55-16.25, place: Aud. 4, Wednesday
Burgstaller Bernhard, time: 15.15-15.45, place: Aud. 3, Thursday
Clare Pierre, time: 11.45-12.15, place: Aud. 1, Friday
Deprez Steven, time: 15.15-15.45, place: Aud. 2, Tuesday.
Fidaleo Francesco, time: 9.55-10.25, place: Aud. 3, Thursday
Fima Pierre, time: 13.15-13.45, place: Aud. 1, Friday
Grossman Pinhas, time: 11.30-12.00, place: Aud. 6, Wednesday
Hillier Robin, time: 15.55-16.25, place: Aud. 3, Thursday
Jain Ranjana, time: 16.35-17.05, place: Aud. 3, Thursday
Kasprzak Pawel, time: 15.15-15.45, place: Aud. 4, Wednesday
Kyed David, time: 9.55-10-25, place: Aud. 6, Wednesday
Lechner Gandalf, time: 14.25-14.55, place: Aud. 3, Thursday
Martinetti Pierre, time: 10.10-10.40, place: Aud. 1, Friday
Morsella Gerardo, time: 15.55-16.25, place: Aud. 2, Tuesday.
Musat Magdalena, time: 10.50-11.35, place: Aud. 1, Friday
Prazzetti Daniele, time: 16.35-17.05, place: Aud. 2, Tuesday
Pugh Mathew, time: 14.25-14.55, place: Aud. Lille UP-1, Wednesday
Radulescu Florin, time: 9.00-9.45, place: Aud. 6, Wednesday
Savinien Jean, time: 16.35-17.05, place: Aud. 4, Wednesday
Silvestrov Sergei, time: 10.35-11.20, place: Aud. 3, Thursday
Vaes Stefaan, time: 13.15-14.15, place: Aud. 2, Tuesday
Werner Wend, time: 9.15-10.00, place: Aud. 8, Friday
Wulkenhaar Raimar, time: 10.35-11.20, place: Aud. 6, Wednesday
Yalkinoglu Bora, time: 11.30-12.00, place: Aud. 3, Thursday
Begivenheder tirsdag den 29. september 2009

NCG Conference

Several Talks

Taler(e): Vaes, Kaad, Deprez, Morsella, Pranzetti

Tirsdag den 29. september 2009 kl. 09:30-17:05. Sted: Aud. 2, Aud. 3.

Sprog: engelsk.

9.30-12.00
Title: NCG Mid-Term-Review
Place: Aud. 3

13.15-14.15
Stefaan Vaes, K.U.Leuven
Title: Rigidity of group measure space II_1 factors
Place: Aud. 2

14.25-14.55
Jens Kaad, University of Copenhagen
Title: Invariance results for pairings with algebraic K-theory
Place: Aud. 2

15.15-15.45
Steven Deprez, K.U.Leuven
Title: A classification of all finite-index subfactors for a class of II_1 factors
Place: Aud. 2

15.55-16.25
Gerardo Morsella, Tor Vergata University, Roma
Title: Scaling limits, subsystems and superselection theory
Place: Aud. 2

16.35-17.05
Daniele Pranzetti, CPT Marseille, Université de Provence
Title: On The Regularization Of The Constraints Algebra Of Quantum Gravity In 2+1 Dimensions With Non-vanishing Cosmological Constant
Place: Aud. 2
Begivenheder onsdag den 30. september 2009

NCG Conference

Several Talks

Taler(e): Radulesco, Kyed, Wulkenhaar, Grossman, Boca, Pugh, Kasprzak, Bostelmann, Savinien

Onsdag den 30. september 2009 kl. 09:00-17:05. Sted: Aud. 4, Aud. 6, Aud Lille Up1. Sprog: engelsk.

9.00-9.45
Florin Radulescu, Rome
Title: Quantum dynamics and some problems in Number Theory
Place: Aud. 6

9.55-10.25
David Kyed, University of Göttingen
Title: An L^2-Künneth formula for tracial algebras
Place: Aud. 6

10.35-11.20
Raimar Wulkenhaar, University of Münster
Title: Non-compact spectral triples
Place: Aud. 6

11.30-12.00
Pinhas Grossman, Cardiff University
Title: Quadrilaterals of factors
Place: Aud. 6

13.15-14.15
Florin Boca, IMAR and University of Illinois
Title: Some noncommutative structures associated with continued fractions
Place: Aud. 4

14.25-14.55
Mathew Pugh, Cardiff University
Title: Spectral Measures and Generating Series for Nimrep Graphs in Subfactor Theory
Place: Aud. Lille UP-1

15.15-15.45
Pawel Kasprzak, University of Copenhagen
Title: Rieffel deformation via crossed products
Place: Aud. 4

15.55-16.25
Henning Bostelmann, York
Title: On the short-distance scaling limit in quantum field theory
Place: Aud. 4

16.35-17.05
Jean Savinien, Institut Camille Jordan, Lyon, France
Title: Transverse Laplacians for substitution tilings
Place: Aud. 4
Begivenheder torsdag den 1. oktober 2009

NCG Conference

Several Talks

Taler(e): O’Connor, Fidaleo, Silvestrov, Yalkinoglu, Archbold, Lechner, Burgstaller, Hillier, Jain

Torsdag den 1. oktober 2009 kl. 09:00-17:05. Sted: Aud. 3. Sprog: engelsk.

9.00-9.45
Denjoe O’Connor, Dublin Institute for Advanced Studies
Title: Emergent and Evaporating geometry
Place: Aud. 3

9.55-10.25
Francesco Fidaleo, University Tor Vergata of Rome
Title: On the entangled ergodic theorem
Place: Aud. 3

10.35-11.20
Sergei Silvestrov, Lund University
Title: Non-invertible dynamics and generalized crossed product C*-algebras: non-free actions, ideals and maximal abelian subalgebras
Place: Aud. 3

11.30-12.00
Bora Yalkinoglu, Paris 6
Title: Bost-Connes type systems and Complex Multiplication
Place: Aud. 3

13.15-14.15
Robert Archbold, University of Aberdeen
Title: Ideal structure in multiplier algebras of C*-algebras
Place: Aud. 3

14.25-14.55
Gandalf Lechner, Vienna
Title: Rieffel deformations and the construction of local nets
Place: Aud. 3

15.15-15.45
Bernhard Burgstaller, Doppler Institute for mathematical physics
Title: Equivariant KK-theory for semimultiplicative sets
Place: Aud. 3

15.55-16.25
Robin Hillier, Tor Vergata
Title: Spectral triples for conformal field theory
Place: Aud. 3

16.35-17.05
Ranjana Jain, Delhi University, India
Title: Operator space projective tensor product of C*-algebras
Aud. 3
Begivenheder fredag den 2. oktober 2009

NCG Conference

Seværende taler:

Werner, Martinetti, Musat, Clare, Fima, Aastrup

9.15-10.00
Wend Werner, University of Münster
Title: The geometry of infinite dimensional Banach manifolds
Place: Aud. 8

10.10-10.40
Pierre Martinetti, Universität Göttingen
Title: Spectral distance on the Moyal plane
Place: Aud. 1

10.50-11.35
Magdalena Musat, University of Copenhagen
Title: Factorization and dilation problems for completely positive maps on von Neumann algebras
Place: Aud. 1

11.45-12.15
Pierre Clare, Université d'Orléans / WWU Münster
Title: Hilbert modules and intertwiners associated to principal series
Place: Aud. 1

13.15-13.45
Pierre Fima, Kuleuven
Title: Property T and Haagerup property for discrete quantum groups
Place: Aud. 1

13.55-14.25
Johannes Aastrup, University of Münster
Title: Spectral triples in noncommutative geometry
Place: Aud. 1
1 Tuesday

Rigidity of group measure space II$_1$ factors
Stefaan Vaes, K.U.Leuven

Abstract: Using the group measure space construction of Murray and von Neumann (1943), countable groups and their actions on measure spaces give rise to von Neumann algebras. Probability measure preserving actions that are ergodic and essentially free, lead to II$_1$ factors. After a survey of Popa’s deformation/rigidity theory, I will speak about the following two joint results with Popa.

- The construction of W^*-superrigid group actions. These are group actions whose associated II$_1$ factor entirely remembers the group and the action out of which it was constructed.

- The construction of II$_1$ factors (acting on separable Hilbert spaces) with uncountable fundamental groups different from \mathbb{R}_+.

The talk will be introductory, assuming no advanced knowledge about II$_1$ factors.

Invariance results for pairings with algebraic K-theory
Jens Kaad, University of Copenhagen

Abstract: We prove that the multiplicative character of A. Connes and M. Karoubi is invariant under perturbations by Schatten ideal operators. This motivates the definition of a finitely summable K-homology type functor. By means of the multiplicative character the abelian groups which it produces then admit a non-trivial pairing with algebraic K-theory.

A classification of all finite-index subfactors for a class of II$_1$ factors
Steve Deprez, K.U.Leuven

Abstract: Given a II$_1$ factor M associated to a good generalised Bernoulli action of a weakly rigid group, we give a full classification of all finite-index subfactors of M up to unitary conjugacy. In particular, we can compute Jones’ invariant $\mathcal{C}(M)$, i.e. the set of all the indices $[M : P]$ of irreducible finite-index subfactors $P \subset M$, for some concrete examples.
Scaling limits, subsystems and superselection theory
Gerardo Morsella, Tor Vergata University, Roma

Abstract: Given and inclusion of (graded) local nets, the structure of the corresponding inclusion of scaling limit nets is analysed. In particular, conditions are given under which the unicity of the scaling limit of the bigger net implies unicity also for the limit of the smaller one. In the case of an inclusion of local nets with the same canonical field net, sufficient conditions are discussed which entail that the scaling limit nets also give rise the same field net.

On The Regularization Of The Constraints Algebra Of Quantum Gravity In 2+1 Dimensions With Non-vanishing Cosmological Constant
Daniele Pranzetti, CPT Marseille, Université de Provence

Abstract: 3-dimensional quantum gravity can be defined from a number of different points of view. For what concerns Loop Quantum Gravity (LQG), in the case of vanishing cosmological constant the theory has been quantized by Noni and Perez and the algebra of the regularized constraints is anomaly free in this case. In the case of non-vanishing cosmological constant there is not a quantization of the theory in LQG yet. In this work we make a first step into this direction by introducing a regularization for the constraints algebra. Some of the ambiguities which arise in the process of quantization of the theory can be resolved taking the classical algebra as a guiding tool. The result obtained is not anomaly free and the local symmetry appears to be deformed. What connection this has with quantum groups is not clear yet.

2 Wednesday

Quantum dynamics and some problems in Number Theory
Florin Radulescu, Rome

Abstract: We use operator algebra techniques and dilation theory for completely positive maps (and 2-algebras in the sense of Vershik) for a new approach to some conjectures regarding spectrum of arithmetic operators.
An L^2-Kähler formula for tracial algebras
David Kyed, University of Göttingen

Abstract: I will discuss a Künneth formula computing the Connes-Sbyakhtenko L^2-Betti numbers of an algebraic tensor product of two tracial algebras in terms of the L^2-Betti numbers of the algebras in question. If time permits, I will explain how this gives rise to quantum groups with a non-vanishing first L^2-Betti number.

Non-compact spectral triples
Raimar Wulkenhaar, University of Münster

Abstract: In order to extend the spectral action principle to non-compact spaces, we propose a framework for spectral triples where the algebra may be non-unital but the resolvent of the Dirac operator remains compact. An example is given by the supersymmetric harmonic oscillator. The two different Dirac operators provide two representations of the volume form in the Hilbert space, and only their product is the grading operator.

We also compute the spectral action for the corresponding Connes-Lott two-point model. There is an additional harmonic oscillator potential for the Higgs field, whereas the Yang-Mills part is unchanged. The total Higgs potential shows a two-phase structure with smooth transition between them: In the spontaneously broken phase below a critical radius, all fields are massive, with the Higgs mass slightly smaller than the NCG prediction. In the unbroken phase above the critical radius, gauge fields and fermions are massless, whereas the Higgs field remains massive.

Quadrilaterals of factors
Pinhas Grossman, Cardiff University

Abstract: A quadrilateral of factors is a square of von Neumann algebras with trivial centers. For a noncommuting irreducible finite-index quadrilateral whose sides are "2-supertransitive", there are severe restrictions on the possible configurations. In particular, there are exactly seven noncommuting, irreducible quadrilaterals with sides of index less than or equal to four, up to isomorphism of the standard invariant. This is joint work with Masaki Izumi.
Some noncommutative structures associated with continued fractions
Florin Boca, IMAR and University of Illinois

Abstract: We consider a certain AF algebra associated with the Farey tessellation, naturally incorporating the continued fraction algorithm. This algebra provides a candidate for a noncommutative space on which one can try to extend some classical transformations associated with continued fractions, such as the Gauss or Farey maps.

Spectral Measures and Generating Series for Nimrep Graphs in Subfactor Theory
Mathew Pugh, Cardiff University

Abstract: The spectral measures for nimrep graphs arising in subfactor theory are determined. The methods used give an alternative approach to deriving the results of Banica and Bisch for SU(2) ADE graphs and subgroups of SU(2) and explain the connection between their results for affine ADE graphs and the Kostant polynomials. These methods allow an easy generalization to SU(3), where the spectral measures for nimreps associated with SU(3) modular invariants and subgroups of SU(3) are determined.

Rieffel deformation via crossed products
Pawel Kasprzak, University of Copenhagen

Abstract: The aim of this talk is to present a description of the Rieffel Deformation in terms of crossed products. The starting point of our construction is an action of an abelian group G on a C*-algebra A. The crossed product algebra of A by the action of G is canonically equipped with the dual action of the dual group of G. The algebra A can be embedded into this crossed product and it is characterized by the Landstad conditions, one of which is the invariance with respect to the dual action. Using a 2-cocycle on the dual group one can deform the dual action and the Rieffel Deformation of A is defined as the Landstad algebra for this deformed dual action. A particular benefit of our approach are immediate proofs of invariance of K-groups and preservation of nearularity under the Rieffel Deformation.

On the short-distance scaling limit in quantum field theory
Henning Bostelmann, York
Abstract: TBA.

Transverse Laplacians for substitution tilings
Jean Savinien, Institut Camille Jordan, Lyon, France

Abstract: Pearson and Bellissard recently built a spectral triple for ultra-
metric Cantor sets. They derived a family of Laplace-Beltrami like operators
on those sets. Motivated by the applications to specific examples, we revisit
their work for the transversals of tiling spaces, which are particular self-
similar Cantor sets. We use Bratteli diagrams to encode the self-similarity,
and Cuntz-Krieger algebras to implement it. We show that the abscissa of
convergence of the zeta-function of the spectral triple gives indications on the
exponent of complexity of the tiling. We determine completely the spectrum
of the Laplace-Beltrami operators, give an explicit method of calculation for
their eigenvalues, compute their Weyl asymptotics, and a Seeley equivalent
for their heat kernels.

3 Thursday

Emergent and Evaporating geometry
Denjoe O’Connor, Dublin Institute for Advanced Studies

Abstract: Spacetime geometry may not always have existed, it may in fact
be an emergent low energy concept. A simple model is described in which
a geometrical phase emerges as the system is cooled. The phenomenon is
illustrated by a simple three matrix model. More generally a new universal-
ity class of topological phase transitions is discussed in which the underlying
geometry undergoes a phase transition.

On the entangled ergodic theorem
Francesco Fidaleo, University Tor Vergata of Rome

Abstract: We discuss the entangled ergodic theorem for certain relevant
situation, that is the convergence in the strong, or merely weak operator
topology of the Cesaro mean

\[\frac{1}{N^k} \sum_{n_1, \ldots, n_k = 0}^{N-1} U_n^{(1)} A_1 U_n^{(2)} \ldots \]
\[U^{n_\alpha(m-1)} A_{m-1} U^{n_\alpha(m)}. \]

Here \(U \) is a unitary operator acting on the Hilbert space \(\mathcal{H} \), \(A_1, \ldots, A_{m-1} \) are bounded operators acting on \(\mathcal{H} \), and \(\alpha : \{1, \ldots, m\} \mapsto \{1, \ldots, k\} \) is a partition of the set \(\{1, \ldots, m\} \) in \(k \) parts. The situation of interest will be the case when the \(A_j \) are compact, without any condition on the spectrum of \(U \), the case when \(U \) is almost periodic without any condition on the \(A_j \), and finally a case arising from "quantum diagonal measures".

Non-invertible dynamics and generalized crossed product C*-algebras: non-free actions, ideals and maximal abelian subalgebras

Sergei Silvestrov, Lund University

Abstract: The results presented in this talk are motivated by the pioneering works of Archbold, Spielberg, Tomiyama, Zeller-Meier and others in 1960th-1990th establishing close relation between topological freeness properties of invertible topological dynamical systems and actions of groups, intersection properties of ideals and the maximal commutativity of a canonical subalgebra in the corresponding crossed product C*-algebras. This type of results play pivotal role in understanding the structure and classifications of crossed products C*-algebras and the interplay of C*-algebras and dynamical systems. They are important also for representation theory and for its applications in analysis of quantum systems involving non-commutative dynamics. In this talk I will present some resent developments of the corresponding results and notions for non-invertible dynamics and associated generalizations of crossed product algebras, and also new approaches and results in the contexts where the dynamics might involve non-Hausdorff spaces or is not topologically free. This talk is partially based on new results and on recent joint works with Toke Meier Carlsen, Johan Öinert, Christian Svensson, Jun Tomiyama and Marcel de Jeu.

Bost-Connes type systems and Complex Multiplication

Bora Yalçinoglu, UPMC, Paris

Abstract: In explicit class field theory (known as Hilbert’s 12th problem) one tries to construct explicit generators of the maximal abelian extension \(K^{ab} \) of a number field \(K \). This problem has been solved completely only in the case of \(K = \mathbb{Q} \) or \(K \) an imaginary quadratic field. Further there are some partial results for \(K \) equal to a CM-field (i.e. a totally quadratic extension of a totally real extension of \(\mathbb{Q} \)) based on the beautiful theory of Complex
Multiplication, the case of imaginary quadratic fields being a special case. In their famous 1995 paper J.-B. Bost and A. Connes laid down an operator-theoretic approach to the above problem by solving the following problem in the case of $K = \mathbb{Q}$. A C^*-dynamical system $\mathcal{A}_K = (A_K, \sigma_t)$ associated to a number field K is called Bost-Connes type system if it fullfills (among other things) the following three properties

i) the Galois group $Gal(K^{ab} = K)$ of the maximal abelian extension K^{ab} of K is acting as symmetries on A_K;

ii) the partition function of A_K is given by the Dedekind zeta function ζ_K;

iii) there is a K-rational subalgebra $\text{Aarith} A_K$ such that extremal KMS_∞ states evaluated on this subalgebra generate K^{ab}.

Ten years later in 2005 A. Connes, M. Marcolli and N. Ramachandran constructed Bost-Connes type systems \mathcal{A}_K for arbitrary imaginary quadratic fields based on the theory of Complex Multiplication.

In our talk we will show how to extend the results of the latter by using the work of E. Ha and F. Paugam, the work of M. Laca, N. Larsen and S. Neshveyev and the full power of the theory of Complex Multiplication to the case of a general CM fields K, thus providing a partial solution of the problem of constructing a Bost-Connes A_K type system for a CM-field K.

Ideal structure in multiplier algebras of C^*-algebras

Robert Archbold, University of Aberdeen

Abstract: We discuss joint work with Somerset on ideal structure in the multiplier algebra $M(A)$ of a separable, non-unital C^*-algebra A. The motivation comes from recent results for specifically unital C^*-algebras by various authors on topics such as norms of inner derivations, the central Haagerup tensor product, and $C_0(X)$-algebras. What conditions on A will allow these theorems to be applied to $M(A)$?

Rieffel deformations and the construction of local nets

Gandalf Lechner, Vienna

Abstract: In this talk I will explain how the C^*-algebraic deformation procedure introduced by Rieffel can be applied to the problem of deforming quantum field theories in a way which is compatible with covariance and locality. (joint work with D.Buchholz and S.J.Summers)
Equivariant KK-theory for semimultiplicative sets
Bernhard Burgstaller, Doppler Institute for mathematical physics

Abstract: A semimultiplicative set G is a set G with a partially defined multiplication. To compensate the lack of inverses in G, one requires always both a left and a right action of G on a set, or an algebra, or another category. One can construct a reduced and a full crossed product of G with C^*-algebras, and there are some generalised Cuntz–Krieger algebras which arise as such reduced crossed products. Our main result is the introduction of a G-equivariant KK-theory, quite parallel to Kasparov’s equivariant theory for groups G. We have verified the existence of an intersection product and a descent homomorphism.

Spectral triples for conformal field theory
Robin Hillier, Tor Vergata

Abstract: Conformal nets as an essential ingredient of operator algebraic conformal field theory are reviewed. In the recent noncommutative geometrisation programme, we want to associate geometric quantities and invariants like spectral triples and cohomology classes to field theoretic quantities and invariants like subfactors, their indices, and modular operators. We explain these general ideas and present some first firm results and examples.

Operator space projective tensor product of C^*-algebras
Ranjana Jain, Delhi University, India

Abstract: We prove that for C^*-algebras A and B, a jointly completely bounded bilinear map from $A \times B$ into \mathbb{C} can be extended uniquely to a (j.c.b.) norm preserving normal jointly completely bounded bilinear map from $A^{**} \times B^{**}$ into \mathbb{C}. We use this to prove that the natural embedding of $A^{**} \hat{\otimes} B^{**}$ into $(A \hat{\otimes} B)^{**}$ has a continuous inverse, where $\hat{\otimes}$ is the operator space projective tensor product. Further, we study the (closed) ideal structure of $A \hat{\otimes} B$, which, in particular, determines the lattice of closed ideals of $B(H) \hat{\otimes} B(H)$ completely.
4 Friday

The geometry of infinite dimensional Banach manifolds
Wend Werner, University of Münster

Abstract: Infinite dimensional Banach manifolds puzzle their friends with a number of unpleasant features. Among these is the fact that Hilbert spaces are so rare among Banach spaces that the theory of Riemannian manifolds is no longer of much use here. It is thus an interesting problem to see what substitutes there might be.

In this talk we have a look at Hilbert-C^* manifolds, and, in a rather concrete example, discuss to what extend important geometrical concepts like the Levi-Civita connection survive.

Spectral distance on the Moyal plane
Pierre Martinetti, Universität Göttingen

Abstract: We will compute Connes’ distance formula associated to the spectral triple of the Moyal plane.

Factorization and dilation problems for completely positive maps on von Neumann algebras
(Joint work with Uffe Haagerup)
Magdalena Musat, University of Copenhagen

Abstract: We study factorization and dilation properties for completely positive unital, trace-preserving maps (for short, c.p.u.t. maps) on von Neumann algebras. The starting point for our work has been the question of existence of non-factorizable Markov maps and semigroups of such, as formulated by Anantharaman-Delaroche in 2004. We provide simple examples of non-factorizable c.p.u.t. maps on the $n \times n$ matrices for $n \geq 3$, as well as an example of a one-parameter semigroup $(T_t)_{t \geq 0}$ of c.p.u.t. maps on the 4×4 matrices such that T_t fails to have the Markov dilation property for all small values of $t > 0$. Further, we study the noncommutative Rota dilation property introduced by Junge, Le Merdy and Xu in 2006 in connection with their work on semigroups of operators acting on noncommutative L_p-spaces. We show that the most natural generalization of Rota’s classical dilation theorem to the noncommutative setting does not hold, by providing an example of a self-adjoint c.p.u.t. map T on the $n \times n$ matrices for some large n, such that T^2 does not have the noncommutative Rota dilation property. This work has revealed nice applications to finding estimates for the best...
constant in the noncommutative little Grothendieck inequality. Also, very recently we solved an open question concerning an asymptotic version of the quantum Birkhoff conjecture by using these techniques.

Hilbert modules and intertwiners associated to principal series

Pierre Clare, Université d’Orléans / WWU Münster

Abstract: TBA

Property T and Haagerup property for discrete quantum groups

Pierre Fima, Kuleuven

Abstract: We will explain Property T and Haagerup Property for discrete quantum groups, discuss the basic properties and give some examples.

Spectral triples in noncommutative geometry

Johannes Aastrup, University of Münster

Abstract: TBA
List of participants

Aastrup Johannes, University of Münster
Anevski Stella, University of Copenhagen
Archbold Robert, Aberdeen
Arlington Sara, University of Copenhagen
Boca Florin, IMAR and University of Illinois
Bostelmann Henning, York
Burgstaller Bernhard, Doppler Institute for mathematical physics
Christensen Erik, University of Copenhagen
Clare Pierre, Université d’Orléans / WWU Münster
Deprez Steven, K.U.Leuven
Eilers Soeren, University of Copenhagen
Esposito Chiara, University of Copenhagen
Evans David, Cardiff University
Fidaleo Francesco, universit a "tor vergata" roma
Fima Pierre, kuleuven
Germain Emmanuel, Univere de Caen
Grossman Pinhas, Cardiff University
Guido Daniele, Univ. Tor Vergata
Haagerup Uffe, University of Southern Denmark
Hillier Robin, Roma, Tor Vergata
Jain Ranjana, Delhi University, India; Currently at K.U.Leuven, Belgium
Johansen Rune, University of Copenhagen
Kaad Jens, University of Copenhagen
Kaltenbrunner Thomas, Dublin Institute of Advanced Studies
Kasprzak Pawel, University of Copenhagen
Knebusch Anselm, Göttingen / Leuven
Kyed David, University of Göttingen
Lechner Gandalf, Vienna
Malik Amin, Oslo University
Martinetti Pierre, Universität Göttingen
Michel Hilsum, CNRS, Paris
Morfa Morales Eric, Vienna
Morsella Gerardo, Tor Vergata University, Roma
Musat Magdalena, University of Copenhagen
Napolitano George Maria, University of Copenhagen
Natsume Toshikazu, Nagoya Institute of Technology
Nest Ryszard, University of Copenhagen
O'Connor Denjoe, Dublin Institute for Advanced Studies
Ortega Esparza Eduard, University of Copenhagen
Paunescu Liviu, Rome2 Tor Vergata
Petersen Henrik Densing, University of Copenhagen
Pranzetti Daniele, CPT Marseille, Université de Provence
Pugh Mathew, Cardiff University
Radulescu Florin, University Rome Tor Vergata
Ramírez-Solano Maria, University of Copenhagen
Rørdam Mikæl, University of Copenhagen
Savinien Jean, Institut Camille Jordan, Lyon, France
Schmidt Klaus, University of Vienna and ESI
Shelly Claire, Cardiff University
Silvestrov Sergei, Lund University
Sørensen Adam Peder Wie, KU
Spisso Bernardino, WWU Münster
Stan Ana-Maria, Universite de Franche Comte
Stratila Serban - Valentin, University of Bucharest and Institute of Mathematics of the Romanian Academy
Szymanski Wojciech, SDU
Uuye Otgonbayar, University of Copenhagen
Vachovski Martin, DIAS
Vaes Stefaan, K.U.Leuven
Werner Wend, University of Münster
Wulkenhaar Raimar, University of Münster
Yalçınkaya Bora, Paris 6
Yngvason Jakob, University of Vienna, ESI
Zsido László, University of Rome "Tor Vergata"