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some comments

On the pages following please find the slides exactly as pre-
sented at the symposium. Some comments may be in order:
As usual, the oral presentation gave room for further comments,
and also made it possible to quickly gloss over material of a more
technical nature, not all that suitable for presentation in a short
talk. The latter applies especially to the page with theorems I, II
and III. Readers interested in understanding this material should
consult the sources pointed to at the front page and also consult
the manuscript “Between Truth and Description” (available at my
homepage but also appeared in a proceedings volume) as this
manuscript contains a technical correction of an inaccuracy in
the “Maximum Entropy Fundamentals” paper.

To assist the reader: Note that the conclusions with results ap-
pear right at the beginning, hence the ms. ends somewhat abruptly.
After stating the results, the ms. falls into two parts: The first
and more difficult part concerns theoretical considerations which
lead to the isolation of the distributions one should ideally work
with. I reckon that some readers will do well in turning quickly
to the second part where speculations in idealized form on the
possible emergence of basic semantic elements and associated
means for communication are presented.

I shall “soon” work out one or two manuscripts where the ideas

are presented at a more leisurely pace, one manuscript being

addressed at a more general readership.



Overview of aim, results and limitations

Aim: To understand the basic structure of the
“idealized communicator”, a person with an infinite
vocabulary acquired over time, the “Zipfean”.

Limitations: We consider only the primitive semantic
structure, that of words . The words are ranked, start-
ing with the most frequent word. Assigning probabili-
ties to the words, we obtain the associated probability
distribution P = (p1, p2, · · · ) or, equivalently, the
associated coding pattern κ (to be explained later).

Any acceptable distribution P = (p1, p2, · · · ) for a
Zipfean is referred to as a Zipfean distribution . Thus:

Key tasks:
• to identify the Zipfean distributions
• to develop their basic properties
• to explain how they emerge over time.



Results:
• identification: there are infinitely many Zipfean

distributions; they are identified in precise mathe-
matical terms, either via their point probabilities or
via the associated code lengths

• properties:
– they can be realized with finite effort per word
– they imply stability: the Zipfean does not have

to change the basic structure over time
– they ensure that the language is flexible,

allowing the Zipfean to increase the expressive
power as required for any conceivable
specialized purpose

• emergence: this is suggested to be related to a
learning hierarchy of distributions or codes.

Limitation: testing of theory is difficult and still lacking.



Distributions and codes

A reminder: (binary) codes without probabilities:

alphabet code-word code-word
A length (κ)
a 11 2
e 00 2
i 01 2
o 100 3
u 1010 4
y 1011 4

Given possible lengths κi, there exists a (prefix-free)
code with these lengths iff Kraft’s inequality holds:∑

i∈A
2−κi ≤ 1 .

Equality: most natural (compression!). Then there is
a duality probability ↔ code (P ↔ κ):

κi = log
1

pi
(the code length function κ adapted to P )

pi = 2−κi ( the distribution P matching κ).



One more example: Coding letters in Dickens:
“A tale of two cities”

Alphabet frequency probability optimal (Huffman) code ideal
word length length

e 72883 12.49 % 000 3 3.00
t 52396 8.98 % 010 3 3.48
a 47064 8.07 % 1110 4 3.63
o 45118 7.73 % 1100 4 3.69
n 41310 7.08 % 1101 4 3.82
i 39786 6.82 % 1010 4 3.87
h 38360 6.57 % 1000 4 3.93
s 36772 6.30 % 1001 4 3.99
r 35956 6.16 % 0010 4 4.02
d 27485 4.71 % 0110 4 4.41
l 21523 3.69 % 10110 5 4.76
u 16218 2.78 % 00110 5 5.17
m 14923 2.56 % 00111 5 5.29
w 13835 2.37 % 01110 5 5.40
c 13224 2.27 % 01111 5 5.46
f 13155 2.25 % 111100 6 5.47
g 12120 2.08 % 111101 6 5.59
y 11849 2.03 % 111110 6 5.62
p 9453 1.62 % 101110 6 5.95
b 8140 1.40 % 101111 6 6.16
v 5065 0.87 % 1111110 7 6.85
k 4635 0.79 % 11111110 8 6.98
x 666 0.11 % 1111111101 10 9.77
q 655 0.11 % 1111111100 10 9.80
j 622 0.11 % 1111111110 10 9.87
z 213 0.04 % 1111111111 10 11.42
total = 583.426 100 % mean length = 4.19 H=4.16

Huffman ≈ combinatorial entropy (4.19 bits).
Idealizing ≈ entropy (4.16 bits).



Which distributions?

Definition: A distribution P = (p1, p2, · · · ) is
hyperbolic if it is not dominated by any power law.

Examples Consider a constant K and P = (p1, p2, · · · )
of the form

pn =
1

Z · n(logn)K
(not

1

Z · nK
)

for n ≥ 2 with Z a normalization constant (never mind
about the value of p1). Then this is a well defined
hyperbolic distribution. One finds that this distribution
has finite entropy if and only if K > 2. 2

We shall argue that

the Zipfean distributions are precisely the hyperbolic
distributions with finite entropy.

To realize the good sense in this, we shall – in consis-
tency with Zipf’s thinking – consider a certain game:



The game of least effort

- between Zipfean and the listener. Zipfean chooses
P , listener chooses κ. They fight over average code
length , Φ(P, κ) =

∑
i∈A piκi with listener as mini-

mizer, Zipfean as maximizer.

Values of the game satisfy

sup
P

inf
κ

Φ(P, κ) ≤ inf
κ

sup
P

Φ(P, κ) .

If equal and finite, the game is in equilibrium.

Clearly (!) infκ Φ(P, κ) = H(P ), the entropy of P ,
hence the Zipfean’s value is the MaxEnt-value :

Hmax(P) = sup
P∈P

H(P ) = sup
P∈P

∑
i∈A

pi ln
1

pi
.

The listeners value, Rmin = Rmin(P), is the mini-
mum of the specific risks R(κ|P) = supP∈P Φ(P, κ).

So, under equilibrium, MaxEnt=MinRisk.



Theorem I (equilibrium)
If P is convex and Hmax(P) < ∞, the game is
in equilibrium and the listener has a unique optimal
strategy κ∗. The matching distribution P ∗ defined by
p∗i = 2−κ∗i is the MaxEnt-centre of attraction i.e.,
for any sequence (Pn)n≥1 of distributions in P with
H(Pn) → Hmax(P), it holds that Pn → P ∗.
Theorem II (entropy preservation)
Conditions as above. If P ∗ is power-dominated, then
H(Pn) → H(P ∗).
Theorem III (entropy loss)
If P ∗ is hyperbolic then, for every entropy level h with
H(P ∗) < h < ∞, there exists a convex modelP with
P ∗ as centre of attraction and with Hmax = h. The
largest such model is the set of distributions P such
that Φ(P, κ∗) ≤ h with κ∗ the code adapted to P ∗ ,
i.e., for all i, κ∗i = − ln p∗i .

It is the possibility of entropy loss which is of prime
interest. For the Zipfean, choosing such a distribution,
stability and flexibility is possible at the same time!
Let us follow possible development of the Zipfean:



vocab. repres. length
∗ 1 1

primeval w. “universal word”

vocab. repres. length
1 1 1
2 11 2
3 111 3
· · ·
n 11· · · 1 n
· · ·

unary, primitive form

vocab. repres. length
1 0 1
2 10 2
3 110 3
· · ·
n 11· · · 0 n
· · ·

unary w. stop symbol

Criticism: Takes up far too much space!
(except for a very small vocabulary)
New idea needed:



vocab. repres. length
1 1 1
2 10 2
3 11 2
4 100 3
5 101 3
6 110 3
7 111 3
· · ·
n 1xx· · · x logn
· · ·

binary coding

Criticism: Very efficient, can handle large (infinite!)
vocabulary. - But: no stop symbol or equivalent.
No good for conversation, sentences.

Principal difficulty: Cannot introduce stopping mech-
anism without introducing new representation symbols.

Conclusion: Must introduce new ideas and renounce
on the efficiency expressed by the formula κn = logn

or the like: κn = c + logn or similar.

Again, new idea needed:



Mixing of unary and binary representation ...

n1

��

n0

��

Basic unary/

δ ε0

aaBBBBBBBBB

binary scheme

e.g. 42 y 101010 y 6 y 000000, hence basic
order 0 representation of 42 is 000000101010,
also denoted LE0(42).
Standard Levenshtein-Elias representation corresponds
to the scheme: Start with n = n0 and continue:

n2

��

n1

��

n0

��

δ ε1

bbEEEEEEEE

ε0

bbEEEEEEEE

For example: calculation of LE(42) = LE1(42) :

3

��

6

��

42

��

000 110

eeKKKKKKKKKKK

101010

ggOOOOOOOOOOOOO



vocab. repres. length
1 011 3
2 001010 6
3 001011 6
4 0011100 7
5 0011101 7
6 0011110 7
· · · · ·
n 0xx01x· · · x logn + 2 · log(2) n
· · ·

LE = LE1 representation

Finitely iterated LE representation

nν+1

��

nν

��

nν−1

��

· · · n2

��

n1

��

n0

��

δ εν

ddIIIIIIIIII
εν−1

ddIIIIIIIIII

·

bbFFFFFFFFFF · · ε2

__?????????

ε1

bbDDDDDDDDD

ε0

bbDDDDDDDDD

scheme for ν -fold LE iteration: LEν



Completely iterated LE representation

Start by representing 1 and 2. For general n, iterate
until you reach ν with εν = 11 (corresponding to 3).

vocab. repres. length
1 0 1
2 10 2
3 110 3
4 111000 6
5 111010 6
6 111100 6
7 111110 6
8 1110010000 10
· · 10

15 1110011110 10
16 11101100000 11
· · 11

32 111101000000 12
· · ·
n 1xxx· · · x0 logn + log(2) n + · · ·
· · ·

complete iteration LE∗. Compact:
∑

2−κi = 1



Convenient decoding

Example: Decoding of 22 = 10110:

+ - - - - - - - - - - +
- - + - - + - - - - + -
0 2 0 4 4 0 16 16 20 22 22 0
1 1 3 2 1 5 4 3 2 1 1 1
1 1 1 0 1 1 0 1 1 0 0 ·

Decode column to column:

a
b
c
d
?

y

a
b
c
d
e

y

a
b
c
d
?

· · ·

a: start of word
b: start of ε-block
c: contribution in block to the “block sum”
d: number of binary digits to be read in block
e: actual binary digit



The learning hierarchi

Coding domain:

LE0 2 logn

LE
0

c + K logn

LE1 logn + 2 log(2) n

LE
1

c + logn + K log(2) n

LE2 logn + log(2) n + 2 log(3) n

LE
2

c + logn + log(2) n + K log(3) n
· · · · · ·

Distribution domain:

special PL c 1
n2

power laws c 1
nK

HY P1 c 1
n(logn)2

HY P
1

c 1
n(logn)K

HY P2 c 1
n(logn)(log(2) n)2

HY P
2

c 1
n logn(log(2) n)K

· · · · · ·


