Cognition and Inference in an abstract setting

Flemming Topsøe, topsoe@math.ku.dk Department of Mathematical Sciences, University of Copenhagen

Two examples

Shannon Theory, MaxEnt:

states: Distributions $x=\left(x_{i}\right)_{i=0,1, \ldots}$;
Kerridge inaccuracy: $\Phi(x, y)=\sum x_{i} \log \frac{1}{y_{i}}$;
Entropy: $\mathrm{H}(x)=\sum x_{i} \log \frac{1}{x_{i}}$;
Divergence: $\mathrm{D}(x, y)=\sum x_{i} \log \frac{x_{i}}{y_{i}}$;
preparation: A set \mathcal{P} of distributions, say those with given mean "energy": $\mathcal{P}=\left\{x \mid \sum_{0}^{\infty} x_{i} E_{i}=\bar{E}\right\}$.
Problem: Search for the MaxEnt distribution in \mathcal{P}.
Euclidean space, projection:
states: Elements in $X=\mathbb{R}^{2}$, say;
prior: $y_{0} \in X$;
preparation: some (convex) subset \mathcal{P} of X;
Problem: Find the projection of y_{0} on \mathcal{P}.

Information triples, |

Goal of talk: Indicate to you that information theoretical thinking is useful in a much broader context than that known from Shannon theory; we may even free ourselves from the tie to probability based modelling.
Our start for an abstract theory: information triples:
Either effort-based: ($\Phi, H, D)$ if \cdots (see next slide) or utility-based: (U, M, D), i.e. ($-U,-M, D$) is effort-based.

Examples:
1: $\Phi(x, y)=\sum x_{i} \log \frac{1}{y_{i}}, \mathrm{H}(x)=\sum x_{i} \log \frac{1}{x_{i}}$,
$\mathrm{D}(x, y)=\sum x_{i} \log \frac{x_{i}}{y_{i}}$.
2: $\mathrm{U}(x, y)=\left\|x-y_{0}\right\|^{2}-\|x-y\|^{2}$,
$\mathrm{M}(x)=\left\|x-y_{0}\right\|^{2}, \mathrm{D}(x, y)=\|x-y\|^{2}$.
State space X; elements are states or truth instances, (x). Will study preparations, i.e. non-empty subsets $\mathcal{P} \subseteq X$. Belief reservoir Y; elements are belief instances, (y). For this talk: $X=Y$.

Information Triples, II, ($\Phi, H, D)$ and (U, M, D)

Φ and $\mathrm{D}(\mathrm{U}$ and D$)$ are defined on $X \times Y, \mathrm{H}(\mathrm{M})$ on X.
AXIOM 1 (the basics) $\Phi>-\infty(\mathrm{U}<+\infty)$
$\Phi(x, y)=\mathrm{H}(x)+\mathrm{D}(x, y)$, the linking identity $(\mathrm{U}=\mathrm{M}-\mathrm{D})$
$\mathrm{D}(x, y) \geq 0$ with equality iff $y=x$, the fundamental inequality.
Φ is the description or the effort function,
H is min-effort or entropy, D is divergence.
(U the utility M the max-utility)
Add convexity! Use $\bar{x}=\sum \alpha_{i} x_{i}$ for a convex combination.
AXIOM 2 (affinity) X is a convex space and, for each y, the marginal function $\Phi^{y}\left(U^{y}\right)$ is affine.

First consequences, convexity properties

Lemma

(i) $\mathrm{H}(\bar{x})=\sum \alpha_{i} \mathrm{H}\left(x_{i}\right)+\sum \alpha_{i} \mathrm{D}\left(x_{i}, \bar{x}\right)$.
(ii) If $\mathrm{H}(\bar{x})<\infty, y \in Y$, then compensation identity holds:

$$
\sum \alpha_{i} \mathrm{D}\left(x_{i}, y\right)=\sum \alpha_{i} \mathrm{D}\left(x_{i}, \bar{x}\right)+\mathrm{D}(\bar{x}, y)
$$

Proof (i): rhs $=\sum \alpha_{i} \Phi\left(x_{i}, \bar{x}\right)=\Phi(\bar{x}, \bar{x})=\mathrm{H}(\bar{x})$.
(ii): Ihs of (i)+lhs of (ii)

$$
\begin{aligned}
& =\sum \alpha_{i} \mathrm{H}\left(x_{i}\right)+\sum \alpha_{i} \mathrm{D}\left(x_{i}, y\right)+\sum \alpha_{i} \mathrm{D}\left(x_{i}, \bar{x}\right) \\
& =\sum \alpha_{i} \Phi\left(x_{i}, y\right)+\sum \alpha_{i} \mathrm{D}\left(x_{i}, \bar{x}\right) \\
& =\Phi(\bar{x}, y)+\sum \alpha_{i} \mathrm{D}\left(x_{i}, \bar{x}\right) \\
& =\mathrm{H}(\bar{x})+\mathrm{D}(\bar{x}, y)+\sum \alpha_{i} \mathrm{D}\left(x_{i}, \bar{x}\right) .
\end{aligned}
$$

Now subtract $\mathrm{H}(\bar{x})$.

Updating

Problem: Given prior y_{0}, to define utility function $\mathrm{U}_{\mid y_{0}}$ such that $U_{\mid y_{0}}(x, y)$ is a measure of the updating gain when truth is x and your posterior belief is y. Typically, the posterior is sought among y 's in a given preparation \mathcal{P}.

1. Defined as saved effort: Based on triple ($\Phi, H, D)$:

$$
\begin{align*}
\mathrm{U}_{\mid y_{0}}(x, y) & =\Phi\left(x, y_{0}\right)-\Phi(x, y) \tag{1}\\
& =\mathrm{D}\left(x, y_{0}\right)-\mathrm{D}(x, y) . \tag{2}
\end{align*}
$$

2. Directly via D: Given only D, use (2) as definition. This gives utility-based triple ($\left.\mathrm{U}_{y_{0}}, \mathrm{D}^{y_{0}}, \mathrm{D}\right)$. Technically, assume that $\mathrm{D}^{y_{0}}<\infty$ on preparations \mathcal{P} you want to consider.
This defines genuine triples satisfying axioms 1 and 2 iff D satisfies the fundamental inequality and the compensation identity.
Conclude: Problems of updating can be treated as special cases of inference for information triples.

Games of information: Observer versus Nature

Game $\gamma=\gamma(\mathcal{P})=\gamma(\mathcal{P} \mid \Phi)$ has Φ as objective function, Nature as maximizer with strategies $x \in \mathcal{P}$, Observer as minimizer with strategies $y \in Y$.

Values of γ are, for Nature MaxEnt and, for Observer, MinRisk:
$\mathrm{H}_{\text {max }}(\mathcal{P})=\sup _{x \in \mathcal{P}} \mathrm{H}(x)=\sup _{x \in \mathcal{P}} \inf _{y} \Phi(x, y)$.
$\operatorname{Ri}_{\text {min }}(\mathcal{P})=\inf _{y} \operatorname{Ri}(y)=\inf _{y} \sup _{x \in \mathcal{P}} \Phi(x, y)$.
$x^{*} \in \mathcal{P}$ optimal strategy for Nature $\therefore \mathrm{H}\left(x^{*}\right)=\mathrm{H}_{\max }(\mathcal{P})$.
$y^{*} \in Y$ optimal strategy for Observer $\therefore \operatorname{Ri}\left(y^{*}\right)=\operatorname{Ri}_{\text {min }}(\mathcal{P})$.
Minimax inequality: $\mathrm{H}_{\text {max }} \leq \mathrm{Ri}_{\text {min }}$.
If $\mathrm{H}_{\text {max }}=\mathrm{Ri}_{\text {min }}<\infty, \gamma$ is in equilibrium.
If γ is in equilibrium and both players have optimal strategies, these are unique and coincide. The strategy in question $y^{*}=x^{*}$ is the bi-optimal strategy.

Nash and Pythagoras

Theorem [Axiom 1] Given $y^{*}=x^{*} \in \mathcal{P}$ with $\mathrm{H}\left(x^{*}\right)<\infty$. Then the following conditions are equivalent:

- $\gamma(\mathcal{P})$ is in equilibrium with x^{*} as bi-optimal strategy;
- The Nash-saddle-value inequalities hold;
- For all $x \in \mathcal{P}$, the abstract Pythagorean inequality holds:

$$
\begin{align*}
& \mathrm{H}(x)+\mathrm{D}\left(x, y^{*}\right) \leq \mathrm{H}\left(x^{*}\right) \tag{3}\\
& \left(\mathrm{M}(x) \geq \mathrm{D}\left(x, y^{*}\right)+\mathrm{M}\left(x^{*}\right) \text { for utility-based model }\right) \tag{4}\\
& \left(\mathrm{D}\left(x, y_{0}\right) \geq \mathrm{D}\left(x, y^{*}\right)+\mathrm{D}\left(x^{*}, y_{0}\right) \text { for updating }\right) . \tag{5}
\end{align*}
$$

With $\mathrm{D}(x, y)=\|x-y\|^{2}$, (5) is the classical inequality.
Theorem [Axioms 1+2] The condition that x^{*} is an optimal strategy for Nature is sufficient to ensure that (3)[(4)/(5)] holds. For the updating model the condition is that x^{*} is the D-projection of y_{0} on \mathcal{P}.

Adding a geometric flavour

We only do this for the models of updating. Two type of sets will be involved: open divergence balls and open half spaces:

$$
\begin{aligned}
\mathrm{B}\left(y_{0}, r\right) & =\left\{\mathrm{D}\left(x, y_{0}\right)<r\right\} \\
\sigma^{+}\left(y \mid y_{0}\right) & =\left\{\mathrm{U}_{\mid y_{0}}<\mathrm{D}\left(y, y_{0}\right)\right\} \\
& =\left\{\mathrm{D}\left(x, y_{0}\right)<\mathrm{D}(x, y)+\mathrm{D}\left(y, y_{0}\right)\right\} .
\end{aligned}
$$

The sizes of these sets are, respectively, r and $D\left(y, y_{0}\right)$.
For the updating game $\gamma\left(\mathcal{P} \mid \mathbf{U}_{\mid y_{0}}\right)$, the MinDiv-value $\mathrm{D}_{\text {min }}^{y_{0}}(\mathcal{P})$ is the size of the largest ball $\mathrm{B}\left(y_{0}, r\right)$ which is external to \mathcal{P} (i.e. contained in the complement of \mathcal{P}), and the other value of the game, the maximal guaranteed updating gain is, loosely expressed, the size of the largest half space external to \mathcal{P}.

In particular, $\gamma\left(\mathcal{P} \mid \mathrm{U}_{\mid \mathrm{y}_{0}}\right)$ is in equilibrium and has a bi-optimal strategy if and only if, for some $y \in \mathcal{P}$, the half-space $\sigma^{+}\left(y \mid y_{0}\right)$ is external to \mathcal{P}. When this condition holds, y is the bi-optimal strategy, in particular, y is the D-projection of y_{0} on \mathcal{P}.
optimal strategies under no equilibrium/ and under equilibrium

Topics left out

- Tsallis entropy
- Bregman divergencies
- Feasible preparations
- Control and description
- Core, an abstract notion generalizing exponential families

Instead of conclusions

- Should Shannon Theory be taught and learned this way?
- Is the philosophical approach important - and helpful?
- Is the focus on game theory justified?
- Is the abstract approach also the right entrance point to areas of pure mathematics (optimization, duality theory ...)?
- - and to areas of (statistical) physics?
- Is the theory a good "selling argument" which could pave the way for more widespread adoption and recognition of ideas of Information Theory as initiated by Shannon?

My preliminary answers: I believe in a great potential of the theory indicated, but to which extent it is justified as a "stand alone theory" and to which extent it is a supplement to existing theories is of course not clear right now.

