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Introduction

The Mumford conjecture [26] says that the rational cohomology ring of the mod-
uli space of Riemann surfaces is a polynomial algebra on the so-called Mumford-
Morita-Miller classes, in a range of degrees increasing with the genus of the surface.
This conjecture is now known to be true, using the following two theorems as main
ingredients: Harer’s stability theorem [16] which tells us that the rational coho-
mology of the moduli space is independent of the genus in a range of dimensions,
and Madsen-Weiss’ theorem [23] which identifies the stable cohomology with that
polynomial algebra.

Harer’s and Madsen-Weiss’ theorems are both statements about the integral
homology of the mapping class groups of surfaces, using, in the Madsen-Weiss’ case,
Earl and Eells’ theorem [8] relating the diffeomorphism groups to the mapping class
groups of surfaces. In Lecture 1, we describe the relationship between the moduli
space of Riemann surfaces, the mapping class groups and the diffeomorphism groups
of surfaces. We then give a definition of the Mumford-Morita-Miller classes, state
the main part of Harer’s stability theorem, and give a first statement of Madsen-
Weiss’ theorem.

The last three lectures are devoted to a sketch proof of Harer stability theorem,
using improvements by Ivanov [19, 20], Hatcher [17], Boldsen [4] and Randal-
Williams [32]. This proof uses two spectral sequences associated to the action of
the mapping class groups on certain simplicial complexes of arcs in the surfaces.
In Lecture 2, we give the general strategy, define the relevant arc complexes and
study the properties of the action of the mapping class groups on these complexes.
In Lecture 3, we give the spectral sequence argument (following Randal-Williams).
Harer’s stability theorem is proved by studying the spectral sequences carefully,
using the properties of the action given in Lecture 2, as well as a connectivity
property of the arc complexes, whose proof is sketched in Lecture 4. The last three
are mostly based on the survey [37].

This series of lectures is supplemented by Galatius’ lectures in this volume [11],
which present a sketch proof of the Madsen-Weiss theorem.
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LECTURE 1

The Mumford conjecture and the Madsen-Weiss
theorem

In this lecture, we give a brief introduction to important players in the proof
of the Mumford conjecture by Madsen and Weiss. We introduce the moduli space
of Riemann surface, the Teichmüller space and describe their relationship to dif-
feomorphism groups and mapping class groups of surfaces. We state the Mumford
conjecture, the Madsen-Weiss theorem and Harer’s stability theorem.

1. The Mumford conjecture

Let Sg be a closed, smooth, oriented surface of genus g and let Diff(Sg) denote
the topological group of orientation preserving diffeomorphisms of Sg. The moduli
space Mg can be defined in many ways:

Mg = Moduli space of Riemann surfaces
= Space of conformal classes of Riemannian metrics on Sg
= {Riemannian metrics on Sg}/Diff(Sg)
= Isometry classes of hyperbolic structures on Sg
= Biholomorphic classes of complex structures on Sg
= Isomorphy classes of smooth algebraic curves homeomorphic to Sg

We would like to describe Mg, and, for example, compute its (co)homology.
The present lectures, together with Galatius’ lectures in the same volume [11], are
centered around the following result about Mg:

Theorem 1.1 (Mumford conjecture, proved by Madsen-Weiss [23, 26]).

H∗(Mg; Q) ∼=(∗) Q[κ1, κ2, . . . ] with |κi| = 2i

where the isomorphism (∗) is in a range of dimension growing with g.

We will reformulate this theorem in terms of diffeomorphism groups and map-
ping class groups of surfaces. The classes κi are called the Mumford-Morita-Miller
classes and are defined below, and the range for the isomorphism is the homological
stability range of the mapping class group of surfaces, also given explicitly below.

2. Moduli space, mapping class groups and diffeomorphism groups

Define the Teichmüller space

Tg = {Riemannian metrics on Sg}/Diff0(Sg)
with Diff0(Sg) the topological group of diffeomorphisms of Sg isotopic to the iden-
tity, i.e. the component of the identity in Diff(Sg), acting on the space of metrics
by pull-back (see [9, 10.1]).
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Let

Γg = Γ(Sg) := Diff(Sg)/Diff0(Sg) = π0 Diff(Sg)

denote the mapping class group of Sg. (We note that Γg is also often denoted
Mod(Sg), and sometimes refered to as the modular group.) The group Γg acts on
Tg, via the full action of Diff(Sg) on the space of metrics (see [9, 12.1]), and

Mg = Tg/Γg

As Tg ' ∗ (in fact Tg ∼= R6g−6, see [9, 10.6]) and Γg acts properly discontinu-
ously on Tg with finite stabilizers [9, 12.1,12.3], we have

H∗(Mg; Q) ∼= H∗(BΓg; Q)

where BΓg is a classifying space for Γg, i.e. BΓg = EΓg/Γg, for EΓg ' ∗ with free
properly discontinuous Γg–action. [See exercices after Lecture 3.]

Recall moreover that H∗(BΓg; Z) = H∗(Γg; Z) is the group cohomology of Γg
(see [5, I.4]).

To relate these homology groups to the diffeomorphism group, we need the
following

Theorem 1.2 (Earl-Eells [8]). For g ≥ 2, Diff(Sg) has contractible components.

In other words, the theorem says that the homomorphism

Diff(Sg)→ π0 Diff(Sg) = Γg

is a homotopy equivalence. As one can build compatible models of EDiff(Sg) and
EΓg (via the standard resolution and a topological version of it [5, I.5]), it follows
that, when g ≥ 2,

BDiff(Sg) = EDiff(Sg)/Diff(Sg)
'−→ EΓg/Γg = BΓg

and thus

H∗(Mg; Q) ∼= H∗(Γg; Q) ∼= H∗(BΓg; Q) ∼= H∗(BDiff(Sg); Q)

giving us many formulations of the Mumford conjecture.

The space BDiff(Sg) is a classifying space for Sg-bundles: there is a 1-1 corre-
spondence

{Sg → E
π→ X}/∼= ←→ Maps(X,BDiff(Sg))/'

between isomorphism classes of bundles and homotopy classes of maps. Moreover,
elements of H∗(BDiff(Sg)) are characteristic classes for Sg–bundles: they give an
assignment of a cohomology class c(E, π) ∈ H∗(X) to any bundle Sg → E

π→
X, which is natural in the sense that c(g∗(E, π)) = g∗c(E, π) for any map g :
Y → X. Given a class c ∈ H∗(BDiff(Sg)), the associated characteristic class is
defined by c(E, π) = f∗(c) for f : X → BDiff(Sg) classifying (E, π) via the above
correspondence. (See [11, Cor 1.5,1.6] for more details, using an embedding model
for BDiff(Sg).)
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3. The Mumford-Morita-Miller classes

The Mumford-Morita-Miller-classes κi, i = 1, 2, . . . , are characteristic classes for
surface bundles defined as follows: to the bundle of oriented surfaces

Sg → E
π→ X,

one associates the vertical tangent bundle

R2 → TvE
π→ E

with fiber at e ∈ E the tangent plane to the surface π−1 ◦ π(e) = Fπ(e), the fiber
over π(e). (See Figure 1.)

e

π(e)

E ⊃ Fπ(e)

X

TvE

Figure 1. The vertical tangent bundle

This plane bundle has a first Chern class c1(TvE) ∈ H2(E). Then

κi := (−1)i+1π∗(c1(TvE)i+1) ∈ H2i(X)

were π∗ : H2i+2(E)→ H2i(X) is the Gysin homomorphism or integration along the
fibers (see e.g. [28, 4.2.1,4.2.3]). (Note that Mumford originally defined κi using
the cotangent bundle.)

The cohomology class κi ∈ H2i(BDiff(Sg)) (or H2i(Mg; Q)) corresponding to
this characteristic class is obtained by doing the same construction on the universal
bundle

Sg −→ EDiff(Sg)×Diff(Sg) Sg −→ BDiff(Sg)
or on the universal curve

Sg −→Mg,1 −→Mg

where Mg,1 is the moduli space of Riemann surfaces with one marked point.

4. Homological stability

In the previous section, we have defined a class κi ∈ H2i(BDiff(Sg)) for each
i = 1, 2, . . . , and for each genus g, that is we have define a map of graded rings

Q[κ1, κ2, . . . ] −→ H∗(BDiff(Sg)).

The Mumford conjecture says that this map is an isomorphism in a range of di-
mensions growing with g. Note that Q[κ1, κ2, . . . ] is independent of g, so part of
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the Mumford conjecture is a stability statement, which says that the cohomology of
Mg in any given degree is independent of g if g is sufficiently large. This is known
as Harer’s stability theorem, which we state in this section.

A familly of groups

G1 ↪→ G2 ↪→ . . . ↪→ Gn ↪→ . . .

satisfies homological stability if the induced maps

Hi(Gn) −→ Hi(Gn+1)

are isomorphisms in a range i� n, where H∗(Gn) denotes the group homology of
Gn.

Examples: Families of groups satisfying homological stability are Gn = the sym-
metric group Σn [29], the braid group βn [1], the linear group GLn(Z) [13].

Define G∞ =
⋃
n≥1Gn to be the “stable group”. If {Gn}n≥1 satisfies homolog-

ical stability, then

Hi(Gn) ∼= Hi(G∞) in the range i� n

and H∗(G∞) is the “stable homology”.

Let Sg,1 be a surface of genus g with one boundary component, and let Γg,1 =
π0 Diff(Sg,1 rel ∂) be the group of components of the diffeomorphisms restricting
to the identity on the boundary. Consider the family of groups

Γ1,1 ↪→ Γ2,1 ↪→ . . . ↪→ Γg,1 ↪→ . . .

where the map Γg,1 ↪→ Γg+1,1 is induced by including Sg,1 inside Sg+1,1 as in
Figure 2 and extending the diffeorphisms by the identity on Sg+1,1\Sg,1.

↪→

Figure 2. Inclusion S3,1 ↪→ S4,1

As we are interested in mapping class groups of closed surfaces, we also consider
the map Γg,1 → Γg induced by gluing a disc on the boundary component of Sg,1.

Theorem 1.3 (Harer’s stability theorem, improved by Ivanov, Boldsen, and Ran-
dal-Williams [16, 19, 4, 32]).

Hi(Γg,1; Z)
∼=−→ Hi(Γg+1,1; Z) for i ≤ 2

3
(g − 1)

and

Hi(Γg,1; Z)
∼=−→ Hi(Γg; Z) for i ≤ 2

3
g

The range i ≤ 2
3 (g − 1) is the range of degrees i in which the isomorphism in

the Mumford conjecture holds. We will give a sketch proof of the stability theorem
in the next three lectures.
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5. The Madsen-Weiss theorem

The Madsen-Weiss theorem gives a computation of the stable (co)homology of
mapping class groups, i.e. the group (co)homology of

Γ∞ =
⋃
g≥1

Γg,1

or singular (co)homology of its classifying space BΓ∞. We give now a first formu-
lation of this theorem, without defining all the players yet:

Theorem 1.4 (Madsen-Weiss [23]). There is a homology isomorphism

BΓ∞ −→ Ω∞0 MTSO(2)

where the target is the 0th component of the infinite loop space of the spectrum
MTSO(2).

The spectrum MTSO(2), defined in Galatius’ lectures [11], is build out of
Grassmanians of 2-planes in Rn, in the limit as n → ∞, and the map uses a
vertical tangent bundle type construction. (See Definition 1.7, Theorem 1.8 and
Corollary 1.10 in [11].)

Using homological stability, this can be restated as saying that

Hi(Γg; Z) ∼= Hi(Ω∞MTSO(2); Z) for i ≤ 2
3

(g − 1)

(and the same for cohomology using the universal coefficient theorem).
The target space is computable and H∗(Ω∞0 MTSO(2); Q) = Q[κ1, κ2, . . . ] with

κi in degree 2i corresponding to the Mumford-Morita-Miller-class of the same name
(see [11, 2.1]). Combining these two facts gives the Mumford conjecture, namely
that

H∗(Mg; Q) ∼= H∗(Γg,Q) ∼=(∗) Q[κ1, κ2, . . . ]
where the isomorphism (∗) is up to degree 2

3 (g − 1).

This type of theorem for the symmetric groups and braid groups were already
proved in the early 70’s:

Theorem 1.5 (Symmetric groups). H∗(Σ∞) ∼= H∗(Ω∞0 S
∞)

Theorem 1.6 (Braid groups). H∗(β∞) ∼= H∗(Ω2
0S

2)

The first theorem is known as the Barratt-Priddy theorem [31]. Both theorems
can be seen as special cases of the approximation theorem, which says that the map
CnX → ΩnΣnX is a group completion for Cn the little n-cubes monad. Here one
needs to take X = S0 and n = ∞ in the first case, and the same X but n = 2
in the second case. (See May [24, Thm 2.7] and [7, p.486 (15)], or Segal [35,
Thm 1], for the approximation theorem—see also the work of Boardman-Vogt [3]
and Barratt-Eccles [2]. See [11, Lec 4] or [25] for the group completion theorem.)
The proof of the Madsen-Weiss Theorem presented in Galatius’ lecture series [11]
follows Galatius–Randal-Williams [12], which can be seen as a generalization of
Segal’s proof of the approximation theorem.

The Madsen-Weiss Theorem was generalized to other types of mapping class
groups of surfaces (Non-orientable [36], framed, Spin and Pin mapping class groups
[33]). Other examples are

Theorem 1.7 (Automorphisms of free groups [10]). H∗(Aut∞) ∼= H∗(Ω∞0 S
∞)
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Here Aut∞ =
⋃
n≥1 Aut(Fn) with Fn the free group on n letters.

Theorem 1.8 (Handlebody groups [18]). H∗(H∞) ∼= H∗(Ω∞0 Σ∞(BSO(3)+))

Here H∞ =
⋃
g≥1Hg,1 with Hg,1 = π0 Diff(Hg rel D2) the mapping class group

of a handlebody Hg of genus g fixing a disc in the boundary of Hg.
All the above examples are computations of the homology of the stable group

of a family of groups satisfying homological stability, so they all can be restated
as computations of the homology of the unstable groups in a range of degrees.
Stability is however not a necessary ingredient of a “Madsen-Weiss theorem”—it is
rather an interpretational tool.

6. Exercices

1) Show that S2 and T 2 do not satisfy the Earl-Eells theorem, i.e. that Diff(S2)
and Diff(T 2) do not have contractible components.

2) Give a definition of the group Γ∞ =
⋃
g≥1 Γg,1 in terms of an infinite genus

surface S∞.
3) Let Γ1

g = π0 Diff(S1
g) denote the mapping class group of a once punctured genus g

surface S1
g . Use homological stability and a factorization of the map Γg,1 → Γg,0

to show injectivity of the map Hi(Γg,1)→ Hi(Γ1
g) in a range.



LECTURE 2

Homological stability: geometric ingredients

In this lecture, we briefly describe a general strategy for proving homological
stability for families of groups and then give the main geometric ingredients needed
for the case of the mapping class group of surfaces, with an emphasis on the case
of surfaces with boundaries. We follow Randal-Williams [32] and the survey [37],
which contains further details.

1. General strategy of proof

A simplicial complex X = (X0,F) is a set of vertices X0 together with a collection
F of subsets of X0 closed under taking subsets and containing all the singletons.
The subsets of cardinality p+ 1 are called the p–simplices of X.

To a simplicial complex X, one can associate its realization |X| which has a
topological p-simplex ∆p for each p-simplex of X.

A space or simplicial complex X is called n–connected if πi(X) = 0 for all i ≤ n
(where πi(X) := πi(|X|) if X is a simplicial complex). Note that, by Hurewicz
theorem, a simply connected space X is n-connected, n ≥ 2, if and only if H∗(X) =
0 for 2 ≤ ∗ ≤ n.

Given a familly of groups

G1 ↪→ G2 ↪→ . . . ↪→ Gn ↪→ . . .

we want to find a simplicial complex (or simplicial set) Xn for each n such that

• Gn acts on Xn,
• the stabilizer Stab(σp) ∼= Gn−p−1 for any p-simplex σp,
• the action is as transitive as possible,
• Xn is highly connected.

There is then a spectral sequence for the action of Gn on Xn which decomposes the
homology of Gn in terms of the homology of the stabilizers. As these are assumed
to be previous groups in the sequence, this spectral sequence allows an inductive
argument. (See Lecture 3 for more details.)

2. The case of the mapping class group of surfaces

To prove homological stability for the groups Γg, we will need to consider surfaces
with any number of boundary components. Let S = Sg,r be a surface of genus g
with r boundary components. We will consider 3 maps

αg : Γ(Sg,r) → Γ(Sg+1,r−1)
βg : Γ(Sg,r) → Γ(Sg,r+1)
δg : Γ(Sg,r) → Γ(Sg,r−1)

11
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α
β δ

Figure 1. The maps α, β and δ

induced by gluing a strip which identifies arcs lying in different (for α) or the same
(for β) boundary component(s) of S, and by gluing a disc (for δ). (See Figure 1.)

The proof of homological stability for mapping class groups presented here
involves three simplicial spaces: an arc complex for each of α and β, and a disc
space for δ. In the remainer of the lecture, we will define the two arc complexes
and study their properties. These are the complexes O2 and O1 defined below.

3. The ordered arc complex

We will work here with collections of disjointly embedded arcs in a surface. We say
that a collection of arcs 〈a0, . . . , ap〉 is non-separating if its complement S\(a0 ∪
· · · ∪ ap) is connected.

Given a surface S with points b0, b1 in its boundary, define O(S, b0, b1) to be
the simplicial complex with

vertices =: isotopy classes of non-separating arcs with boundary {b0, b1}
p–simplices =: non-separating collections of p + 1 distinct isotopy classes

of arcs 〈a0, . . . , ap〉 disjointly embeddable (away from b0, b1) in such a
way that the anticlockwise ordering of a0, . . . , ap at b0 agrees with the
clockwise ordering at b1.

Up to isomorphism, there are two such complexes:
O1(S) =: O(S, b0, b1) with b0, b1 on the same boundary component,
O2(S) =: O(S, b0, b1) with b0, b1 on different boundary components.

The mapping class group Γ(Sg,r) = Γg,r acts on O1(Sg,r) and O2(Sg,r). We
give now the properties of this action that are key for us.

Property 1. Γ(S) acts transitively on p–simplices of Oi(S) for each p.

Proof sketch. (See the proof of [37, Prop 2.2 (1)] for more details.) Con-
sider the case O1(S) and let σp = 〈a0, . . . , ap〉 be a p–simplex. Then S\σp =
S\{a0, . . . , ap} is a connected surface with r+p+1 boundary components (see Fig-
ure 2) and Euler characteristic χ(S)+p+1. Thus it must have genus g−p−1 and any
two S\σp and S\σ′p are diffeomorphic. Moreover, a diffeomorphism S\σp → S\σ′p
can be chosen so that it identifies the arcs of σp with those of σ′p and thus glues
back to a diffeomorphism of S mapping σp to σ′p. �

Property 2. There is an isomorphism StabO(σp) ∼= Γ(S\σp), i.e.

StabO1(Sg,r)(σp) ∼= Γg−p−1,r+p+1 and StabO2(Sg,r)(σp) ∼= Γg−p,r+p−1.
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b0 b1

b0 b1

Figure 2. Cutting along simplices of O1 and O2

The proof of this second property will rely on two useful results of manifold
toplogy which we first state.

For M,N two manifolds, let Emb(N,M) denote the space of embeddings of M
into N (with the C∞ topology).

Theorem 2.1 (Fibering Theorem, Palais and Cerf [30, 6]). Let M,N be manifolds
and V a compact submanifold of M . Then the restriction map

Emb(M,N) −→ Emb(V,N)

is a locally trivial fibration.

For M = N , one gets a fibration

Diff(M rel V )→ Diff(M)→ Emb(V,M)

See [6, Chap. II 3.4.2], or the exercices for a sketch of proof.

This theorem has the following very useful corollary (see [30, Sec. 5]):

Theorem 2.2 (Isotopy extension theorem). For a compact submanifold V ⊂ M ,
and any path γ : I → Emb(V,M) with γ(0) the inclusion, there exits a path γ̂ : I →
Diff(M) with γ̂(0) = id and γ̂(t)|V = γ(t).

Note in particular that the theorem produces a diffeomorphism of M (namely
γ̂(1)) which takes V to its isotoped image γ(1)(V ) in M .

Sketch of proof of Property 2. (See the proof of [37, Prop 2.2 (2)] for
more details.) Suppose σp = 〈a0, . . . , ap〉. There is a map

Γ(S\σp)→ StabO(σp)

induced by gluing the surface back together along the arcs.

Surjectivity: Consider φ ∈ StabO(σp). So φ(ai) is isotopic to aθ(i) for all i for
some permutation θ ∈ Σn+1. Applying the isotopy extension theorem to the isotopy
φ(a0) ' aθ(0) gives a diffeomorphism ψ0 of S with ψ0 ' id and ψ0(φ(a0)) = aθ(0).
Hence we can replace φ by the isotopic diffeomorphism φ0 = ψ0 ◦ φ which satisfies
that φ0(a0) = aθ(0). Proceed in the same way with the other arcs, one by one, away
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from the arcs already dealt with. Hence we can replace φ with a diffeomorphism
that fixes the arcs, possibly up to a permutation. But the permutation must be
trivial as φ fixes the boundary. Then φ can be reinterpreted as a diffeomorphism
of S\σp.

Injectivity: Suppose p = 0 for simplicity. We would like to show that the map
Γ(S\I) → Γ(S) is injective for any (non-separating) arc I. A relative version of
Theorem 2.1 above gives a fibration

Diff(S rel ∂S ∪ I)→ Diff(S rel ∂S)→ Emb∂(I, S)

where Emb∂(I, S) denotes the space of embeddings of an arc I in S with ∂I mapping
to chosen points A,B ∈ ∂S. By [15, Thm 5], each component of Emb∂(I, S) is
contractible. The result then follows from looking at the long exact sequence of
homotopy groups of the fibration for the component of the non-separating arcs. �

Note that gluing strips identifying arcs of the boundary induce maps (still
denoted α and β)

α : O2(Sg,r)→ O1(Sg+1,r−1) and β : O1(Sg,r)→ O2(Sg,r+1)

(see Figure 3).

b1b0b1b0

α
β

Figure 3. The maps α, β on the complexes of arcs

Property 3. The map α on the complexes induces β on stabilizers and vice versa.

(See [37, Prop 2.3] for a more detailed formulation.)

Proof sketch. (See the proof of [37, Prop 2.3] for more details.) Patching
together Figure 2 and Figure 3 shows how the strips defining α and β glue on the
boundary components of the surface cut along the arcs of a simplex σ: in the case
of α, the strip is glued on the cut surface to a unique boundary component of S\σ,
that is it induces β, while for β it is glued to two different boundaries of S\σ, that
is it induces α. �

Property 4. Let S = Sg,r and let Sα ∼= Sg+1,r−1 and Sβ ∼= Sg,r+1 denote S
union a strip glued via α and β respectively as in Figure 3. Then for any vertex
σ0 of Oi(S), there are curves cα, cβ (given in Figure 4) in Sα and Sβ such that
conjugation by Dehn twists tcα and tcβ along these curves fits into commutative
diagrams

StO2(σ0)� _

��

// StO1(α(σ0))� _

��

tcα

wwp p p p p p
StO1(σ0)� _

��

// StO2(β(σ0))� _

��

tcβ

wwp p p p p p

Γ(S) α // Γ(Sα) Γ(S)
β

// Γ(Sβ)
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i.e. there are conjugations StO1(α(σ0)) ∼tcα α(Γ(S)) in Γ(Sα) relative to α(StO2(σ0)),
and StO2(β(σ0)) ∼tcβ β(Γ(S)) in Γ(Sβ) relative to β(StO1(σ0)).

Note that it follows from the existence of these conjugation that the maps
α : Γ(S) → Γ(Sα) and β : Γ(S) → Γ(Sβ) are injective, as we already know by
Property 2 that the stabilizers of vertices are abstractly isomorphic to Γ(S).

α
β

a0

a0

cα

cβ

(a) (b)

Figure 4. The curves cα and cβ of Property 4 for σ0 = 〈a0〉

Proof sketch. (See the proof of [37, Prop 2.4] for more details.) Let σ0 =
〈a0〉 be as in Figure 4. Check that the left Dehn twist along cα (resp. cβ) takes
a0 to an arc whose stabilizer is Γ(S). (Hint: to identify the stabilizer with Γ(S),
thiken a neighborhood of ∂S union the arc.) �

Property 5. Oi(Sg,r) is (g − 2)–connected.

The proof of this last property is the topic of Lecture 4.

4. Curve complexes and disc spaces

When the surface has no boundary components, one cannot work with arcs. Harer
originally worked with embedded curves instead of arcs. These are not quite as well-
behaved as arcs (see the exercices below). Randal-Williams introduced instead a
space of embedded discs which gives a slightly better stability range for closing the
last boundary component, but does require working with a semi-simplicial space
build out of spaces of embedded discs, instead of a simplicial complex as we have
done so far, because isotopy classes of embedded discs are not so interesting... (See
[32, Sect. 10] or [37, Sect. 5].)

5. Exercices

1) Define the n-simplex ∆n and its boundary ∂∆n as simplicial complexes.
2) Show that O(S, b0, b1) is indeed a simplicial complex.
3) Let Sg be a closed surface of genus g and let C0(Sg) be the simplicial com-

plex whose p-simplices are non-separating collections {[C0], . . . , [Cp]} of isotopy
classes of disjoint embedded curves in Sg, i.e. embeddings S1 ↪→ Sg, for which
there exist representatives whose images {C1, . . . , Cp} satisfy
• Ci ∩ Cj = ∅ whenever i 6= j,
• the complement S \ (C0 ∪ · · · ∪ Cp) is connected.

(a) Construct a natural action of Γg = Γ(Sg) on C0(Sg).



16 NATHALIE WAHL, MUMFORD CONJECTURE, MADSEN-WEISS AND STABILITY

(b) Show that this action is transitive on p-simplices for each p ≥ 0. (Hint:
as in the proof of Property 1 above, first use the classification of surfaces
to prove that the complement of two such collections of p + 1 circles are
diffeomorphic.)

(c) Construct a map from Γg−1,2 to the stabilizer of a vertex of C0(Sg) and
prove that it is surjective using the isotopy extension theorem as in the
proof of Property 2. Is it injective?

4) Complete the proof of Property 4.
5) Let M and N be smooth manifolds. Denote by C0(M,N) the set of continuous

maps from M to N , and denote by Emb0(M,N) ⊂ C0(M,N) the subset con-
sisting of topological embeddings. Inductively, for k > 0 denote by Ck(M,N) ⊂
Ck−1(M,N) the subset consisting of differentiable maps f : M → N for which
the induced map on tangent spaces Tf is in Ck−1(TM, TN). We topologize
the set Ck(M,N) inductively: we use the compact-open topology on C0(M,N),
and we note that D : Ck(M,N) → Ck−1(TM, TN) is an inclusion, so we give
Ck(M,N) the subspace topology. We let C∞(M,N) denote the inverse limit of
the Ck(M,N).

Denote by Embk(M,N) ⊂ Ck(M,N) the subspace consisting of topological
embeddings e for which Te is in Embk−1(TM, TN), and write the inverse limit
as Emb(M,N). Denote by Diff(M) ⊂ Emb(M,M) the subspace consisting of
those invertible maps φ for which φ−1 ∈ Diff(M).
(a) Prove that a sequence of maps fn ∈ C1(R,R) converges if and only if the

sequences fn ∈ C0(R,R) and f ′n ∈ C0(R,R) converge.
(b) Prove that this inclusion Embk([0, 1],R) ⊂ Ck([0, 1],R) is open when k = 1

but not when k = 0.
(c) (difficult) In this exercise we will prove that if N is a compact submanifold

of M , then the restriction map

j : Emb(M,Rn) −→ Emb(N,Rn)

is locally trivial fibration (i.e. a fibre bundle with structure group the full
homeomorphism group of the fibre). This was first proved by Palais and
Cerf, but we follow Lima [22].

(i) Given a f ∈ Emb(N,Rn), show there is a neighbourhood U of f and
a map ξ : U → Diff(Rn) such that ξ(g) ◦ f = g. [Hint: note that
Diff(Rn) is an open subset of C∞(Rn,Rn).]

(ii) Hence construct a trivialisation of j over U .

Remark 2.3. Note that this implies it is in particular a Serre fibration,
and hence the existence of a long exact sequence on homotopy groups

· · · → πn+1F → πn Emb(M,Rn)→ πn Emb(N,Rn)→ πnF →· · · ,
where F is the fiber of the restriction map over some base point f ∈
Emb(N,Rn).



LECTURE 3

Homological stability: the spectral sequence
argument

In this lecture, we present a spectral sequence argument (the one used by
Randal-Williams in [32]) which allows to prove homological stability for the map-
ping class groups of surfaces in the range stated in Lecture 1. We will consider the
two spectral sequences associated to a double chain complex build from a pair of
groups acting on a pair of spaces. We will then use all the geometric properties
presented in Lecture 2 to analyze these spectral sequences.

1. Double complexes associated to actions on simplicial complexes

ToX a simplicial complex, one can associate a chain complex (C̃∗, ∂) (its augmented
cellular complex) which computes the reduce homology of its realization |X|. It has

• C̃p(X) = ZXp, the free module on the set of p-simplices
• C̃−1(X) = Z

with boundary maps coming from the face maps and the augmentation.
We are interested here in simplicial complexes X admiring a simplicial G–action

for some group G. For such, one can construct a double complex

E∗G⊗G C̃∗(X)

where · · · → EqG → · · · → E0G → Z → 0 is a free resolution of Z over ZG. This
is the basic double complex commonly used to prove homological stability results.
We will use here a relative version of it, which we construct now.

Suppose Y in addition is a simplicial complex with a simplicial H–action and
f : X → Y a simplicial map equivariant with respect to a map G → H. Then we
get a map of double complexes

F : E∗G⊗G C̃∗(X) −→ E∗H ⊗H C̃∗(Y )

(The two examples of interest to us are the maps α : O2 → O1 and β : O1 → O2

of Lecture 2 and their companion maps on the mapping class groups.) We will use
the double complex

Cp,q = (Eq−1G⊗G C̃p(X))⊕ (EqH ⊗H C̃p(Y ))
with horizontal differential (a⊗ b, a′ ⊗ b′) 7→ (a⊗ ∂b, a′ ⊗ ∂b′)
and vertical differential (a⊗ b, a′ ⊗ b′) 7→ (da⊗ b, da′ ⊗ b′ + F (a⊗ b))
(i.e. for each p we take the mapping cone of F in the q–direction).

The horizontal and vertical filtrations of such a double complex give two spec-
tral sequences, both converging to the homology of the total complex. We now
analyze these two spectral sequences.

17
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2. The spectral sequence associated to the horizontal filtration

As Eq−1G and EqH are free G– (resp. H–)modules and the horizontal differential
is that of C̃(X) and C̃(Y ), taking first the homology in the p–direction computes
copies of the reduced homology of X plus that of Y .

In particular, if X is (c − 1)–connected and Y is c–connected, the E1–term
of the horizontal spectral sequence, which is the homology of Cp,q with respect to
the horizontal differential, is 0 in the range p + q ≤ c (noting that C̃p(X) only
contributes to Cp,q when q > 0).

It follows that the other spectral sequence, obtained using the vertical filtration
instead, also converges to 0 in the range p+ q ≤ c.

3. The spectral sequence associated to the vertical filtration

For each p, the module C̃p(X) = ZXp is a G-module, which decomposes as a sum
of modules corresponding to the orbits of the G-action on Xp. (We define here
X−1 = {∗} with the trivial action.) Given an orbit o ∈ O(Xp), the set of orbits of
Xp, we let Stab(o) ≤ G denote the stabilizer subgroup of some chosen simplex σp in
the orbit o. Assuming that the stabilizer of a simplex fixes the simplex pointwise,
we can rewrite the G-module C̃p(X) as

C̃p(X) ∼=
⊕

o∈O(Xp)

G⊗Stab(o) Z

The chain complex E∗(G)⊗G C̃p(X), where p is now fixed, computes the homology
of G with coefficients in that module. (This is the definition of the homology of a
group with twisted coefficients.)

We will use a relative version (left as an exercise) of the following well-known
lemma (see e.g. [5, III 6.2]):

Lemma 3.1 (Shapiro’s lemma). Let H < G be groups and M be an H–module,
with G⊗H M the induced G-module. Then

H∗(G,G⊗H M) ∼= H∗(H,M)

Hence for any G–simplicial complex X as above, we have, for each p, that

H∗(E∗G⊗ C̃p(X)) ∼=
⊕

o∈O(Xp)

H∗(Stab(o)).

The E1–term of the vertical spectral sequence is the homology of the double
complex Cp,q = (Eq−1G⊗G C̃p(X))⊕ (EqH ⊗H C̃p(Y )) with respect to the vertical
differential. This is the relative homology group

E1
p,q = Hq

(
E∗H ⊗H C̃p(Y ), E∗G⊗G C̃p(X)

)
as the columns of Cp,q are the mapping cones of the map F (with p fixed).

Now if the actions of G and H are transitive on X and Y (which is the case
we are interested in), a relative version of Shapiro’s lemma identifies the E1–term
of the vertical spectral sequence with

E1
p,q = Hq(StabY (σp),StabX(σp))
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where StabX(σp) and StabY (σp) are the stabilizers in X and Y of some chosen p–
simplex σp of X and its image in Y . Note that this formulation in the case p = −1
gives

E1
−1,q = Hq(H,G)

4. The proof of stability for surfaces with boundaries

Recall from the previous lecture the maps

αg : Γ(Sg,r+1)→ Γ(Sg+1,r) and βg : Γ(Sg,r)→ Γ(Sg,r+1).

Denote by H(αg) the relative homology group H(Γg+1,r,Γg,r+1; Z) correspond-
ing to the map αg, and H(βg) the relative homology group H(Γg,r+1,Γg,r; Z) corre-
sponding to βg. (The number of boundaries r here will not play a role here.) Harer’s
improved stability theorem (Theorem 1.3) can be restated as follows [exercise]:

Theorem 3.2. (1) Hi(αg) = 0 for i ≤ 2g+1
3 and (2) Hi(βg) = 0 for i ≤ 2g

3 .

The proof of this theorem uses the spectral sequences just described in the
case of the maps α and β of Lecture 2. The argument will need Properties 1–5 of
Lecture 2.

Proof. We prove the theorem by induction on g. To start the induction, note
that statements (1) for genus 0 and (2) for genus 0,1 are trivially true as they are
just concerned with H0. Let (1g) and (2g) denote the truth of (1) and (2) in the
theorem for genus g. The induction will go in two steps:

Step 1: For g ≥ 1, (2≤g) implies (1g).
Step 2: For g ≥ 2, (1<g) and (2g−1) imply (2g).

Step 1: We consider the spectral sequence described above for the actions of
G = Γg,r+1 on X = O2(Sg,r+1) and of H = Γg+1,r on Y = O1(Sg+1,r) with
the homomorphism φ : G → H and the map f : X → Y both induced by the
map α : Sg,r+1 → Sg+1,r of Figure 3. As the action is transitive in both cases
(Property 1), we get, as explained above, that the vertical spectral sequence has
the form E1

p,q = Hq(StabY (α(σp)),StabX(σp)), with σp a chosen p-simplex of X
and α(σp) its image in Y . That is, when p = −1, we have

E1
−1,q = Hq(Γg+1,r,Γg,r+1) = Hq(αg)

which are the groups we are interested in. By Properties 2 and 3, the other groups
are identified with

E1
p,q = Hq(βg−p) for p ≥ 0.

Hence we will be able to apply induction to these terms of the spectral sequence.
We want to deduce that E1

−1,q = 0 for q ≤ 2g+1
3 . This will follow from the following

three claims:
Claim 1: E∞−1,q = 0 for q ≤ 2g+1

3 .
Claim 2: The E1–term is as in Figure 1, i.e. there are no possible sources of
differentials to kill classes in E1

−1,q with q ≤ 2g+1
3 , except possibly for d1 : E1

0,q →
E1
−1,q when q = 2g+1

3 (i.e. when the fraction is an integer).
Claim 3: The map d1 : E1

0,q → E1
−1,q is the 0-map.

Claims 1 and 2 imply immediately that E1
−1,q = 0 for q < 2g+1

3 as “it must die
by E∞” (Claim 1) and “nobody can kill it” (Claim 2). Claim 3 gives that this also
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b2g+1
3 c

q

1
0

b2g+1
3 c p10−1

0
0

0 0 0 0 0

0 0 0 0
0 0 0
0 0
x?

?
?
?

?
?

Figure 1. Spectral sequence for Step 1. The possible sources of
differentials for the “?” are along the dotted diagonals.

holds when q = 2g+1
3 as the only differential with a possibly non-trivial source is

the zero map, and hence won’t kill anything in the target.

Proof of Claim 1: By Property 5, X is (g − 2)–connected and Y is (g − 1)–
connected. By the analysis of the horizontal spectral sequence above, and the fact
that both spectral sequences converge to the same target, we get that E∞p,q = 0 for
p+ q ≤ g − 1. In particular, E∞−1,q = 0 for q ≤ g, and 2g+1

3 ≤ g when g ≥ 1.

Proof of Claim 2: The sources of differentials to E1
−1,q are the terms Ep+1

p,q−p for
p ≥ 0. As E1

p,q = Hq(βg−p) when p ≥ 0, by induction we know that E1
p,q = 0 when

q ≤ 2(g−p)
3 = 2g−2p

3 and p ≥ 0. Hence E1
p,q−p = 0 for q ≤ 2g+p

3 and p ≥ 0, i.e. they
are all 0 for any p ≥ 0 if q ≤ 2g

3 or for p ≥ 1 if q = 2g+1
3 .

Proof of Claim 3: The map d1 : E1
0,q → E1

−1,q is the map

Hq(StabO1(α(σ0)),StabO2(σ0))→ Hq(Γ(Sα),Γ(S))

for σ0 a vertex of O2(S) with S = Sg,r+1 and Sα = Sg+1,r the source and targets of
α. This map comes precisely from mapping the top row to the bottom row of the
first square in Property 4. It is tempting to deduce immediately from Property 4
that the map is zero but it does require a little extra argument: From the diagram,
it follows that the map factors as

Hq(StabO1(α(σ0)),StabO2(σ0)) ∂→ Hq−1(StabO2(σ0))→ Hq(Γ(Sα),Γ(S))

where the second map “crosses” with the Dehn twist tcα . (See Lemma 2.5 in [37].)
The triviality of the map then follows from the fact that cα can be conjugated to a
curve in S fixing the support of StabO2(σ0). (This uses that cα is non-separating
in the neighborhood pictured in Figure 4.)

For Step 2, the argument is essentially the same, though proving Claim 3 is
a little more subtle because cβ is separating in the corresponding neighborhood in
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Figure 4. It is necessary to use induction an extra time here to finish the argument.
(See the proof of [37, Thm 3.1 (2)] for the details.) �

5. Closing the boundaries

To prove that the map δ : Γg,1 → Γg,0 also induces a homology isomorphism in
a range, one uses a similar spectral sequence for the action of the mapping class
groups on the disc semi-simplicial space of [32] (or the curve complex as in [16])
and compare the spectral sequence for each case (a comparison argument going
back to [20]). See [37, Sect 5] for details.

6. Exercises

1) State and prove the relative version of Shapiro’s lemma needed in the analysis
of the vertical spectral sequence above.

2) Show that Theorem 3.2 implies the first part of Theorem 1.3 of Lecture 1.
3) This exercise sets up a way of approaching the proof of homological stability for

the symmetric groups.
(a) Let ∆n denote the n–simplex. It can be thought of as a simplicial complex

with n+1 vertices {0, . . . , n}, the set of p-simplices being the set of subsets
of {0, . . . , n} of cardinality p+1. Consider the action of the symmetric group
Σn+1 on ∆n induced by permuting the vertices. Show that the action is
transitive on the set of p-simplices for each p. What is the stabilizer of a
vertex? of a p-simplex in general? (Note that the stabilizer of a simplex
is the subgroup of symmetries that map the simplex to itself, as a set of
vertices.)

(b) Replace ∆n in the above exercise by the semi-simplicial set (=simplicial
set without degeneracies) Xn+1 whose p-simplices are injective maps σ :
{0, 1, . . . , p} → {0, . . . , n}. Is the action of Σn+1 still transitive on the set
of p-simplices for any p? What is the stabilizer of a p-simplex in this case?

(c) For a semi-simplicial set Y = Y∗, let ||Y || =
∐
p≥0 ∆p × Yp/ ∼ denote

its realization, where the equivalence relation ∼ is induced by the face
relations. For X1, X2, X3 as in (b), show that ||X1|| = ∗, ||X2|| ∼= S1 and
that ||X3|| is simply-connected.

(d) Consider the cellular chain complex C∗(Xn+1) with its induced action
of Σn+1. Pick a free resolution E∗Σn+1 of Z considered as a Z[Σn+1]-
module with a trivial action of Σn+1. Now consider the double complex
Cp,q = Cp(Xn+1) ⊗Σn+1 EqΣn+1. Write down the E1-terms of the associ-
ated spectral sequences in both filtrations.

Remark 3.3. Given thatXn is (n−2)-connected (see [34, Prop 3.2] or [21]), one
can use the above spectral sequences to prove Nakaoka’s stability theorem: the
map Hq(Σn)→ Hq(Σn+1) induced by the inclusion of groups is an isomorphism
for q ≤ n/2.

4) The action of the mapping class group Γg on the Teichmüller space Tg satisfies
that the stabilizers of points are finite (most often trivial) groups (see e.g. [9,
12.1]). Let C∗(Tg,Q) denote the singular chain complex of Tg with rational
coefficients. The action of the mapping class group gives rise, as above, to a
double complex C∗(Tg,Q) ⊗Γg E∗Γg, with E∗Γg now a free resolution of Q as
a trivial Q[Γg]-module. Using the spectral sequences associated to the double
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complex, show that the coarse moduli space Tg/Γg is rationally a classifying
space for Γg, i.e. that H∗(Tg/Γg,Q) ∼= H∗(BΓg,Q).



LECTURE 4

Homological stability: the connectivity argument

In this lecture, we give a sketch proof of the last ingredient of the proof of
homological stability for mapping class groups of surfaces with boundaries, namely
the fact that the complex O(S; b0, b1) of Lecture 2 is (g − 2)-connected for any
surface S of genus g. To close the surfaces, an analogous statement is needed for
the disc space or curve complex, which is not presented here. We refer instead [32],
[37], or [20] for that case.

1. Strategy for computing the connectivity of the ordered arc complex

We will prove that O(S; b0, b1) is highly connected by working our way through the
following sequence of smaller and smaller simplicial complexes:

A(S,∆)
i1←↩ B(S,∆0,∆1)

i2←↩ B0(S,∆0,∆1)
i3←↩ O(S, b0, b1)

where ∆,∆0,∆1 are sets of points in ∂S and
A(S,∆) is the simplicial complex whose vertices are isotopy

classes of all non-trivial arcs in S with boundary in ∆. A
p–simplex of A(S,∆) is a collection of p+ 1 distinct isotopy
classes of arcs 〈a0, . . . , ap〉 representable by arcs with disjoint
interiors.

B(S,∆0,∆1) ⊂ A(S,∆0 ∪∆1) is the subcomplex of arcs having
each one boundary point in ∆0 and one in ∆1.

B0(S,∆0,∆1) ⊂ B(S,∆0,∆1) is the subcomplex of non-separating
collections.

O(S, b0, b1) ⊂ B0(S, {b0}, {b1} is the ordered subcomplex (de-
fined in Lecture 2, Section 3).

The largest complex A(S,∆) is contractible in most cases, and one slowly looses
connectivity as one goes down to smaller and smaller subcomplexes.

The connectivity arguments used are of three types:
(1) direct calculation showing contractibility,
(2) exhibition of a complex as a suspension (or wedge of such) of a “previous”

complex,
(3) inductive deduction from the connectivity of a larger complex.
The argument for the connectivity of A(S,∆) is a mix of type (1) and (2), the
deduction along i1 in the sequence is the most intricate argument and is a mix
of the three types of arguments, while deduction along i2 and i3 are purely (and
simpler) type (3) arguments.

We do here, to exemplify, a type (1) and a type (3) argument and refer to [37]
for the complete proofs.

23
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2. Contractibility of the full arc complex

Theorem 4.1. [16, Thm 1.5] Suppose S is not a disc or a cylinder with ∆ included
in a single boundary of S. Then A(S,∆) is contractible.

Sketch of proof of the main case, following Hatcher [17]. (See also
the proof of [37, Thm 4.1] for a complete proof.) We will prove the theorem un-
der the extra assumption that S has at most one point of ∆ in each boundary
component. Reducing to that case requires an extra (type (2)) argument.

Non-emptiness: Clear if |∆| > 1 by choosing any arc in the surface between two
distinct points of ∆—such an arc is always non-trivial as the points lie on different
boundary components. For |∆| = 1, we have assumed that S is not a disc or a
cylinder, i.e. S has non-zero genus or at least three boundary components. In both
cases, there are non-trivial arcs.

In a simplicial complexX, the star of a simplex σ is the union of all the simplices
τ of X such that σ ∪ τ is again a simplex of X. This is a contractible subcomplex.

Contraction: As A(S,∆) is non-empty, we can choose an arc a ∈ A(S,∆). We
will contract the complex to the star of a.

Let σ be a simplex of A(S,∆). It is in the star of a precisely if the interior of
the arcs of σ do not intersect a. If they do intersect a, the idea is to modify σ by
cutting the arcs one by one at the intersection points with a, replacing each time
an arc by one or two arcs with fewer intersection points with a. This is illustrated
by the following figure:

p

a

p

a

Figure 1. Retraction of A(S,∆) in the case of 3 crossings with a

More precisely, if σ has k intersection points with a, we produce a sequence
of consecutive simplices r1(σ), . . . , rk(σ) such that σ is a face of r1(σ) while a face
of rk(σ) lies in the star of a. A continuous retraction of X can be defined from
there using the barycentric coordinates (thought of as weights on the arcs of σ)
to go through this sequence of simplices at a speed and with a weight on the arcs
depending on those coordinates.

Note that, to be well-defined, the above argument requires that
• the intersection σ∩ a is suitably independent of the chosen representative

of σ
• the new arcs created during the deformation contain each time at least

one non-trivial arc.
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The first issue is addressed by choosing representative with minimal intersection
with a, and the second is addressed by the additional assumption we worked with,
namely that there is at most one point of ∆ in each boundary component. �

3. Deducing connectivity of smaller complexes

The connectivity of the subcomplex B(S,∆0,∆1) of arcs between two subsets ∆0

and ∆1 of ∆ is deduced from that of A(S,∆) by a long argument... To be able
to state the connectivity bound, we need a couple of definitions: Disjoint sets
∆0,∆1 ⊂ ∂S define a decomposition of ∂S into vertices (the points of ∆0 ∪ ∆1),
edges between the vertices, and circles without vertices. We say that an edge is
pure if both its endpoints are in the same set, ∆0 or ∆1. We say that an edge is
impure otherwise. Note that the number of impure edges is always even.

Theorem 4.2. [16, Thm 1.6] The complex B(S,∆0,∆1) is (4g+r+r′+ l+m−6)–
connected, where g is the genus of S, r its number of boundary components, r′ the
number of components of ∂S containing points of ∆0 ∪∆1, l is half the number of
impure edges and m is the number of pure edges.

See [37, Thm 4.3] for a detailed proof.

We will now use the connectivity of B(S,∆0,∆1) to deduce that of the sub-
complex B0(S,∆0,∆1) of non-separating simplices.

The join X ∗ Y of two simplicial complexes X and Y is the simplicial complex
with vertices X0tY0 and a (p+q+1)–simplex σX ∗σY = 〈x0, . . . , xp, y0, . . . , yq〉 for
each p–simplex σX = 〈x0, . . . , xp〉 of X and q–simplex σY = 〈y0, . . . , yq〉 of Y . Note
that |X ∗ Y | = |X| ∗ |Y |, i.e. the realization of the join complex is the (topological)
join of the realization of the two complexes. This follows from the fact that it is
true for each pair of simplices.

Recall that a space (or simplicial complex) X is called n–connected if πi(X) = 0
for all i ≤ n For n = −1, we use the convention that (−1)–connected means non-
empty. (For n ≤ −2, n–connected is a void property.)

The following proposition tells us how to compute the connectivity of a join in
terms of the connectivity of the pieces.

Proposition 4.3. [27, Lem 2.3] Consider the join X = X1∗· · ·∗Xk of k non-empty
spaces. If each Xi is ni–connected, then X is

((∑k
i=1(ni + 2)

)
− 2
)
–connected.

Theorem 4.4. [16, Thm 1.4] If ∆0,∆1 are two disjoint non-empty sets of points
in ∂S, then the complex B0(S,∆0,∆1) is (2g + r′ − 3)–connected, for g and r′ as
above.

Proof. We prove the theorem by induction on the lexicographically ordered
triple (g, r, q), where r ≥ r′ is the number of components of ∂S and q = |∆0∪∆1| ≥
2. To start the induction, note that the theorem is true when g = 0 and r′ ≤ 2 for
any r ≥ r′ and any q, and more generally that the complex is non-empty whenever
r′ ≥ 2 or g ≥ 1.

So fix (S,∆0,∆1) satisfying (g, r, q) ≥ (0, 3, 2). Then 2g+ r′−3 ≤ 4g+ r+ r′+
l+m− 6. Indeed, r ≥ 1 and l+m ≥ 1. Moreover we assumed that either r ≥ 3 or
g ≥ 1.

Let k ≤ 2g + r′ − 3 and consider a map f : Sk → B0(S,∆0,∆1), which we may
assume to be simplicial for some PL triangulation of Sk (see [37, Sect 6]). This
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map can be extended to a simplicial map f̂ : Dk+1 → B(S,∆0,∆1) by Theorem 4.2
and the above calculation, for a PL triangulation of Dk+1 extending that of Sk. We
call a simplex σ of Dk+1 regular bad if f̂(σ) = 〈a0, . . . , ap〉 and each aj separates
S\(a0 ∪ . . . âj · · · ∪ ap). Let σ be a regular bad simplex of maximal dimension p.
Write S\f̂(σ) = X1 t · · · t Xc with each Xi connected. By maximality of σ, f̂
restricts to a map

Link(σ) −→ Jσ = B0(X1,∆1
0,∆

1
1) ∗ · · · ∗ B0(Xc,∆c

0,∆
c
1)

where each ∆i
ε is inherited from ∆ε and is non-empty as the arcs of f̂(σ) are impure.

Each Xi has (gi, ri, qi) < (g, r, q), so by induction B0(Xi,∆i
0,∆

i
1) is (2gi + r′i − 3)–

connected. The Euler characteristic gives
∑
i(2 − 2gi − ri) = 2 − 2g − r + p′ + 1,

where p′+1 ≤ p+1 is the number of arcs in f̂(σ). We also have
∑
i(ri−r′i) = r−r′,

so
∑

(2gi + r′i) = 2g+ r′ − p′ + 2c− 3. Now Jσ is (
∑
i(2gi + r′i − 1)− 2)–connected

(using Proposition 4.3), that is (2g+r′−p′+c−5)–connected. As c ≥ 2 and p′ ≤ p,
we can extend the restriction of f̂ to Link(σ) ' Sk−p to a map F : K → Jσ with K
a (k− p+ 1)–disc with boundary the link of σ. We modify f̂ on the interior of the
star of σ using f̂ ∗ F on ∂σ ∗K ' Star(σ). If a simplex α ∗ β in ∂σ ∗K is regular
bad, β must be trivial since β does not separate S\f̂(α), so that α ∗ β = α is a
face of σ. We have thus reduced the number of regular bad simplices of maximal
dimension and the result follows by induction. �

From there, one can prove by a similar type of argument that the ordered
subcomplex is also highly connected:

Theorem 4.5 (Property 5). O(S, b0, b1) is (g − 2)–connected.

See [37, Thm 4.9] for a detailed proof.

4. Exercises

1) The complex C0(S) of the exercises of Lecture 2 is a subcomplex of the complex
C(S) with vertices all isotopy classes of non-trivial circles in S and p-simplices
all disjointly embeddable collections of p+ 1 distinct isotopy classes. Assuming
that C(S) is (2g+r−4)–connected if S has genus g and r boundary components,
show that C0(S) is (g − 2)–connected.
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