How to keep an expert honest or how to prevent misinformation

Flemming Topsøe

Department of Mathematical Sciences University of Copenhagen

Seminar, Copenhagen, September 2. 2009

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

CONTENT

PART I: how to prevent misinformation, abstractly and in concrete probabilistic models. Entropy and divergence

PART II: Philosophy connecting truth, belief and knowledge with applications to probabilistic models related to Tsallis entropy.

PART III: Outlook

MORE INFORMATION: See http://www.math.ku.dk/ topsoe/manuscripts/ (The ms. "Paradigms of Cognition" will be available primo October, I think) Adviser ↔ Investor

- x: Advisers best advice.
- y: Advice actually given.

For dubious reasons, misinformation $(y \neq x)$ may take place.

task: prevent misinformation!

Same problem in another setting: Expert↔ You, say a meteorologist giving advice to you. task: keep expert honest, encourage professionalism!

Solution strategy

Select a function $\Phi = \Phi(x, y)$ such that

$$\Phi(x,y) \ge \Phi(x,x)$$

with equality only if there is a perfect match, i.e. y = x.

Strategy: Pay Adviser an up-front fee and supply with an insurance scheme, according to which Adviser has to pay you a penalty $\Phi(x, y)$ as soon as you have seen what really happened.

This prevents misinformation, encourages honesty!

The principle (penalty minimized only if there is a perfect match) we call the Perfect Match Principle (PMP) and a function Φ with the required properties we call a PMP-function.

entropy and divergence (assuming Φ is PMP-function)

Define: entropy = minimal penalty and divergence = excess penalty:

$$H(x) = \Phi(x, x),$$

$$D(x, y) = \Phi(x, y) - \Phi(x, x).$$

Then $\Phi(x, y) = H(x) + D(x, y)$, the linking identity.

The PMP-property may be turned into the inequality

$$D(x, y) \ge 0$$
 with equality iff $y = x$.

This is the fundamental inequality (FI).

... but how to find a PMP-function? Let us turn to an example!

Example: A probabilistic model

A	X	y	local penalty
			$\phi(\mathbf{x}_i, \mathbf{y}_i)$
i	Xi	Уі	

x's and *y*'s are *probability distributions* over an alphabet A. Assume that $\Phi(x, y) = \sum_{i \in \mathbb{A}} \phi(x_i, y_i)$ where $\phi(s, t) = s\kappa(t)$ for a suitable penalty generator κ (a smooth function on [0, 1] with $\kappa(1) = 0$, normalized so that $\kappa'(1) = -1$).

$$\Phi$$
 is average penalty: $\Phi(x, y) = \sum_{i \in \mathbb{A}} x_i \kappa(y_i)$.

Theorem: Only *one* penalty generator turns Φ into a PMP-function: $\kappa(t) = \ln \frac{1}{t}$. With this choice, entropy becomes Shannon entropy and divergence becomes Kulback-Leibler divergence: $H(x) = \sum x_i \ln \frac{1}{x_i}$, $D(x, y) = \sum x_i \ln \frac{x_i}{y_i}$.

the pointwise fundamental inequality **Proof** of PMP-property when $\kappa(t) = \ln \frac{1}{t}$:

First adjust
$$\phi$$
: $\tilde{\phi}(\boldsymbol{s},t) = \phi(\boldsymbol{s},t) + t$,

then, instead of proving

$$\sum \phi(\mathbf{x}_i, \mathbf{y}_i) \geq \sum \phi(\mathbf{x}_i, \mathbf{x}_i),$$

we prove that

$$\sum \tilde{\phi}(\mathbf{x}_i, \mathbf{y}_i) \geq \sum \tilde{\phi}(\mathbf{x}_i, \mathbf{x}_i) \, .$$

Even the pointwise fundamental inequality (PFI) holds:

$$ilde{\phi}(oldsymbol{s},t) \geq ilde{\phi}(oldsymbol{s},oldsymbol{s})$$
 .

Indeed,

$$s\ln\frac{1}{t}+t\geq s\ln\frac{1}{s}+s$$

 $s\ln\frac{s}{t} \ge s(1-\frac{t}{s}) = s-t$.

as

PART II: philosophy ...

truth, belief and knowledge

Before, x was a kind of truth. Now change the underlying interpretations so that x is truth, conceived as "genuine truth" or even "absolute truth"— a truth which is held by Nature.

Introduce also Observer, (could be a physicist, a statistician or a probabilist).

Nature does not give advice. So instead of advice, we now take *y* to represent Observers belief.

Knowledge is conceived as the *synthesis of extensive experience*, in probabilistic models corresponding to the regime where the laws of large numbers have taken over.

Worlds and interactors

The interaction Nature \leftrightarrow Observer takes place in a world, W. Observer studies situations from the world, characterized by instances of the central concepts.

Another aspect of knowledge: *it is the way the world presents truth to Observer in any situation*.

C r u c i a l assumption: This depends on the truth instance x and on the belief instance y.

The knowledge instance, z, is thus a function of x and y:

 $z = \Pi(x, y)$ with Π the interactor.

examples of worlds

The classical world, W_1 , is characterized by the interactor

$$\Pi_1(x,y)=x\,.$$

It is a *world of observable truth. What you see is what is true* (WYSIWIT).

Another extreme: a black hole, $\mathcal{W}_0,$ characterized by the interactor

$$\Pi_0(x,y)=y.$$

In this world, what you see is what you believe (WYSIWYB).

Mixtures: $\Pi_q(x, y) = qx + (1 - q)y$ define Tsallis worlds, \mathcal{W}_q .

All worlds we shall consider will be sound, that is $\Pi(x, y) = x$ provided *belief matches truth* (y = x).

probabilistic modeling

A	X	У	Ζ	effort
•	•	•	•	•
Í	Xi	Уi	Zi	$\phi(\mathbf{X}_i,\mathbf{Y}_i)=\mathbf{Z}_i\kappa(\mathbf{Y}_i)$
•	•	·	•	•

Modeling as before except now

$$\Pi(\boldsymbol{x},\boldsymbol{y}) = \big(\pi(\boldsymbol{x}_i,\boldsymbol{y}_i)\big)_{i\in\mathbb{A}}$$

with π the local interactor and

$$\phi(\boldsymbol{s},t) = \pi(\boldsymbol{s},t)\kappa(t)$$

Interpretations: Now Φ determines the description effort or the description cost and κ is the generator. The PMP is now the natural principle for Observer to strive for a generator which ensures that effort is minimized when there is a perfect match.

Theorem: Given π , only one generator could possibly lead to a Φ which satisfies the PMP.

proof

Proof: Assume PMP holds with κ as generator. For 0 < t < 1 put

$$f(t) = \chi(t)\kappa(t) + t\kappa'(t)$$

where

$$\chi(t) = \frac{\partial \pi}{\partial t}(t,t).$$

Consider a probability vector $x = (x_1, x_2, x_3)$ with positive point probabilities. By PMP *F* given by

$$F(y) = F(y_1, y_2, y_3) = \sum_{1}^{3} \pi(x_i, y_i) \kappa(y_i)$$

on $]0, 1[\times]0, 1[\times]0, 1[$ assumes its minimal value for the interior point y = x when restricted to probability distributions. Thus, there exists a Lagrange multiplier λ such that

... continued ...

$$\frac{\partial}{\partial y_i} \left(F(y_1, y_2, y_3) - \lambda \sum_{1}^{3} y_i \right) = 0 \text{ for } i = 1, 2, 3$$

when y = x. This shows that $f(x_1) = f(x_2) = f(x_3)$. Using this with $(x_1, x_2, x_3) = (\frac{1}{2}, x, \frac{1}{2} - x)$ for $x \in]0, \frac{1}{2}[$, we find that f is constant on $]0, \frac{1}{2}]$. probability vector $(x, \frac{1}{2}(1 - x), \frac{1}{2}(1 - x))$ and conclude from the first part of the proof that $f(x) = f(\frac{1}{2}(1 - x))$. As $0 < \frac{1}{2}(1 - x) < \frac{1}{2}$, we conclude that $f(x) = f(\frac{1}{2})$. Thus f is constant on]0, 1[. By letting $t \to 1$ and assuming suitable smooth behaviour, we conclude that the constant is -1. We have seen that κ must be the unique solution in]0, 1[to

$$\chi(t)\kappa(t) + t\kappa'(t) = -1$$

for which $\kappa(1) = 0$. \Box

Tsallis entropy

Below, \ln_q is the *q*-logarithm:

$$\ln_q t = \begin{cases} \ln t \text{ if } q = 1\\ \frac{1}{1-q}(t^{1-q}-1) \text{ otherwise .} \end{cases}$$

Theorem: If π is consistent, (i.e. $\sum z_i = 1$ is ensured), then the world must be one of the Tsallis worlds W_q . If q < 0, PMP cannot be realized. If $q \ge 0$ there is a unique generator s.t. PMP holds, viz. the generator $\kappa_q(t) = \ln_q \frac{1}{t}$. The case q = 0 is a singular case for which divergence vanishes. When q > 0, PMP holds in its full form. The entropy obtained for $q \ge 0$ coincides with Tsallis entropy.

Proof (sketch): Consistency \Rightarrow Tsallis world: easy! Differential equation from previous theorem: $(1 - q)\kappa(t) + t\kappa'(t) = -1$ gives $\kappa(t) = \ln_q \frac{1}{t}$. Counterexamples rules out q < 0 if PMP is to hold. That PMP does hold when $q \ge 0$ follows as PFI holds (apply geometric/arithmetic mean inequality).

PART III: Outlook

- information without probability, paradigms of cognition
- belief as a tendency to act
- control derived from belief
- description effort, or description cost
- multiple worlds with the same generator (κ -function)
- the choice of unit (as cost pr. observation)
- "what can you know?", feasible preparations
- notions of equilibrium (robustness, Nash equilibrium)
- exponential families, the maximum entropy principle

(ロ) (同) (三) (三) (三) (○) (○)

information projections, pythagorean theorems