

Cognition and Inference in an abstract setting

Flemming Topsøe, topsoe@math.ku.dk Department of Mathematical Sciences, University of Copenhagen

WITMSE2011, Helsinki, August 7-10, 2011 Slide 1/12

Two examples

Shannon Theory, MaxEnt: states: Distributions $x = (x_i)_{i=0,1,\dots}$; Kerridge inaccuracy: $\Phi(x, y) = \sum x_i \log \frac{1}{y_i}$; Entropy: $H(x) = \sum x_i \log \frac{1}{x_i}$; Divergence: $D(x, y) = \sum x_i \log \frac{x_i}{y_i}$; preparation: A set \mathcal{P} of distributions, say those with given mean "energy": $\mathcal{P} = \{x | \sum_{i=0}^{\infty} x_i E_i = \overline{E}\}$. Problem: Search for the MaxEnt distribution in \mathcal{P} .

Euclidean space, projection:

states: Elements in $X = \mathbb{R}^2$, say; prior: $y_0 \in X$; preparation: some (convex) subset \mathcal{P} of X; Problem: Find the projection of y_0 on \mathcal{P} .

Information triples, I

Goal of talk: Indicate to you that information theoretical thinking is useful in a much broader context than that known from Shannon theory; we may even free ourselves from the tie to probability based modelling.

Our start for an abstract theory: information triples:

Either effort-based: (Φ, H, D) if \cdots (see next slide) or utility-based: (U, M, D), i.e. (-U, -M, D) is effort-based.

Examples:

1:
$$\Phi(x, y) = \sum x_i \log \frac{1}{y_i}$$
, $H(x) = \sum x_i \log \frac{1}{x_i}$,
 $D(x, y) = \sum x_i \log \frac{x_i}{y_i}$.
2: $U(x, y) = ||x - y_0||^2 - ||x - y||^2$,
 $M(x) = ||x - y_0||^2$, $D(x, y) = ||x - y||^2$.
State space X; elements are states or truth instances, (x).
Will study preparations, i.e. non-empty subsets $\mathcal{P} \subseteq X$.
Belief reservoir Y; elements are belief instances, (y).
For this talk: $X = Y$.

Information Triples, II, (Φ, H, D) and (U, M, D)

 Φ and D (U and D) are defined on $X \times Y$, H (M) on X.

AXIOM 1 (the basics) $\Phi > -\infty$ (U < + ∞) $\Phi(x, y) = H(x) + D(x, y)$, the linking identity (U = M - D) $D(x, y) \ge 0$ with equality iff y = x, the fundamental inequality.

 Φ is the description or the effort function, H is min-effort or entropy, D is divergence. (U the utility M the max-utility) Add convexity! Use $\overline{x} = \sum \alpha_i x_i$ for a convex combination.

AXIOM 2 (affinity) X is a convex space and, for each y, the marginal function Φ^{y} (U^y) is affine.

First consequences, convexity properties

Lemma
(i)
$$H(\overline{x}) = \sum \alpha_i H(x_i) + \sum \alpha_i D(x_i, \overline{x}).$$

(ii) If $H(\overline{x}) < \infty$, $y \in Y$, then compensation identity holds:
 $\sum \alpha_i D(x_i, y) = \sum \alpha_i D(x_i, \overline{x}) + D(\overline{x}, y).$
Proof (i): $rhs = \sum \alpha_i \Phi(x_i, \overline{x}) = \Phi(\overline{x}, \overline{x}) = H(\overline{x}).$

(ii): lhs of (i)+lhs of (ii)

$$= \sum \alpha_i H(x_i) + \sum \alpha_i D(x_i, y) + \sum \alpha_i D(x_i, \overline{x})$$

$$= \sum \alpha_i \Phi(x_i, y) + \sum \alpha_i D(x_i, \overline{x})$$

$$= \Phi(\overline{x}, y) + \sum \alpha_i D(x_i, \overline{x})$$

$$= H(\overline{x}) + D(\overline{x}, y) + \sum \alpha_i D(x_i, \overline{x}).$$

Now subtract $H(\overline{x})$. \Box

Updating

Problem: Given prior y_0 , to define utility function $U_{|y_0}$ such that $U_{|y_0}(x, y)$ is a measure of the updating gain when truth is x and your posterior belief is y. Typically, the posterior is sought among y's in a given preparation \mathcal{P} .

1. Defined as saved effort: Based on triple (Φ, H, D) :

$$U_{|y_0}(x,y) = \Phi(x,y_0) - \Phi(x,y)$$
 (1)

$$= D(x, y_0) - D(x, y).$$
 (2)

2. Directly via D: Given only D, use (2) as definition. This gives utility-based triple ($U_{|y_0}$, D^{y_0} , D). Technically, assume that $D^{y_0} < \infty$ on preparations \mathcal{P} you want to consider. This defines genuine triples satisfying axioms 1 and 2 *iff* D satisfies the fundamental inequality and the compensation identity. Conclude: Problems of updating can be treated as special cases of inference for information triples.

Games of information: Observer versus Nature

Game $\gamma = \gamma(\mathcal{P}) = \gamma(\mathcal{P}|\Phi)$ has Φ as objective function, Nature as maximizer with strategies $x \in \mathcal{P}$, Observer as minimizer with strategies $y \in Y$.

Values of $\gamma\,$ are, for Nature MaxEnt and, for Observer, MinRisk:

$$\begin{array}{l} \mathsf{H}_{\max}(\mathcal{P}) = \sup_{x \in \mathcal{P}} \mathsf{H}(x) = \sup_{x \in \mathcal{P}} \inf_{y} \Phi(x, y).\\ \mathsf{Ri}_{\min}(\mathcal{P}) = \inf_{y} \mathsf{Ri}(y) = \inf_{y} \sup_{x \in \mathcal{P}} \Phi(x, y).\\ x^{*} \in \mathcal{P} \text{ optimal strategy for Nature } \therefore \mathsf{H}(x^{*}) = \mathsf{H}_{\max}(\mathcal{P}).\\ y^{*} \in Y \text{ optimal strategy for Observer } \therefore \mathsf{Ri}(y^{*}) = \mathsf{Ri}_{\min}(\mathcal{P}).\\ \\ \text{Minimax inequality: } \mathsf{H}_{\max} \leq \mathsf{Ri}_{\min}.\\ \\ \mathsf{If H}_{\max} = \mathsf{Ri}_{\min} < \infty, \gamma \text{ is in equilibrium.} \end{array}$$

If γ is in equilibrium and both players have optimal strategies, these are unique and coincide. The strategy in question $y^* = x^*$ is the bi-optimal strategy.

Nash and Pythagoras

Theorem [Axiom 1] Given $y^* = x^* \in \mathcal{P}$ with $H(x^*) < \infty$. Then the following conditions are equivalent:

- $\gamma(\mathcal{P})$ is in equilibrium with x^* as bi-optimal strategy;
- The Nash-saddle-value inequalities hold;
- For all $x \in \mathcal{P}$, the abstract Pythagorean inequality holds:

$$\begin{aligned} \mathsf{H}(x) + \mathsf{D}(x, y^*) &\leq \mathsf{H}(x^*) & (3) \\ \left(\mathsf{M}(x) &\geq \mathsf{D}(x, y^*) + \mathsf{M}(x^*) \text{ for utility-based model} \right) & (4) \\ \left(\mathsf{D}(x, y_0) &\geq \mathsf{D}(x, y^*) + \mathsf{D}(x^*, y_0) \text{ for updating} \right). & (5) \end{aligned}$$

With $D(x, y) = ||x - y||^2$, (5) is the classical inequality.

Theorem [Axioms 1+2] The condition that x^* is an optimal strategy for Nature is sufficient to ensure that (3)[(4)/(5)] holds. For the updating model the condition is that x^* is the D-projection of y_0 on \mathcal{P} .

Adding a geometric flavour

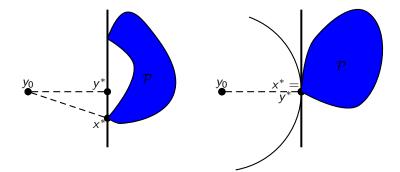
We only do this for the models of updating. Two type of sets will be involved: open divergence balls and open half spaces: $B(y_0, r) = \{D(x, y_0) < r\}$ $\sigma^+(y|y_0) = \{U_{|y_0} < D(y, y_0)\}$ $= \{D(x, y_0) < D(x, y) + D(y, y_0)\}.$

The sizes of these sets are, respectively, r and $D(y, y_0)$.

For the updating game $\gamma(\mathcal{P}|U_{|y_0})$, the MinDiv-value $D_{\min}^{y_0}(\mathcal{P})$ is the size of the largest ball $B(y_0, r)$ which is external to \mathcal{P} (i.e. contained in the complement of \mathcal{P}), and the other value of the game, the maximal guaranteed updating gain is, loosely expressed, the size of the largest half space external to \mathcal{P} .

In particular, $\gamma(\mathcal{P}|U_{|y_0})$ is in equilibrium and has a bi-optimal strategy if and only if, for some $y \in \mathcal{P}$, the half-space $\sigma^+(y|y_0)$ is external to \mathcal{P} . When this condition holds, y is the bi-optimal strategy, in particular, y is the D-projection of y_0 on \mathcal{P} .

optimal strategies under no equilibrium/ and under equilibrium



Topics left out

- Tsallis entropy
- Bregman divergencies
- Feasible preparations
- Control and description
- Core, an abstract notion generalizing exponential families

Slide 11/12

Instead of conclusions

- Should Shannon Theory be taught and learned this way?
- Is the philosophical approach important and helpful?
- Is the focus on game theory justified?
- Is the abstract approach also the right entrance point to areas of pure mathematics (optimization, duality theory ...)?
- - and to areas of (statistical) physics?
- Is the theory a good "selling argument" which could pave the way for more widespread adoption and recognition of ideas of Information Theory as initiated by Shannon?

My preliminary answers: I believe in a great potential of the theory indicated, but to which extent it is justified as a "stand alone theory" and to which extent it is a supplement to existing theories is of course not clear right now.