
Towards operational interpretations of generalizedentropiesFlemming TopsøeUniversity of Copenhagen, Department of Mathematial Sienes, Universitetsparken 5, 2100Copenhagen, DenmarkE-mail: topsoe�math.ku.dkAbstrat. The driving fore behind our study has been to overome the di�ulties youenounter when you try to extend the lear and onvining operational interpretations oflassial Boltzmann-Gibbs-Shannon entropy to other notions, espeially to generalized entropiesas proposed by Tsallis. Our approah is philosophial, based on speulations regardingthe interplay between truth, belief and knowledge. The main result demonstrates that,aepting philosophially motivated assumptions, the only possible measures of entropy arethose suggested by Tsallis � whih, as we know, inlude lassial entropy. This result onstitutes,so it seems, a more transparent interpretation of entropy than previously available. However,further researh to larify the assumptions is still needed. Our study points to the thesis thatone should never onsider the notion of entropy in isolation � in order to enable a rih andtehnially smooth study, further onepts, suh as divergene, sore funtions and desriptorsor ontrols should be inluded in the disussion. This will larify the distintion between Natureand Observer and failitate a game theoretial disussion. The usefulness of this distintionand the subsequent exploitation of game theoretial results � suh as those onneted with thenotion of Nash equilibrium � is demonstrated by a disussion of theMaximum Entropy Priniple.1. IntrodutionOur aim is to provide transparent operational interpretations of generalized notions of entropy,espeially of Tsallis entropy, f. [1℄ and [2℄. Our approah depends on abstrat, philosophialonsiderations entred around notions of truth, belief and knowledge and their possible interplay.In Setion 2 we introdue the main abstrat notions. They are not neessarily tied to probabilistionsiderations. However, for the present exposition, we tone down a bit the very abstratdisussion.In Setion 3, we introdue the probabilisti models we shall work with. We only onsiderdisrete models. For these models, we identify the most natural or aeptable forms of interplaybetween truth, belief and knowledge. Key notions are related to interation and desription.Quantitative reasoning is enabled by the introdution of sore funtions. This type of funtionis known from statistial deision theory. Here, it determines the e�ort needed by an observer inorder to gain knowledge. A variational priniple is introdued whih is related to the fundamentalinequality of information theory. The notions introdued are needed for the formulation oftwo main results, Theorems 1 and 2. In partiular, Theorem 2 is presented as an operationalinterpretation of Tsallis entropy. It singles out Tsallis entropy among other possibilities and may



thus be taken to support the view that these notions oupy a unique position in statistialphysis.In Setion 4 we introdue onepts losely related to experiments and observation. The furtherstudy depends on game theoretial onsiderations and this is taken up in Setion 5. Two notionsof equilibrium are introdued and their relation is established in Theorem 3. This result alsoontains the pythagorean inequalities, well known and elebrated results from information theory.Setion 6 introdues exponential families and Theorem 4 establishes their relevane for the easydetermination of equilibrium and optimal strategies, in partiular maximum entropy distributionsin ases where the models studied are given by what we all feasible preparations.Setion 7, the �nal setion, ontains a disussion of various points related to the text with aview also to desirable further researh.Throughout the study, we have emphasized the underlying ideas and though a fair numberof proofs are given, we have introdued ertain simpli�ations and tried to avoid mathematialsubtleties.2. Abstrat philosophial onsiderationsThe whole is the world. We shall onsider situations from the world whih involve Nature,without a mind but holder of truth, and Observer, seeking the truth but restrited to belief. Inontrast to Nature, Observer has a onsious and reative mind whih an be exploited to obtainknowledge as e�ortlessly as possible.By x we denote a generi truth instane assoiated with a spei� situation. We imagine thatNature has �hosen� this instane from a ertain set M. To simplify notationally, we shall notexpress any dependeny of M on the situation. This is justi�ed by the fat that for the presentstudy only one situation will be onsidered at a time. The set M is the set of possible truthinstanes.In any situation, Observer speulates over what Nature is up to, and Observer expresses hisbelief in the form of an assignment of a belief instane, typially denoted by y, to the situation.To simplify, we assume that the belief instane is also hosen from M.Observers hoie of belief instane in any spei� situation is onsidered a subjetive hoietaking available information into aount suh as general insight and any spei� prior knowledge.These thoughts agree with Bayesian thinking, and as suh are subjet to standard ritiism whihapplies to this line of thought, f. [3℄.Observer ats by designing experiments and by making subsequent observations. We shalllater return in more detail to this aspet. For now we note that the result of observations anbe more or less informative, ranging from initial and very limited experiene to a �nal moreonlusive stage. It is the �nal stage we have in mind. We refer to it as knowledge and think ofit as the synthesis of extensive experiene.The end result of Observers endeavours in any partiular situation is a knowledge instane,typially denoted by z. We reserve the letter F for the set of knowledge instanes. We assumethat M ⊆ F. Often, F = M will hold.The onnetion to extensive experiene is just one side of �knowledge�. We may also viewknowledge as the way the World presents truth to Observer in any given situation and, therefore,as the way Observer pereives the situation. We assume that knowledge is a funtion whihdepends on the situation through the already introdued notions of truth- and belief instanes.Formally, we shall operate with a funtion Π : M × M → F, and interpret z = Π(x, y) as theknowledge instane in a situation with x as truth instane and y as belief instane. We all Πthe interator, sometimes the global interator in order to distinguish it from a related oneptto be introdued later. Two worlds with the same interator are identi�ed, thus oneived as thesame world. We use WΠ to denote the world with interator Π.



x ∈ MNATURE y ∈ M z ∈ FOBSERVERexperimentobservationsΠ THE WORLDFigure 1. Some key elements of the philosophial onsiderationsThe lassial world, W1, is haraterized by the interator Π1 given by
Π1(x, y) = x . (1)This is the world of observable truth or, expressed somewhat di�erently, a world where truth islearnable. As another extreme, onsider W0, oneived as a blak hole and haraterized by theinterator Π0 given by
Π0(x, y) = y . (2)In this world, no matter what Observer does, he will only see a mirror image of himself � it isa world of total narissism, what you see is what you believe. By ontrast, in a lassial world,what you see is what is true.We also onsider mixtures of the two worlds identi�ed above. For this to make sense, weassume that M is embedded in a linear spae. Then, to eah q ∈ R, we may onsider the worldharaterized by the interator Πq de�ned by

Πq(x, y) = qx + (1 − q)y . (3)The worlds de�ned in this way are the Tsallis worlds, denoted Wq.All worlds whih we will onsider will be sound in the sense that Π(x, y) = x provided thereis a perfet math (belief mathes truth), i.e. provided y = x.In order to enable quantitative reasoning, we introdue funtions whih determine the e�ortneeded by Observer in order to aquire knowledge. For reasons disussed in Setion 7, thesefuntions are alled sore funtions. In priniple, any funtion Φ : M × M → [0,∞] ould bea sore funtion 1. Of ourse, in order for the intended interpretation to make sense, Φ shouldbe de�ned in some meaningful way pertaining to the speial world and the speial situationonsidered. Only then an Φ(x, y) be taken to represent the neessary e�ort needed by Observerin order to gain the knowledge z = Π(x, y) in a situation with truth-instane x and belief-instane y. We laim that the appropriate seletion of a sore funtion will depend on tools of�desription� available to Observer. This view will beome more lear when, in the next setion,we turn to probabilisti modelling.We imagine that Observer has many sensible sore funtions to hoose from. Of partiularinterest are proper sore funtions whih are sore funtions whih satisfy the inequality
Φ(x, y) ≥ Φ(x, x) (4)

1 negative values ould be allowed and would be onvenient for ertain wider studies, espeially for enabling asmooth treatment of Kullbak's minimum information disrimination priniple.



for any (x, y) ∈ M×M and for whih equality in (4) only holds in ase of a perfet math (y = x).The implied variational priniple, viz. for Observer to hoose, whenever possible, a proper sorefuntion among the available sore funtions, we refer to as the Perfet Math Priniple (PMP).We may allow singular ases of PMP for whih equality in (4) an take plae in other ases thanthe perfet math ase y = x. We shall always emphasize if suh singular ases are allowed.The signi�ane of proper sore funtions an be illuminated by the following onsiderationsfor whih we hange a bit the role of Nature. What we shall imagine is that Nature anommuniate with Observer. Then we talk of an expert (by the name �Expert�) rather thanNature. Consider some situation and assume that Observer seeks the advie of Expert. Expertsbest advie is x. However, for dubious reasons, Expert may be tempted to give an advie y whihdi�ers from x. With the ongoing risis in world eonomy in mind, you may think of a bank advisorand a situation involving investment planning. With aess to a proper sore funtion, Observeran enter into a ontrat with Expert whih will enourage Expert to be honest, i.e. to give theadvie re�eting a perfet math, y = x. The ontrat may be formulated as an agreement forObserver to pay a one-and-for-all sum on signing the ontrat supplied with a kind of insuranesheme aording to whih Expert must pay a penalty in the amount of Φ(x, y) as soon as thetrue nature of Experts insight, in the form of x, will be revealed to Observer. Clearly, when Φ isa proper sore funtion, it is in Experts own interest to be honest, i.e. to give the advie y = x,as this will minimize the penalty to be payed to Observer. Considerations of this nature emergedin statistial studies as detailed in Setion 7.Essential for our analysis are the two onepts, interation (given by Π) and sore or e�ort(given by Φ). When we work in a world VΠ and Observer has hosen the sore funtion Φ, theresulting model is denoted V(Π,Φ). Consider suh a model and assume that Φ is a proper sorefuntion. We may then introdue the important notions entropy and divergene, here denoted bythe letters S and D. Entropy relates to a possible truth instane x, whereas divergene relatesto a situation haraterized by a pair (x, y) of assoiated truth- and belief instanes:
S(x) = Φ(x, x) (5)

D(x, y) = Φ(x, y) − S(x) . (6)Thus, oneiving Φ as e�ort, entropy is minimal e�ort and divergene is exess or redundante�ort. Though in�nite values are oneivable, we ignore this problem and simply assume that Dan be de�ned so that D(x, y) = 0 if and only if y = x and so that the linking identity
Φ(x, y) = S(x) + D(x, y) (7)always holds.Note that the notions introdued require a proper sore funtion and that entropy is a derivedquantity. In onsisteny with this observation, the thesis that entropy should never be onsideredas an isolated quantity seems to represent a sound and fruitful guiding priniple.The fat that D(x, y) ≥ 0 with equality if and only if there is a perfet math is the fundamentalinequality of information theory (FI), here with information theory understood in a rather generalabstrat sense.3. Probabilisti modellingFor our probabilisti modelling, situations are related to a disrete alphabet A and the set ofpossible truth instanes is taken to be the set of probability distributions over A, in symbols

M = M1
+(A). A typial truth instane is given by the point probabilities: x =

(

xi

)

i∈A
, thus the

xi's are non-negative numbers adding to 1. Similarly, a belief instane is a probability distribution



y =
(

yi

)

i∈A
∈ M

2. For a knowledge instane z =
(

zi

)

i∈A
we only require that the zi's are wellde�ned real numbers.We assume that the interators to be onsidered at loally, i.e., for some funtion π de�nedon [0, 1] × [0, 1],

Π(x, y) =
(

π(xi.yi)
)

i∈A

.The funtion π is the loal interator or just the interator. In order to ensure that theorresponding global interator is sound, we assume that π is sound, i.e. that π(s, s) = sfor all 0 ≤ s ≤ 1. We also assume that suitable regularity onditions are ful�lled, say ontinuityand ontinuous di�erentiability in the interior domain and, further, that π assumes �nite values,exept possibly for ases with π(s, t) = ∞ when t = 0 < s.For the probabilisti models, the world de�ned by π is denoted Vπ. The primary example isthe q-interator πq given by
πq(s, t) = qs + (1 − q)t . (8)We put Vq = Vπq

. The worlds de�ned in this way are the Tsallis worlds in the probabilistisetting.The equation (8) expresses a linear (or a�ne) relationship among probabilities. It is a formof diret linearity. It is oneivable that, instead, physial irumstanes ditate that a linearrelationship only applies to ertain funtion values applied to point probabilities. This points tointerators π
ξ
q of the form

πξ
q(s, t) = ξ−1

(

πq

(

ξ(s), ξ(t)
)

)

. (9)For this we require that the funtion ξ is a smooth stritly inreasing funtion on [0, 1]. Whenwe work with one of these interators, we speak about ξ-linearity and the assoiated worlds aredenoted Vξ
q . In mathematial terms, the interators π

ξ
q are generalized meanvalues; for a lassialreferene, see [4℄.Of ourse, for q = 1 or q = 0 nothing new is obtained in this way. But for other values of

q, interesting interators emerge. For instane, with ξ(s) = ln s we �nd that π
ξ
q determines thegeometri average (s, t) 7→ sqt1−q. We write this interator as πG

q and the assoiated world as
VG

q (G for �geometri�), whereas πq may be written as πA
q and Vq as VA

q (A for �arithmeti�).Conerning the value of q, the �leanest� results are obtained for 0 < q ≤ 1, but also values
q > 1 are of interest. We �nd negative values of q less interesting for reasons given in Theorem2. An interator π is weakly onsistent if ∑

i∈A
zi = 1 for every pair (x, y) ∈ M × M with

z = π(x, y). If even z ∈ M an be onluded, the interator is strongly onsistent.Proposition 1. The only worlds Vπ with a weakly onsistent interator π are the Tsallis worlds
Vq for some real value of q, and only for 0 ≤ q ≤ 1 do we obtain a world with a strongly onsistentinterator.The proof follows a standard pattern and is not given here.We turn to a loser investigation of worlds Vπ with the spei�ation of an assoiated sorefuntion. The �rst thing to do is to agree on what the sensible sore funtions for Vπ are. Justas for the global interator, they should at loally. Therefore, the key question is what the�loal sore� assoiated with a basi event whih has true probability s and believed probability
t should be. For this we note that π(s, t) is the �fore� by whih the basi event is pereived
2 Finer modelling will allow that the set of available belief instanes is di�erent from M, or even depends on theatual truth instane; an example of this is to allow that y is an inomplete distribution (P yi < 1) and to insistthat y ≻ x i.e. that xi > 0 ⇒ yi > 0.



by Observer. Then we have to onsider what e�ort Observer should attah to the basi event.As Observer does not know s, this an only depend on Observers own belief, represented by
t. Thus, for some funtion κ, Observer should attah the e�ort κ(t) to a single ourrene ofthe basi event. This should be multiplied by the pereived fore. We onlude that the loalontribution to the sore funtion should be π(s, t)κ(t). Based on suh more or less � more,hopefully � onvining intuitive ideas, we agree that every aeptable sore funtion is of theform

Φ(x, y) =
∑

i∈A

π(xi, yi)κ(yi) (10)with κ some funtion de�ned on [0, 1]. The funtion κ is the desriptor and we say that κgenerates Φ. We may interpret κ as the ost of information, viz. κ(t) is the prie Observeris willing to pay or, in other words, the e�ort (energy) Observer is willing to alloate in orderto obtain the information arried by an event with (believed) probability t. We also refer to
κ(t) as the desription ost alloated to a probability-t event, though, for non-lassial worlds,we are not able to suggest onrete methods of desription � suh as those based on oding �whih ould be relevant in this respet. Observe that the sore Φ(x, y) is the pereived averageost of desription or, as the aquisition of knowledge or information is onerned, the pereivedaverage ost of information. The orresponding true average ost, whih is the average alloationof desription e�ort by Observer but seen from the point of view of Nature, is

Φtrue(x, y) =
∑

i∈A

xiκ(yi) . (11)On the tehnial side we impose the following onditions on a desriptor: κ(1) = 0, κ isontinuous on [0, 1], �nite on ]0, 1], ontinuously di�erentiable on ]0, 1] and, �nally, we imposea ondition of normalization, viz. that κ′(1) = −1. The last ondition orresponds to a hoieof unit. The hoie made gives natural units, nats. Had we, instead, imposed the ondition
κ′(1) = ln 1

2
, we would have obtained binary units, bits. We �nd that 1 nat ≈ 1.4427 bits.The desriptor only determines the sore funtion when the interator is known. Thus, in(10), we may write Φ(x, y|π, κ) or similar for lari�ation. Normally, π and κ will be understoodfrom the ontext and we may drop these letters from the notation. To speify that we work inthe world with interator π and onsider the sore funtion generated by π and the desriptor

κ, we refer to this setting as V(π, κ).Consider V(π, κ) and assume that the assoiated sore funtion is proper. Entropy anddivergene are then obtained from (5) and (6). We �nd:
S(x) =

∑

i∈A

xiκ(xi) , (12)
D(x, y) =

∑

i∈A

(

π(xi, yi)κ(yi) − xiκ(xi)
) (13)

=
∑

i∈A

δ(xi, yi) , (14)where δ denotes a speial funtion, the divergene generator whih is de�ned by
δ(s, t) =

(

π(s, t)κ(t) + t
)

−
(

sκ(s) + s
)

. (15)Clearly, entropy as de�ned by (12) is a well de�ned, possibly in�nite quantity. The fat thatalso the two formulas for divergene give well de�ned quantities is not immediately obvious.In fat this follows in a quite fundamental way, alas depending on a as yet unsolved tehnialproblem. Thus we an only formulate as a onjeture the following statement:



Conjeture 1. For V(π, κ), the sore funtion de�ned by π and κ is a proper sore funtion ifand only if δ(s, t) ≥ 0 for every (s, t) ∈ [0, 1] × [0, 1] with equality only for t = s.The inequality δ ≥ 0 (with equality only as stated) we refer to as the pointwise fundamentalinequality (PFI). Clearly, it implies the fundamental inequality (FI) and thus the propernessof the assoiated sore funtion. In pratie, PFI is a muh simpler inequality to verify thanFI attaked diretly. The missing proof of the �only if� part of the onjeture has no pratialonsequenes as all onrete positive results we need are proved via PFI.It remains to investigate if the desriptor an be adapted to the interator in a way so that aproper sore funtion emerges. To answer this question, we shall need the funtion χ de�ned by
χ(t) =

∂π

∂t
(t, t) (16)(so χ is the partial derivative of π(s, t) in diretion of t, evaluated at the diagonal s = t).Theorem 1. Let π be an interator and assume that χ de�ned by (16) is bounded in the viinityof 1. Then, there exists at most one desriptor κ whih generates a proper sore funtion forthe world Vπ. Indeed, if κ is suh a desriptor, κ must be the unique solution to the di�erentialequation

tκ′(t) + χ(t)κ(t) + 1 = 0 (17)whih satis�es the ondition κ(1) = 0.Proof. Assume that the sore funtion assoiated with the desriptor κ is proper. For 0 < t < 1put
f(t) = tκ′(t) + χ(t)κ(t) .Consider a probability vetor x = (x1, x2, x3) with positive point probabilities. Then the funtion

F given by
F (y) = F (y1, y2, y3) =

3
∑

i=1

π(xi, yi)κ(yi)assumes its minimal value for the interior point y = x when restrited to probability distributions.As standard regularity onditions are ful�lled, there exists a Lagrange multiplier λ suh that
∂

∂yi

(

F (y) − λ

3
∑

i=1

yi

)

= 0 for i = 1, 2, 3when y = x. This shows that f(x1) = f(x2) = f(x3).Using this, �rst with (x1, x2, x3) = (1

2
, x, 1

2
− x) for a value of x in ]0, 1

2
[, and then with

(x1, x2, x3) = (x, 1

2
(1−x), 1

2
(1−x)), one is soon led to the onlusion that f is onstant on ]0, 1[.In view of the boundedness ondition on χ whih is taitly assumed (weaker onditions will do),the onstant must be −1 and the result follows.We refer to the one and only possible desriptor whih ould generate a proper sore funtionfor Vπ as the basi andidate and denote it by κ[π]. As the boundedness ondition imposed on

χ in Theorem 1 is very weak (perhaps even super�uous), the theorem may be stated brie�y bysaying that the basi andidate is uniquely de�ned, given the interator. The result supportsthe onjeture. Indeed, if κ generates a proper sore funtion, we may introdue, for eah s, thefuntion fs de�ned by fs(t) = π(s, t)κ(t)+ t and then note that by (17), eah fs has a stationarypoint at t = s. As, for every (x, y) ∈ M × M,
∑

i∈A

fxi
(yi) ≥

∑

i∈A

fxi
(xi) ,



it appears plausible that the stationary points of the funtions fs are all minimal points, andthis will imply that the onjeture holds.The onjeture and its relation to PFI tempts us to de�ne an adjusted notion of the totaldesription e�ort, denoted by Φ̃: Φ̃(x, y) =
∑

i∈A

(

π(xi, yi)κ(yi) + yi

)

. The added terms in thesummands, the yi's, are interpreted as the ontributions to the total overhead stemming from therespetive basi events. Here, �overhead� is related to whatever ation, typially observations ofan experiment, is involved for Observer in order to aquire the knowledge z = Π(x, y). The totaloverhead in any situation is ∑

yi = 1. In other words, the normalization ondition κ′(1) = −1orresponds to hoosing the overhead ost as the unit to work with. Adjusting also the entropyfuntion, one �nds that adjusted entropy is always bounded below by the overhead ost, 1 nat.One should of ourse respet the fat that Theorem 1 only provides a andidate for a wellbehaved desriptor. In eah ase one has to hek if this andidate really provides a desriptorwhih generates a proper sore funtion. When this is the ase, κ = κ[π] is the ideal desriptorassoiated with π and we will typially assume that we work with this desriptor when the world
Vπ is onsidered. Notationally we shall write V(π) rather than V(π, κ) to indiate this.In ase of the Tsallis worlds, the determination of the basi andidate as well as the neessaryheking whether or not it is ideal is straight forward and leads us to a main result. Beforestating it, we �nd it onvenient, following Tsallis [5℄, to introdue the deformed logarithms lnq.For q ∈ R, they are de�ned by

lnq t =

{

ln t if q = 1
1

1−q

(

t1−q − 1
) otherwise .

(18)Theorem 2. Consider one of the worlds Vq. If q < 0, no desriptor de�nes a proper sorefuntion for Vq. If q ≥ 0, there exists a unique desriptor whih de�nes a proper sore funtionfor Vq, viz. the desriptor κq given by
κq(y) = lnq

1

y
. (19)All worlds V(πq, κq) with q > 0 are regular, whereas the world V(π0, κ0), a blak hole, is singular,in fat divergene vanishes identially in this ase.Proof. The funtion χ from Theorem 1 is the onstant funtion 1 − q. Solving (17), you �ndthat κ[πq] is given by (19). From simple examples, one �nds that for q < 0, the perfet mathpriniple does not hold with this desriptor.It remains to onsider values q ≥ 0. The ases q = 0 and q = 1 are left to the reader. For theremaining ases, onsider the divergene generator

δq(s, t) =
q

1 − q
stq−1 + tq −

1

1 − q
sq . (20)An appliation of the geometri-arithmeti mean inequality shows that PFI holds (onsider theases 0 < q < 1 and q > 1 separately and ollet the two positive terms).Appropriate expliit formulas for sore or e�ort (Φq), entropy (Sq), and divergene (Dq) in theTsallis worlds are easily derived from (10), (12)-(14) and (18)-(20). By Theorem 2, only aseswith q > 0 yields ideal, non-singular desriptors, hene also proper sore funtions.By Theorem 1, you are led in a unique way from an interator to a desriptor. A naturalquestion arises, that is, if the onverse is also true. It is not. Thus, one annot in general knowwhih world you operate in, i.e. know the interator, if one only knows the desriptor. Even ifthe desriptor is ideal, the world annot be determined. Conrete illustrations of this fat areprovided by the following result:



Proposition 2. For q > 0, VA
q and VG

q both have κq given by (19) as ideal desriptor.We leave the proof to the reader, only noting that for q > 1, the fat that κq is the idealdesriptor for VG
q is a weaker statement than the similar statement � ontained in Theorem 2 �for VA

q as then πG
q ≥ πA

q . For 0 < q < 1, the statement is stronger as then πG
q ≤ πA

q . Therefore,the statement requires a proof whih is in fat easy to aomplish.As a onsequene of our observation note the following: If we only fous on entropy Sq, andthis only needs the desriptor κq for its spei�ation, we annot know the sore- or the divergenefuntions. Both ΦA
q and DA

q and ΦG
q and DG

q are possible sets of assoiated funtions, the oneset orresponding to the interator πA
q , the other to πG

q .4. Preparations and ontrolsFor this setion, as well as for Setions 5 and 6, we work in a world V = V(π) = V(π, κ) with
κ the ideal desriptor assoiated with π. We assume that κ is stritly dereasing on [0, 1]. Thekey example is π = πq for a q > 0. The situations we have in mind all involve distributions overthe same alphabet A.The main issue we shall now disuss is the philosophial question �what an Observer know?� .What we mean by this is that in any onrete situation, the set of truth instanes hosen byNature will normally be restrited to some subset of M. Suh a subset we all a preparation.Typially, we denote a preparation by the letter P. But not every subset of M an, realistily,our. The preparations whih an atually be realized, we all the feasible preparations. Theytell us what Observer an know.In order to arrive at a meaningful, onrete and operational de�nition of what a feasiblepreparation is, we put forward the rough idea that what Observer an do to enable the aquisitionof knowledge is to �x alloations of e�ort (or energy) to individual events and also to �x an overallthreshold and then enfore Nature to hoose only truth instanes whih respet the indiatedonstraints.First, regarding the alloation of e�orts, we adopt the view that belief is a tendeny to at.Therefore, we start from a belief instane ξ and transform it to a more suitable objet whenhaving possible ations by Observer in mind. The transformation is denoted ξ y ξ̂ with ξ̂de�ned as the family ξ̂ =

(

κ(ξi)
)

i∈A
. We �nd it onvenient to de�ne a ontrol as a family

w = (wi)i∈A for whih there exists ξ ∈ M suh that w = ξ̂, i.e. suh that wi = κ(ξi) for eah
i ∈ A.Seondly, we imagine that, orresponding to a hosen ontrol w = ξ̂, Observer an realize aertain experimental set-up whih onsists of various parts suh as mahinery, instruments andso on, inluding a speial handle whih he uses to �x the level of total e�ort, h. The idea thenis that this results in a restrition of the truth instanes hosen by Nature to the set of x ∈ Mfor whih the average e�ort as pereived by Observer is h, i.e. Φ(x, ξ) = h. The preparationobtained by restriting the truth instanes in this way is denoted P(w, h), i.e. (still with w = ξ̂)

P(w, h) = {x ∈ M|Φ(x, w̌) = h} . (21)Note that these preparations are level sets obtained by �xing the belief instane in the sorefuntion. Preparations of this form are alled the basi preparations.Having hosen a ontrol, the sene is set and observations an begin with the reading ofmeasuring instruments et. Observer may want to use the same experimental set-up for severalexperiments by adjusting the level of total e�ort. Of ourse, the level should always be set sothat P(w, h) is non-empty.We an now give a preise de�nition of a feasible preparation: It is a non-empty �niteintersetion of basi preparations. The genus of a feasible preparation is the smallest number of



basi preparations needed to de�ne the preparation. Thus, a feasible preparation of genus 1 isthe same as a basi preparation.Regarding the previously introdued onept of �situations� , we emphasize that they shouldalways be related to feasible preparations.By K we denote the set of ontrols, i.e. K = {ξ̂|ξ ∈ M}. The hoie of the letter �K� re�etsthat for the lassial world, a ontrol is strongly related to oding. For this reason we may alsouse the term oder instead of ontrol. The transformation ξ y ξ̂ is a bijetion between M and K.In order to determine the inverse transformation, denoted w y w̌, we need to know the inversefuntion of κ. This funtion we all the probability heker and denote by ρ = ρκ. We insist that
ρ is de�ned on all of [0,∞] even though there may be a ut-o� in κ, as the range [0, κ(0)] maybe a proper subset of [0,∞]. The formal de�nition is as follows:

ρ(a) =

{

κ−1(a) if a ≤ κ(0)

0 otherwise. (22)The probability heker provides a tool to determine how �omplex� events you an desribewith aess to a given number of nats. The lower the probability, the more omplex the event.With aess to a nats, you an desribe any event with a probability as low as ρ(a).For a Tsallis world with 0 < q ≤ 1, however large your resoures to nats, there are events soomplex that you annot desribe them, whereas, if q > 1, you an desribe any event if youhave aess to K nats if only K is large enough (K ≥ 1

q−1
).Another illustration: If, for sample point i ∈ A you have deided how many nats you arewilling to alloate to i, say ai nats, this will only be feasible if the generalized Kraft inequalityholds:

∑

i∈A

ρκ(ai) ≤ 1 . (23)5. Preparations and gamesConsider some preparation P. For the time being, we need not assume that P is feasible.Observer annot know whih truth instane Nature has hosen, exept that it is in P. It liesnearby to speulate if Observer an identify some �typial� element of P, perhaps in order to usethat as an appropriate belief instane. The key to atually do so is to view the interplay betweenNature and Observer as a game. The game should be a two-person zero-sum game with Natureand Observer �ghting over desription e�ort. Nature is a maximizer and Observer a minimizer.The available strategies for Nature are limited to truth instanes in the preparation P. Asfor Observer, we have hosen to take the set K of ontrols, rather than the set M of beliefinstanes as strategies. We �nd this most natural in view of the interpretations. If one wishes,a transformation of de�nitions and results to involve only belief instanes is possible, though attimes a bit awkward. In view of our fous on ontrols, we introdue a variant Ψ : M×K → [0,∞]of the sore funtion by agreeing that
Ψ(x,w) = Φ(x, w̌) . (24)A further onsequene of the hange of fous onerns divergene whih is better oneived as aredundany of e�ort orresponding to the given ontrol. Denoting redundany with R, we de�ne
R(x,w) = D(x, w̌) . (25)We use the notation γ(P) for the game de�ned above. The two values of the game are de�nedas usual, f. [6℄ or [7℄, for instane. The value seen from the point of view of Nature is
sup
x∈P

inf
w∈K

Ψ(x,w) . (26)



As the in�mum here is nothing but the entropy S(x), we �nd that the value given by (26) isthe maximum entropy value assoiated with P:
Smax(P) = sup

x∈P

S(x) . (27)As for the other value of the game, it is given by
inf
w∈K

sup
x∈P

Ψ(x,w) . (28)For every w ∈ K, the assoiated individual risk is de�ned by
Ri(w) = Ri(w|P) = sup

x∈P

Ψ(x,w) . (29)The minimal risk value assoiated with P is then de�ned as
Rimin(P) = inf

w∈K

Ri(w) , (30)i.e. as the value given by (28).Clearly, Smax(P) ≤ Rimin(P). This is the minimax inequality. If equality holds and de�nesa �nite quantity, the game is in game theoretial equilibrium or just in equilibrium. An optimalstrategy for Nature is the same as a truth instane in P with maximal entropy. An optimalstrategy for Observer is the same as a ontrol w with Ri(w) = Rimin.Another onept of equilibrium is related to robustness: A ontrol w∗ is robust if, for some
h ∈ R, Ψ(x,w∗) = h for all x ∈ P. The number h is the level of robustness. If Observer hoosesa robust strategy, the desription e�ort will be independent of whih strategy Nature has hosen.There is an important onnetion between the two onepts of equilibria:Theorem 3 (robustness and pythagorean inequalities). Assume that x∗ ∈ P and that w∗ = x̂∗is robust with robustness level h. Then γ(P) is in equilibrium with h as value. Furthermore, forany x ∈ P,

S(x) + R(x,w∗) ≤ Smax(P) (31)and, for every ontrol w,
Ri(w) ≥ Smax(P) + R(x∗, w) . (32)Proof. Though the argument is known and easy, f. Theorem 6.2 of [8℄, we present it here too.Firstly, by assumption, Ri(w∗) = h = Ψ(x∗, w∗) = S(x∗), hene the game is in equilibrium with

x∗ as optimal strategy for Nature and w∗ as optimal strategy for Observer.For any x ∈ P we �nd that S(x) ≤ S(x) + R(x,w∗) = Ψ(x,w∗) = h, i.e. (31) holds. And forany ontrol w, Ri(w) ≥ Ψ(x∗, w), hene (32) follows from the linking identity (7).Equation (31), in the form S(x) + D(x, x∗) ≤ Smax(P), is the pythagorean inequality goingbak to �enov [9℄ and Csiszár [10℄, and (32) is the reverse pythagorean inequality. From agame theoretial point of view, these inequalities are trivial onsequenes of Nash's saddle valueinequalities.



6. Exponential familiesWe shall develop a simple riterion whih failitates the identi�ation of situations of equilibriumand also failitates the searh for optimal strategies for both Nature and Observer. The �rstresult will help us understand why the level sets play a entral role. Atually, we �rst run intosub-level sets, de�ned by
P≤(w, h) = {x|Ψ(x,w) ≤ h} (33)Proposition 3. Consider a truth instane x∗ and a ontrol w∗. Then a neessary and su�ientondition that there exists a preparation P for whih the game γ(P) is in equilibrium and has x∗and w∗ as optimal strategies, is that h∗ = Ψ(x∗, w∗) < ∞ and that w∗ = x̂∗. And when theseonditions are ful�lled, the largest suh set is the sub-level set P≤(w∗, h∗).Proof. (Compare with [8℄, Theorem 8.2). If, for some P, γ(P) is in equilibrium with x∗ and w∗as optimal strategies then, by Nash's saddle value inequalities,

Ψ(x,w∗) ≤ Ψ(x∗, w∗) ≤ Ψ(x∗, w) (34)for every x ∈ P and every ontrol w. Furthermore, Ψ(x∗, w∗) is �nite. Let y∗ = w̌∗. Then, bythe right hand inequality of (34), and as Φ is a proper sore funtion, Φ(x∗, x∗) ≥ Φ(x∗, y∗) ≥
Φ(x∗, x∗), hene Φ(x∗, y∗) = Φ(x∗, x∗) and we onlude that y∗ = x∗. It follows that w∗ = x̂∗. Itonly remains to remark that the left hand inequality of (34) implies diretly that P ⊆ P≤(w∗, h∗)and the �rst part of the proof is omplete.For the seond half, assume that h∗ = Ψ(x∗, w∗) < ∞ and that w∗ = x̂∗. From the latterondition, the saddle value inequalities (34) are veri�ed for the preparation P≤(w∗, h∗) and then,using also the former ondition, equilibrium follows as well as optimality of the strategies x∗ and
w∗.The result points to a unique role for the sub-level sets. However, we hold the view that it isthe highest level whih is of relevane, and hene we stik to (intersetions of) level sets, ratherthan sub-level sets. Also, this will allow us to exploit results on robustness.These onsiderations lead to an expedient approah to the most ommon type of problemswithin statistial physis as well as many other branhes of siene where questions of entropyoptimization and equilibrium ome up. First, for a �nite set w = (w1, · · · , wn) of ontrols anda orresponding set of levels, h = (h1, · · · , hn), we put P(w,h) = ∩n

ν=1P(wν , hν) (if non-empty,this is a feasible preparation of genus at most n) and for w �xed, we denote by P(w) the familyof all feasible preparations of this form. The orresponding exponential family, denoted by Ê(w),is the set of ontrols ε whih are robust for all preparations in the family P(w). In terms of beliefinstanes, the exponential family is the family E(w) of all belief instanes ξ for whih ξ = ε̌ forsome ε ∈ E(w).From the de�nitions introdued and from Theorem 3 on robustness you �nd the followingsimple, but useful result:Theorem 4. Consider a family w = (w1, · · · , wn) of ontrols and the assoiated family P(w) ofpreparations. Let x∗ be a truth instane, ε∗ the orresponding ontrol (ε∗ = x̂∗) and assume that
ε∗ ∈ Ê(w). Put h = (h1, · · · , hn) with hν = Ψ(x∗, wν) for ν = 1, · · · , n. Then γ(P

(

w,h)
) is inequilibrium and has x∗ and w∗ as optimal strategies. In partiular, x∗ is the maximum entropydistribution for the preparation P(w,h).A simpli�ation ours in ase the world we onsider is one of the Tsallis worlds Vq = V(πq, κq)for a q > 0 as then one an identify ontrols in the exponential family. The reason is that inview of the linear harater of πq, we realize that every ontrol ε of the form α +

∑n
1

βνwν for



suitable onstants α and β1, · · · , βn is a member of Ě(w). Typially, for given β1, · · · , βn youadapt α to these numbers so that α +
∑n

1
βνwν is a genuine ontrol. This requires that

∑

i∈A

ρq

(

α + β1w1,i + · · · + βnwn,i

)

= 1 , (35)where ρq is the probability heker for κq, f. (23). Note that for the lassial ase q = 1, anextra simpli�ation is that, given the β's, α an be solved from this equation.7. DisussionThe present study has been preeeded by [11℄ and [12℄, and will, aording to plan, be followedby a more detailed publiation. However, it may well be that the present exposition is the idealstarting point for any reader who will embark on researh in the diretion taken. In partiular,we have made ertain simplifying assumptions and also, we have toned down the very abstratonsiderations and mainly stayed within more standard probabilisti modelling.The main result on the identi�ation of Tsallis entropy, Theorem 2, is derived based on theassumption that, �rstly, one should allow for an interation between truth, belief and knowledgeand, seondly, one should aept a rather innoent variational priniple, that optimal performaneis obtained when there is a perfet math between truth and belief. It should be emphasizedthat though these priniples ould, by some adversary, be viewed as axioms, they are intendedas key elements of an operational interpretation. Further studies may justify this view, possiblybased on a deeper insight into physis than here displayed. It is a bit disturbing to the authorthat, aording to previous studies (also reported in the reent monograph [2℄), Tsallis entropywith q negative is of importane for the disussion of ertain physial phenomena, whereas ourapproah does not really aept negative values of q.It is noted that our study is devoid of a dynamial dimension. The only impliit dynamialelement is the natural suession in time of truth, belief and knowledge (via experiments andobservations). Again, further researh is needed on this point.Another diretion of researh, whih should �t well into the pronouned philosophial basis,would be an extension to also over the quantum setting.The author has put great emphasis on the hoie of terminology. However, espeiallyonerning one issue, the proper naming of what here appears as sore funtions, there maywell be other attrative options. The term inauray, following Kerridge [13℄, did not appeal tothe author, e�ort funtion hits better the intended interpretation and is kept �in reserve� whereasomplexity is overloaded and desription funtion or similar is �ne for the lassial setting, butwith no lari�ation of an eventual role of more physial desription (or oding) outside thelassial ase, it would appear a bit premature. Finally, sore funtion and proper sore funtionwere hosen as these notions appear in statistial deision theory and has a long history whihan be traed from Csiszár, [14℄. There, and in works referred to, one will also �nd what we havetermed the Perfet Math Priniple. One disadvantage with the term �sore� is that it gives theimpression of something attrative seen with Observers eyes, quite opposite to what is the ase.Of ourse, one ould say that a high sore is attrative when seen with the eyes of Nature if youfollow the game theoretial line of thought. Or one ould say that when Observer has aquiredknowledge, the sore an be taken as a quantitative measure of the information gained. Thesituation is similar to the one onerning the appearane of both entropy and �negentropy� inertain texts. Without iting extensively from the literature on sore funtions, we point to [15℄by Good, mainly beause there we found the view that belief is a tendeny to at, a view whih�ts niely into the philosophy here adopted. As a �nal omment, note that when restrited to



the lassial setting, the onsideration of proper soring funtions gives an elegant introdutionto Shannon entropy whih is more desriptive than axiomati, we �nd, and whih provides anattrative supplement to the more ommon approahes via oding.As already indiated, further researh on the fundamental nature of the quantitiesharaterized is muh desired. This also onerns a more omplete interpretation of desriptorsoutside the lassial ase. In this onnetion, [16℄, [17℄ and referenes there as well as [18℄ maybe relevant.Regarding the, admittedly, rather brief treatment of maximum entropy optimization in Setion6, note that this does not rely on the introdution of Lagrange multipliers, but uses a more diretapproah in line with [19℄. Also note that the usual introdution of partition funtions does not,apparently, generalize in an adequate way when we study generalized entropies. In ontrast, thelog-partition funtion does generalize in a natural way, viz. as the solution α to (35).Further onrete results on proper soring funtions may be developed by going outside theprobabilisti setting, say by onsidering more general real valued funtions than distributionsand other onrete generalized meanvalues than the two hosen here, the arithmeti- and thegeometri meanvalues.The onnetion (duality) between feasible preparations and exponential families might �twell into geometri ideas as developed by Amari and his shool, f. [20℄. Other possibilitiesto apply duality onsiderations are rather obvious, but not developed here. In this onnetion,a somewhat di�erent and purely axiomati approah developed in a preliminary setting in [21℄should also be of relevane.The untraditional approah in Setion 6 to the muh studied notion of exponential familiesis emphasized. It appears to be natural with referene to reasonably sound interpretations (viaontrols et.) and also, the approah applies in other ontexts than probabilisti ones, e.g.related to geometry (an appliation to Sylvesters problem of loation theory is brie�y indiatedin [22℄). The key role of game theory is evident. To the author, it is surprising that general andrather simple results as developed by Nash are so powerful � beyond what many researhers havepresently realized, it seems. For the lassial ase, the game theoretial approah was studiedin [8℄. From that referene, we point to the disussion after Corollary 4.2 and to the importantTheorem 6.9 whih shows that no opportunities are missed when fousing on robustness as isdone in our de�nition of exponential families.For other works whih emphasize the role of exponential families for statistial physis, seeNaudts, [23℄ and [24℄. These works have some similarity with the present approah.Finally, some omments on the appearane of Tsallis entropy. The �rst publiations areHavrda and Charvát [25℄ and, independently, Darózy [26℄. The latter author emphasized aharaterization via funtional equations, f. also [27℄ and the more reent referene work [28℄.The �rst appearane in the physial literature is due to Lindhard and Nielsen [29℄. Subsequently,Lindhard gave a areful treatment of aspets of the measuring proess, f. [30℄, whih may alsobe of relevane to our treatment. The trend-setting publiation [1℄ from 1988 by Tsallis marksthe e�ient introdution of the generalized entropies within the physial ommunity. At thetime of publiation, Tsallis was unaware of the earlier researh. Regarding [29℄ and [30℄, thesepapers were largely ignored, though there is a asual referene to Lindhard's work in [31℄.The suess of Tsallis in launhing the entropy measures whih now bear his name is due tothe diret approah and the fat that when ombined with Jaynes Maximum Entropy Priniple,f. [32℄, main problems of statistial physis lead to power laws, a popular lass of distributionswhen heavy-tailed distributions are needed.The present approah is in line with earlier game theoretial onsiderations, f. [19℄. Beauseof a relation to Bregman divergenes, we also point the reader to [23℄ and works referred to there.



AknowledgmentsBjarne Andresen introdued me to Tsallis entropy, Imre Csiszár provided hints to the literatureon sore funtions and Stig Stenstrup pointed me to the works by Lindhard and Nielsen. Interestand disussions with Jan Naudts, Hiroki Suyari and Constantino Tsallis before and during theworkshop in Kyoto on generalized entropies is gratefully aknowledged, as are omments, mainlyon terminology and philosophy, from Peter Harremoës and Nisheeth Srivastava.Referenes[1℄ Tsallis, C. Possible generalization of Boltzmann-Gibbs statistis. J. Stat. Physis 1988, 52, 479�487.[2℄ Tsallis, C. Introdution to Nonextensive Statistial Mehanis. Springer, Berlin Heidelberg, 2009.[3℄ Wikipedia ontributers. Bayesian probability 2009.[4℄ Hardy, G. H.; Littlewood, J. E.; Pólya, G. Inequalities. Cambridge University Press, seond edition Ed.,1959.[5℄ Tsallis, C. What are the numbers that experiments provide? Quimia Nova 1994, 17, 468.[6℄ Aubin, J. P. Optima and equilibria. An introdution to nonlinear analysis. Springer, Berlin, 1993.[7℄ Cesa-Bianhi, N.; Lugosi, G. Predition, learning and games. Cambridge University Press, Cambridge, 2006.[8℄ Harremoës, P.; Topsøe, F. Maximum entropy fundamentals. Entropy(Sept. 2001), 3, 191�226.[9℄ �enov, N. N. Statistial Deision Rules and Optimal Inferene. Nauka, Mosow, 1972. In russian,translation in "Translations of Mathematial Monographs", 53. AmerianMathematial Soiety, 1982.[10℄ Csiszár, I. I-divergene geometry of probability distributions and minimization problems. Ann. Probab.1975, 3, 146�158.[11℄ Topsøe, F. Truth, Belief and Experiene � a route to Information. Journal of Contemporary MathematialAnalysis � Armen. Aad. Sien. 2009, 44, 105�110.[12℄ Topsøe, F. On truth, belief and knowledge. In 2009 IEEE International Symposium on Information Theory.IEEE, Washington, (June 2009), pp. 139�143.[13℄ Kerridge, D. F. Inauray and inferene. J. Roy. Stat. So. B. 1961, 23, 184�194.[14℄ Csiszár, I. Axiomati Charaterizations of Information Measures. Entropy 2008, 10, 261�273.[15℄ Good, I. J. Rationel deisions. J. Royal Statist. So., Series B 1952, 14, 107�114.[16℄ van der Lubbe, J. C. A. On ertain oding theorems for the information of order α and oftypeβ. InTrans. Eighth Prague Conf. on Inform. Theory, Statist. Deision Funtions,RandomProesses. Czeh.Aad. Siene, Aademia Publ., Prague, 1978. Prague, 1979.[17℄ Ahlswede, R. Identi�ation Entropy, In General Theory of Information Transfer and Combinatoris; LetureNotes in Computer Siene, 4123, 595�613. Springer, Berlin, 2006.[18℄ Suyari, H. Tsallis entropy as a lower bound of average desription length for the q-generalized ode tree. InProeedings ISIT 2007. IEEE, 2007, pp. 901�905.[19℄ Topsøe, F. Exponential Families and MaxEnt Calulations for Entropy Measures of Statistial Physis. InComplexity, Metastability, and Non-Extensivity, CTNEXT07; Abe, Hermann, Q. R. T., Ed., 2007, Vol.965, AIP Conferene Proeedings, pp. 104�113.[20℄ Amari, S.; Nagaoka, H. Methods of Information Geometry, Vol. 191, Translations of Mathematialmonographs. Oxford University Press, 2000.[21℄ Topsøe, F. Game Theoretial Optimization inspired by Information Theory. J. Global Optim. 2009, pp.553�564.[22℄ Topsøe, F. Intrinsi Methods for Optimization Problems. In 2008 IEEE International Symposium onInformation Theory. IEEE, Washington, (July 2008), pp. 1627�1630.[23℄ Naudts, J. Generalised exponential families and assoiated entropy funtions. Entropy 2008, 10, 131�149.[24℄ Naudts, J. The q-exponential family in statistial physis. Cent. Eur. J. Phys. 2009, 7, 405�413.[25℄ Havrda, J.; Charvát, F. Quanti�ation method of lassi�ation proesses. Conept of strutural a-entropy.Kybernetika 1967, 3, 30�35.[26℄ Darózy, Z. Generalized Information Funtions. Information and Control 1970, 16, 36�51.[27℄ Azél, J.; Darózy, Z. On measures of information and their haraterizations. Aademi Press, New York,1975.[28℄ B. Ebanks, P. S.; Sander, W. Charaterizations of Information Measures. World Sienti�, Singapore, 1998.[29℄ Lindhard, J.; Nielsen, V. Studies in Statistial Dynamis. Mat. Fys. Medd. Dan. Vid. Selsk. 1971, 38, 1�42.[30℄ Lindhard, J. On the Theory of Measurement and its Consequenes in Statistial Dynamis. Mat. Fys. Medd.Dan. Vid. Selsk. 1974, 39, 1�39.[31℄ Jaynes, E. T. Where do we Stand on Maximum Entropy?, In The Maximum Entrropy Formalism; Levine,R.; Tribus, M., Eds., pp. 1�104. M.I.T. Press, Cambridge, MA, 1979.[32℄ Jaynes, E. T. Information theory and statistial mehanis, I and II. Physial Reviews 1957, 106 and108, 620�630 and 171�190.


