
Towards operational interpretations of generalizedentropiesFlemming TopsøeUniversity of Copenhagen, Department of Mathemati
al S
ien
es, Universitetsparken 5, 2100Copenhagen, DenmarkE-mail: topsoe�math.ku.dkAbstra
t. The driving for
e behind our study has been to over
ome the di�
ulties youen
ounter when you try to extend the 
lear and 
onvin
ing operational interpretations of
lassi
al Boltzmann-Gibbs-Shannon entropy to other notions, espe
ially to generalized entropiesas proposed by Tsallis. Our approa
h is philosophi
al, based on spe
ulations regardingthe interplay between truth, belief and knowledge. The main result demonstrates that,a

epting philosophi
ally motivated assumptions, the only possible measures of entropy arethose suggested by Tsallis � whi
h, as we know, in
lude 
lassi
al entropy. This result 
onstitutes,so it seems, a more transparent interpretation of entropy than previously available. However,further resear
h to 
larify the assumptions is still needed. Our study points to the thesis thatone should never 
onsider the notion of entropy in isolation � in order to enable a ri
h andte
hni
ally smooth study, further 
on
epts, su
h as divergen
e, s
ore fun
tions and des
riptorsor 
ontrols should be in
luded in the dis
ussion. This will 
larify the distin
tion between Natureand Observer and fa
ilitate a game theoreti
al dis
ussion. The usefulness of this distin
tionand the subsequent exploitation of game theoreti
al results � su
h as those 
onne
ted with thenotion of Nash equilibrium � is demonstrated by a dis
ussion of theMaximum Entropy Prin
iple.1. Introdu
tionOur aim is to provide transparent operational interpretations of generalized notions of entropy,espe
ially of Tsallis entropy, 
f. [1℄ and [2℄. Our approa
h depends on abstra
t, philosophi
al
onsiderations 
entred around notions of truth, belief and knowledge and their possible interplay.In Se
tion 2 we introdu
e the main abstra
t notions. They are not ne
essarily tied to probabilisti

onsiderations. However, for the present exposition, we tone down a bit the very abstra
tdis
ussion.In Se
tion 3, we introdu
e the probabilisti
 models we shall work with. We only 
onsiderdis
rete models. For these models, we identify the most natural or a

eptable forms of interplaybetween truth, belief and knowledge. Key notions are related to intera
tion and des
ription.Quantitative reasoning is enabled by the introdu
tion of s
ore fun
tions. This type of fun
tionis known from statisti
al de
ision theory. Here, it determines the e�ort needed by an observer inorder to gain knowledge. A variational prin
iple is introdu
ed whi
h is related to the fundamentalinequality of information theory. The notions introdu
ed are needed for the formulation oftwo main results, Theorems 1 and 2. In parti
ular, Theorem 2 is presented as an operationalinterpretation of Tsallis entropy. It singles out Tsallis entropy among other possibilities and may



thus be taken to support the view that these notions o

upy a unique position in statisti
alphysi
s.In Se
tion 4 we introdu
e 
on
epts 
losely related to experiments and observation. The furtherstudy depends on game theoreti
al 
onsiderations and this is taken up in Se
tion 5. Two notionsof equilibrium are introdu
ed and their relation is established in Theorem 3. This result also
ontains the pythagorean inequalities, well known and 
elebrated results from information theory.Se
tion 6 introdu
es exponential families and Theorem 4 establishes their relevan
e for the easydetermination of equilibrium and optimal strategies, in parti
ular maximum entropy distributionsin 
ases where the models studied are given by what we 
all feasible preparations.Se
tion 7, the �nal se
tion, 
ontains a dis
ussion of various points related to the text with aview also to desirable further resear
h.Throughout the study, we have emphasized the underlying ideas and though a fair numberof proofs are given, we have introdu
ed 
ertain simpli�
ations and tried to avoid mathemati
alsubtleties.2. Abstra
t philosophi
al 
onsiderationsThe whole is the world. We shall 
onsider situations from the world whi
h involve Nature,without a mind but holder of truth, and Observer, seeking the truth but restri
ted to belief. In
ontrast to Nature, Observer has a 
ons
ious and 
reative mind whi
h 
an be exploited to obtainknowledge as e�ortlessly as possible.By x we denote a generi
 truth instan
e asso
iated with a spe
i�
 situation. We imagine thatNature has �
hosen� this instan
e from a 
ertain set M. To simplify notationally, we shall notexpress any dependen
y of M on the situation. This is justi�ed by the fa
t that for the presentstudy only one situation will be 
onsidered at a time. The set M is the set of possible truthinstan
es.In any situation, Observer spe
ulates over what Nature is up to, and Observer expresses hisbelief in the form of an assignment of a belief instan
e, typi
ally denoted by y, to the situation.To simplify, we assume that the belief instan
e is also 
hosen from M.Observers 
hoi
e of belief instan
e in any spe
i�
 situation is 
onsidered a subje
tive 
hoi
etaking available information into a

ount su
h as general insight and any spe
i�
 prior knowledge.These thoughts agree with Bayesian thinking, and as su
h are subje
t to standard 
riti
ism whi
happlies to this line of thought, 
f. [3℄.Observer a
ts by designing experiments and by making subsequent observations. We shalllater return in more detail to this aspe
t. For now we note that the result of observations 
anbe more or less informative, ranging from initial and very limited experien
e to a �nal more
on
lusive stage. It is the �nal stage we have in mind. We refer to it as knowledge and think ofit as the synthesis of extensive experien
e.The end result of Observers endeavours in any parti
ular situation is a knowledge instan
e,typi
ally denoted by z. We reserve the letter F for the set of knowledge instan
es. We assumethat M ⊆ F. Often, F = M will hold.The 
onne
tion to extensive experien
e is just one side of �knowledge�. We may also viewknowledge as the way the World presents truth to Observer in any given situation and, therefore,as the way Observer per
eives the situation. We assume that knowledge is a fun
tion whi
hdepends on the situation through the already introdu
ed notions of truth- and belief instan
es.Formally, we shall operate with a fun
tion Π : M × M → F, and interpret z = Π(x, y) as theknowledge instan
e in a situation with x as truth instan
e and y as belief instan
e. We 
all Πthe intera
tor, sometimes the global intera
tor in order to distinguish it from a related 
on
eptto be introdu
ed later. Two worlds with the same intera
tor are identi�ed, thus 
on
eived as thesame world. We use WΠ to denote the world with intera
tor Π.



x ∈ MNATURE y ∈ M z ∈ FOBSERVERexperimentobservationsΠ THE WORLDFigure 1. Some key elements of the philosophi
al 
onsiderationsThe 
lassi
al world, W1, is 
hara
terized by the intera
tor Π1 given by
Π1(x, y) = x . (1)This is the world of observable truth or, expressed somewhat di�erently, a world where truth islearnable. As another extreme, 
onsider W0, 
on
eived as a bla
k hole and 
hara
terized by theintera
tor Π0 given by
Π0(x, y) = y . (2)In this world, no matter what Observer does, he will only see a mirror image of himself � it isa world of total nar
issism, what you see is what you believe. By 
ontrast, in a 
lassi
al world,what you see is what is true.We also 
onsider mixtures of the two worlds identi�ed above. For this to make sense, weassume that M is embedded in a linear spa
e. Then, to ea
h q ∈ R, we may 
onsider the world
hara
terized by the intera
tor Πq de�ned by

Πq(x, y) = qx + (1 − q)y . (3)The worlds de�ned in this way are the Tsallis worlds, denoted Wq.All worlds whi
h we will 
onsider will be sound in the sense that Π(x, y) = x provided thereis a perfe
t mat
h (belief mat
hes truth), i.e. provided y = x.In order to enable quantitative reasoning, we introdu
e fun
tions whi
h determine the e�ortneeded by Observer in order to a
quire knowledge. For reasons dis
ussed in Se
tion 7, thesefun
tions are 
alled s
ore fun
tions. In prin
iple, any fun
tion Φ : M × M → [0,∞] 
ould bea s
ore fun
tion 1. Of 
ourse, in order for the intended interpretation to make sense, Φ shouldbe de�ned in some meaningful way pertaining to the spe
ial world and the spe
ial situation
onsidered. Only then 
an Φ(x, y) be taken to represent the ne
essary e�ort needed by Observerin order to gain the knowledge z = Π(x, y) in a situation with truth-instan
e x and belief-instan
e y. We 
laim that the appropriate sele
tion of a s
ore fun
tion will depend on tools of�des
ription� available to Observer. This view will be
ome more 
lear when, in the next se
tion,we turn to probabilisti
 modelling.We imagine that Observer has many sensible s
ore fun
tions to 
hoose from. Of parti
ularinterest are proper s
ore fun
tions whi
h are s
ore fun
tions whi
h satisfy the inequality
Φ(x, y) ≥ Φ(x, x) (4)

1 negative values 
ould be allowed and would be 
onvenient for 
ertain wider studies, espe
ially for enabling asmooth treatment of Kullba
k's minimum information dis
rimination prin
iple.



for any (x, y) ∈ M×M and for whi
h equality in (4) only holds in 
ase of a perfe
t mat
h (y = x).The implied variational prin
iple, viz. for Observer to 
hoose, whenever possible, a proper s
orefun
tion among the available s
ore fun
tions, we refer to as the Perfe
t Mat
h Prin
iple (PMP).We may allow singular 
ases of PMP for whi
h equality in (4) 
an take pla
e in other 
ases thanthe perfe
t mat
h 
ase y = x. We shall always emphasize if su
h singular 
ases are allowed.The signi�
an
e of proper s
ore fun
tions 
an be illuminated by the following 
onsiderationsfor whi
h we 
hange a bit the role of Nature. What we shall imagine is that Nature 
an
ommuni
ate with Observer. Then we talk of an expert (by the name �Expert�) rather thanNature. Consider some situation and assume that Observer seeks the advi
e of Expert. Expertsbest advi
e is x. However, for dubious reasons, Expert may be tempted to give an advi
e y whi
hdi�ers from x. With the ongoing 
risis in world e
onomy in mind, you may think of a bank advisorand a situation involving investment planning. With a

ess to a proper s
ore fun
tion, Observer
an enter into a 
ontra
t with Expert whi
h will en
ourage Expert to be honest, i.e. to give theadvi
e re�e
ting a perfe
t mat
h, y = x. The 
ontra
t may be formulated as an agreement forObserver to pay a one-and-for-all sum on signing the 
ontra
t supplied with a kind of insuran
es
heme a

ording to whi
h Expert must pay a penalty in the amount of Φ(x, y) as soon as thetrue nature of Experts insight, in the form of x, will be revealed to Observer. Clearly, when Φ isa proper s
ore fun
tion, it is in Experts own interest to be honest, i.e. to give the advi
e y = x,as this will minimize the penalty to be payed to Observer. Considerations of this nature emergedin statisti
al studies as detailed in Se
tion 7.Essential for our analysis are the two 
on
epts, intera
tion (given by Π) and s
ore or e�ort(given by Φ). When we work in a world VΠ and Observer has 
hosen the s
ore fun
tion Φ, theresulting model is denoted V(Π,Φ). Consider su
h a model and assume that Φ is a proper s
orefun
tion. We may then introdu
e the important notions entropy and divergen
e, here denoted bythe letters S and D. Entropy relates to a possible truth instan
e x, whereas divergen
e relatesto a situation 
hara
terized by a pair (x, y) of asso
iated truth- and belief instan
es:
S(x) = Φ(x, x) (5)

D(x, y) = Φ(x, y) − S(x) . (6)Thus, 
on
eiving Φ as e�ort, entropy is minimal e�ort and divergen
e is ex
ess or redundante�ort. Though in�nite values are 
on
eivable, we ignore this problem and simply assume that D
an be de�ned so that D(x, y) = 0 if and only if y = x and so that the linking identity
Φ(x, y) = S(x) + D(x, y) (7)always holds.Note that the notions introdu
ed require a proper s
ore fun
tion and that entropy is a derivedquantity. In 
onsisten
y with this observation, the thesis that entropy should never be 
onsideredas an isolated quantity seems to represent a sound and fruitful guiding prin
iple.The fa
t that D(x, y) ≥ 0 with equality if and only if there is a perfe
t mat
h is the fundamentalinequality of information theory (FI), here with information theory understood in a rather generalabstra
t sense.3. Probabilisti
 modellingFor our probabilisti
 modelling, situations are related to a dis
rete alphabet A and the set ofpossible truth instan
es is taken to be the set of probability distributions over A, in symbols

M = M1
+(A). A typi
al truth instan
e is given by the point probabilities: x =

(

xi

)

i∈A
, thus the

xi's are non-negative numbers adding to 1. Similarly, a belief instan
e is a probability distribution



y =
(

yi

)

i∈A
∈ M

2. For a knowledge instan
e z =
(

zi

)

i∈A
we only require that the zi's are wellde�ned real numbers.We assume that the intera
tors to be 
onsidered a
t lo
ally, i.e., for some fun
tion π de�nedon [0, 1] × [0, 1],

Π(x, y) =
(

π(xi.yi)
)

i∈A

.The fun
tion π is the lo
al intera
tor or just the intera
tor. In order to ensure that the
orresponding global intera
tor is sound, we assume that π is sound, i.e. that π(s, s) = sfor all 0 ≤ s ≤ 1. We also assume that suitable regularity 
onditions are ful�lled, say 
ontinuityand 
ontinuous di�erentiability in the interior domain and, further, that π assumes �nite values,ex
ept possibly for 
ases with π(s, t) = ∞ when t = 0 < s.For the probabilisti
 models, the world de�ned by π is denoted Vπ. The primary example isthe q-intera
tor πq given by
πq(s, t) = qs + (1 − q)t . (8)We put Vq = Vπq

. The worlds de�ned in this way are the Tsallis worlds in the probabilisti
setting.The equation (8) expresses a linear (or a�ne) relationship among probabilities. It is a formof dire
t linearity. It is 
on
eivable that, instead, physi
al 
ir
umstan
es di
tate that a linearrelationship only applies to 
ertain fun
tion values applied to point probabilities. This points tointera
tors π
ξ
q of the form

πξ
q(s, t) = ξ−1

(

πq

(

ξ(s), ξ(t)
)

)

. (9)For this we require that the fun
tion ξ is a smooth stri
tly in
reasing fun
tion on [0, 1]. Whenwe work with one of these intera
tors, we speak about ξ-linearity and the asso
iated worlds aredenoted Vξ
q . In mathemati
al terms, the intera
tors π

ξ
q are generalized meanvalues; for a 
lassi
alreferen
e, see [4℄.Of 
ourse, for q = 1 or q = 0 nothing new is obtained in this way. But for other values of

q, interesting intera
tors emerge. For instan
e, with ξ(s) = ln s we �nd that π
ξ
q determines thegeometri
 average (s, t) 7→ sqt1−q. We write this intera
tor as πG

q and the asso
iated world as
VG

q (G for �geometri
�), whereas πq may be written as πA
q and Vq as VA

q (A for �arithmeti
�).Con
erning the value of q, the �
leanest� results are obtained for 0 < q ≤ 1, but also values
q > 1 are of interest. We �nd negative values of q less interesting for reasons given in Theorem2. An intera
tor π is weakly 
onsistent if ∑

i∈A
zi = 1 for every pair (x, y) ∈ M × M with

z = π(x, y). If even z ∈ M 
an be 
on
luded, the intera
tor is strongly 
onsistent.Proposition 1. The only worlds Vπ with a weakly 
onsistent intera
tor π are the Tsallis worlds
Vq for some real value of q, and only for 0 ≤ q ≤ 1 do we obtain a world with a strongly 
onsistentintera
tor.The proof follows a standard pattern and is not given here.We turn to a 
loser investigation of worlds Vπ with the spe
i�
ation of an asso
iated s
orefun
tion. The �rst thing to do is to agree on what the sensible s
ore fun
tions for Vπ are. Justas for the global intera
tor, they should a
t lo
ally. Therefore, the key question is what the�lo
al s
ore� asso
iated with a basi
 event whi
h has true probability s and believed probability
t should be. For this we note that π(s, t) is the �for
e� by whi
h the basi
 event is per
eived
2 Finer modelling will allow that the set of available belief instan
es is di�erent from M, or even depends on thea
tual truth instan
e; an example of this is to allow that y is an in
omplete distribution (P yi < 1) and to insistthat y ≻ x i.e. that xi > 0 ⇒ yi > 0.



by Observer. Then we have to 
onsider what e�ort Observer should atta
h to the basi
 event.As Observer does not know s, this 
an only depend on Observers own belief, represented by
t. Thus, for some fun
tion κ, Observer should atta
h the e�ort κ(t) to a single o

urren
e ofthe basi
 event. This should be multiplied by the per
eived for
e. We 
on
lude that the lo
al
ontribution to the s
ore fun
tion should be π(s, t)κ(t). Based on su
h more or less � more,hopefully � 
onvin
ing intuitive ideas, we agree that every a

eptable s
ore fun
tion is of theform

Φ(x, y) =
∑

i∈A

π(xi, yi)κ(yi) (10)with κ some fun
tion de�ned on [0, 1]. The fun
tion κ is the des
riptor and we say that κgenerates Φ. We may interpret κ as the 
ost of information, viz. κ(t) is the pri
e Observeris willing to pay or, in other words, the e�ort (energy) Observer is willing to allo
ate in orderto obtain the information 
arried by an event with (believed) probability t. We also refer to
κ(t) as the des
ription 
ost allo
ated to a probability-t event, though, for non-
lassi
al worlds,we are not able to suggest 
on
rete methods of des
ription � su
h as those based on 
oding �whi
h 
ould be relevant in this respe
t. Observe that the s
ore Φ(x, y) is the per
eived average
ost of des
ription or, as the a
quisition of knowledge or information is 
on
erned, the per
eivedaverage 
ost of information. The 
orresponding true average 
ost, whi
h is the average allo
ationof des
ription e�ort by Observer but seen from the point of view of Nature, is

Φtrue(x, y) =
∑

i∈A

xiκ(yi) . (11)On the te
hni
al side we impose the following 
onditions on a des
riptor: κ(1) = 0, κ is
ontinuous on [0, 1], �nite on ]0, 1], 
ontinuously di�erentiable on ]0, 1] and, �nally, we imposea 
ondition of normalization, viz. that κ′(1) = −1. The last 
ondition 
orresponds to a 
hoi
eof unit. The 
hoi
e made gives natural units, nats. Had we, instead, imposed the 
ondition
κ′(1) = ln 1

2
, we would have obtained binary units, bits. We �nd that 1 nat ≈ 1.4427 bits.The des
riptor only determines the s
ore fun
tion when the intera
tor is known. Thus, in(10), we may write Φ(x, y|π, κ) or similar for 
lari�
ation. Normally, π and κ will be understoodfrom the 
ontext and we may drop these letters from the notation. To spe
ify that we work inthe world with intera
tor π and 
onsider the s
ore fun
tion generated by π and the des
riptor

κ, we refer to this setting as V(π, κ).Consider V(π, κ) and assume that the asso
iated s
ore fun
tion is proper. Entropy anddivergen
e are then obtained from (5) and (6). We �nd:
S(x) =

∑

i∈A

xiκ(xi) , (12)
D(x, y) =

∑

i∈A

(

π(xi, yi)κ(yi) − xiκ(xi)
) (13)

=
∑

i∈A

δ(xi, yi) , (14)where δ denotes a spe
ial fun
tion, the divergen
e generator whi
h is de�ned by
δ(s, t) =

(

π(s, t)κ(t) + t
)

−
(

sκ(s) + s
)

. (15)Clearly, entropy as de�ned by (12) is a well de�ned, possibly in�nite quantity. The fa
t thatalso the two formulas for divergen
e give well de�ned quantities is not immediately obvious.In fa
t this follows in a quite fundamental way, alas depending on a as yet unsolved te
hni
alproblem. Thus we 
an only formulate as a 
onje
ture the following statement:



Conje
ture 1. For V(π, κ), the s
ore fun
tion de�ned by π and κ is a proper s
ore fun
tion ifand only if δ(s, t) ≥ 0 for every (s, t) ∈ [0, 1] × [0, 1] with equality only for t = s.The inequality δ ≥ 0 (with equality only as stated) we refer to as the pointwise fundamentalinequality (PFI). Clearly, it implies the fundamental inequality (FI) and thus the propernessof the asso
iated s
ore fun
tion. In pra
ti
e, PFI is a mu
h simpler inequality to verify thanFI atta
ked dire
tly. The missing proof of the �only if� part of the 
onje
ture has no pra
ti
al
onsequen
es as all 
on
rete positive results we need are proved via PFI.It remains to investigate if the des
riptor 
an be adapted to the intera
tor in a way so that aproper s
ore fun
tion emerges. To answer this question, we shall need the fun
tion χ de�ned by
χ(t) =

∂π

∂t
(t, t) (16)(so χ is the partial derivative of π(s, t) in dire
tion of t, evaluated at the diagonal s = t).Theorem 1. Let π be an intera
tor and assume that χ de�ned by (16) is bounded in the vi
inityof 1. Then, there exists at most one des
riptor κ whi
h generates a proper s
ore fun
tion forthe world Vπ. Indeed, if κ is su
h a des
riptor, κ must be the unique solution to the di�erentialequation

tκ′(t) + χ(t)κ(t) + 1 = 0 (17)whi
h satis�es the 
ondition κ(1) = 0.Proof. Assume that the s
ore fun
tion asso
iated with the des
riptor κ is proper. For 0 < t < 1put
f(t) = tκ′(t) + χ(t)κ(t) .Consider a probability ve
tor x = (x1, x2, x3) with positive point probabilities. Then the fun
tion

F given by
F (y) = F (y1, y2, y3) =

3
∑

i=1

π(xi, yi)κ(yi)assumes its minimal value for the interior point y = x when restri
ted to probability distributions.As standard regularity 
onditions are ful�lled, there exists a Lagrange multiplier λ su
h that
∂

∂yi

(

F (y) − λ

3
∑

i=1

yi

)

= 0 for i = 1, 2, 3when y = x. This shows that f(x1) = f(x2) = f(x3).Using this, �rst with (x1, x2, x3) = (1

2
, x, 1

2
− x) for a value of x in ]0, 1

2
[, and then with

(x1, x2, x3) = (x, 1

2
(1−x), 1

2
(1−x)), one is soon led to the 
on
lusion that f is 
onstant on ]0, 1[.In view of the boundedness 
ondition on χ whi
h is ta
itly assumed (weaker 
onditions will do),the 
onstant must be −1 and the result follows.We refer to the one and only possible des
riptor whi
h 
ould generate a proper s
ore fun
tionfor Vπ as the basi
 
andidate and denote it by κ[π]. As the boundedness 
ondition imposed on

χ in Theorem 1 is very weak (perhaps even super�uous), the theorem may be stated brie�y bysaying that the basi
 
andidate is uniquely de�ned, given the intera
tor. The result supportsthe 
onje
ture. Indeed, if κ generates a proper s
ore fun
tion, we may introdu
e, for ea
h s, thefun
tion fs de�ned by fs(t) = π(s, t)κ(t)+ t and then note that by (17), ea
h fs has a stationarypoint at t = s. As, for every (x, y) ∈ M × M,
∑

i∈A

fxi
(yi) ≥

∑

i∈A

fxi
(xi) ,



it appears plausible that the stationary points of the fun
tions fs are all minimal points, andthis will imply that the 
onje
ture holds.The 
onje
ture and its relation to PFI tempts us to de�ne an adjusted notion of the totaldes
ription e�ort, denoted by Φ̃: Φ̃(x, y) =
∑

i∈A

(

π(xi, yi)κ(yi) + yi

)

. The added terms in thesummands, the yi's, are interpreted as the 
ontributions to the total overhead stemming from therespe
tive basi
 events. Here, �overhead� is related to whatever a
tion, typi
ally observations ofan experiment, is involved for Observer in order to a
quire the knowledge z = Π(x, y). The totaloverhead in any situation is ∑

yi = 1. In other words, the normalization 
ondition κ′(1) = −1
orresponds to 
hoosing the overhead 
ost as the unit to work with. Adjusting also the entropyfun
tion, one �nds that adjusted entropy is always bounded below by the overhead 
ost, 1 nat.One should of 
ourse respe
t the fa
t that Theorem 1 only provides a 
andidate for a wellbehaved des
riptor. In ea
h 
ase one has to 
he
k if this 
andidate really provides a des
riptorwhi
h generates a proper s
ore fun
tion. When this is the 
ase, κ = κ[π] is the ideal des
riptorasso
iated with π and we will typi
ally assume that we work with this des
riptor when the world
Vπ is 
onsidered. Notationally we shall write V(π) rather than V(π, κ) to indi
ate this.In 
ase of the Tsallis worlds, the determination of the basi
 
andidate as well as the ne
essary
he
king whether or not it is ideal is straight forward and leads us to a main result. Beforestating it, we �nd it 
onvenient, following Tsallis [5℄, to introdu
e the deformed logarithms lnq.For q ∈ R, they are de�ned by

lnq t =

{

ln t if q = 1
1

1−q

(

t1−q − 1
) otherwise .

(18)Theorem 2. Consider one of the worlds Vq. If q < 0, no des
riptor de�nes a proper s
orefun
tion for Vq. If q ≥ 0, there exists a unique des
riptor whi
h de�nes a proper s
ore fun
tionfor Vq, viz. the des
riptor κq given by
κq(y) = lnq

1

y
. (19)All worlds V(πq, κq) with q > 0 are regular, whereas the world V(π0, κ0), a bla
k hole, is singular,in fa
t divergen
e vanishes identi
ally in this 
ase.Proof. The fun
tion χ from Theorem 1 is the 
onstant fun
tion 1 − q. Solving (17), you �ndthat κ[πq] is given by (19). From simple examples, one �nds that for q < 0, the perfe
t mat
hprin
iple does not hold with this des
riptor.It remains to 
onsider values q ≥ 0. The 
ases q = 0 and q = 1 are left to the reader. For theremaining 
ases, 
onsider the divergen
e generator

δq(s, t) =
q

1 − q
stq−1 + tq −

1

1 − q
sq . (20)An appli
ation of the geometri
-arithmeti
 mean inequality shows that PFI holds (
onsider the
ases 0 < q < 1 and q > 1 separately and 
olle
t the two positive terms).Appropriate expli
it formulas for s
ore or e�ort (Φq), entropy (Sq), and divergen
e (Dq) in theTsallis worlds are easily derived from (10), (12)-(14) and (18)-(20). By Theorem 2, only 
aseswith q > 0 yields ideal, non-singular des
riptors, hen
e also proper s
ore fun
tions.By Theorem 1, you are led in a unique way from an intera
tor to a des
riptor. A naturalquestion arises, that is, if the 
onverse is also true. It is not. Thus, one 
annot in general knowwhi
h world you operate in, i.e. know the intera
tor, if one only knows the des
riptor. Even ifthe des
riptor is ideal, the world 
annot be determined. Con
rete illustrations of this fa
t areprovided by the following result:



Proposition 2. For q > 0, VA
q and VG

q both have κq given by (19) as ideal des
riptor.We leave the proof to the reader, only noting that for q > 1, the fa
t that κq is the idealdes
riptor for VG
q is a weaker statement than the similar statement � 
ontained in Theorem 2 �for VA

q as then πG
q ≥ πA

q . For 0 < q < 1, the statement is stronger as then πG
q ≤ πA

q . Therefore,the statement requires a proof whi
h is in fa
t easy to a

omplish.As a 
onsequen
e of our observation note the following: If we only fo
us on entropy Sq, andthis only needs the des
riptor κq for its spe
i�
ation, we 
annot know the s
ore- or the divergen
efun
tions. Both ΦA
q and DA

q and ΦG
q and DG

q are possible sets of asso
iated fun
tions, the oneset 
orresponding to the intera
tor πA
q , the other to πG

q .4. Preparations and 
ontrolsFor this se
tion, as well as for Se
tions 5 and 6, we work in a world V = V(π) = V(π, κ) with
κ the ideal des
riptor asso
iated with π. We assume that κ is stri
tly de
reasing on [0, 1]. Thekey example is π = πq for a q > 0. The situations we have in mind all involve distributions overthe same alphabet A.The main issue we shall now dis
uss is the philosophi
al question �what 
an Observer know?� .What we mean by this is that in any 
on
rete situation, the set of truth instan
es 
hosen byNature will normally be restri
ted to some subset of M. Su
h a subset we 
all a preparation.Typi
ally, we denote a preparation by the letter P. But not every subset of M 
an, realisti
ly,o

ur. The preparations whi
h 
an a
tually be realized, we 
all the feasible preparations. Theytell us what Observer 
an know.In order to arrive at a meaningful, 
on
rete and operational de�nition of what a feasiblepreparation is, we put forward the rough idea that what Observer 
an do to enable the a
quisitionof knowledge is to �x allo
ations of e�ort (or energy) to individual events and also to �x an overallthreshold and then enfor
e Nature to 
hoose only truth instan
es whi
h respe
t the indi
ated
onstraints.First, regarding the allo
ation of e�orts, we adopt the view that belief is a tenden
y to a
t.Therefore, we start from a belief instan
e ξ and transform it to a more suitable obje
t whenhaving possible a
tions by Observer in mind. The transformation is denoted ξ y ξ̂ with ξ̂de�ned as the family ξ̂ =

(

κ(ξi)
)

i∈A
. We �nd it 
onvenient to de�ne a 
ontrol as a family

w = (wi)i∈A for whi
h there exists ξ ∈ M su
h that w = ξ̂, i.e. su
h that wi = κ(ξi) for ea
h
i ∈ A.Se
ondly, we imagine that, 
orresponding to a 
hosen 
ontrol w = ξ̂, Observer 
an realize a
ertain experimental set-up whi
h 
onsists of various parts su
h as ma
hinery, instruments andso on, in
luding a spe
ial handle whi
h he uses to �x the level of total e�ort, h. The idea thenis that this results in a restri
tion of the truth instan
es 
hosen by Nature to the set of x ∈ Mfor whi
h the average e�ort as per
eived by Observer is h, i.e. Φ(x, ξ) = h. The preparationobtained by restri
ting the truth instan
es in this way is denoted P(w, h), i.e. (still with w = ξ̂)

P(w, h) = {x ∈ M|Φ(x, w̌) = h} . (21)Note that these preparations are level sets obtained by �xing the belief instan
e in the s
orefun
tion. Preparations of this form are 
alled the basi
 preparations.Having 
hosen a 
ontrol, the s
ene is set and observations 
an begin with the reading ofmeasuring instruments et
. Observer may want to use the same experimental set-up for severalexperiments by adjusting the level of total e�ort. Of 
ourse, the level should always be set sothat P(w, h) is non-empty.We 
an now give a pre
ise de�nition of a feasible preparation: It is a non-empty �niteinterse
tion of basi
 preparations. The genus of a feasible preparation is the smallest number of



basi
 preparations needed to de�ne the preparation. Thus, a feasible preparation of genus 1 isthe same as a basi
 preparation.Regarding the previously introdu
ed 
on
ept of �situations� , we emphasize that they shouldalways be related to feasible preparations.By K we denote the set of 
ontrols, i.e. K = {ξ̂|ξ ∈ M}. The 
hoi
e of the letter �K� re�e
tsthat for the 
lassi
al world, a 
ontrol is strongly related to 
oding. For this reason we may alsouse the term 
oder instead of 
ontrol. The transformation ξ y ξ̂ is a bije
tion between M and K.In order to determine the inverse transformation, denoted w y w̌, we need to know the inversefun
tion of κ. This fun
tion we 
all the probability 
he
ker and denote by ρ = ρκ. We insist that
ρ is de�ned on all of [0,∞] even though there may be a 
ut-o� in κ, as the range [0, κ(0)] maybe a proper subset of [0,∞]. The formal de�nition is as follows:

ρ(a) =

{

κ−1(a) if a ≤ κ(0)

0 otherwise. (22)The probability 
he
ker provides a tool to determine how �
omplex� events you 
an des
ribewith a

ess to a given number of nats. The lower the probability, the more 
omplex the event.With a

ess to a nats, you 
an des
ribe any event with a probability as low as ρ(a).For a Tsallis world with 0 < q ≤ 1, however large your resour
es to nats, there are events so
omplex that you 
annot des
ribe them, whereas, if q > 1, you 
an des
ribe any event if youhave a

ess to K nats if only K is large enough (K ≥ 1

q−1
).Another illustration: If, for sample point i ∈ A you have de
ided how many nats you arewilling to allo
ate to i, say ai nats, this will only be feasible if the generalized Kraft inequalityholds:

∑

i∈A

ρκ(ai) ≤ 1 . (23)5. Preparations and gamesConsider some preparation P. For the time being, we need not assume that P is feasible.Observer 
annot know whi
h truth instan
e Nature has 
hosen, ex
ept that it is in P. It liesnearby to spe
ulate if Observer 
an identify some �typi
al� element of P, perhaps in order to usethat as an appropriate belief instan
e. The key to a
tually do so is to view the interplay betweenNature and Observer as a game. The game should be a two-person zero-sum game with Natureand Observer �ghting over des
ription e�ort. Nature is a maximizer and Observer a minimizer.The available strategies for Nature are limited to truth instan
es in the preparation P. Asfor Observer, we have 
hosen to take the set K of 
ontrols, rather than the set M of beliefinstan
es as strategies. We �nd this most natural in view of the interpretations. If one wishes,a transformation of de�nitions and results to involve only belief instan
es is possible, though attimes a bit awkward. In view of our fo
us on 
ontrols, we introdu
e a variant Ψ : M×K → [0,∞]of the s
ore fun
tion by agreeing that
Ψ(x,w) = Φ(x, w̌) . (24)A further 
onsequen
e of the 
hange of fo
us 
on
erns divergen
e whi
h is better 
on
eived as aredundan
y of e�ort 
orresponding to the given 
ontrol. Denoting redundan
y with R, we de�ne
R(x,w) = D(x, w̌) . (25)We use the notation γ(P) for the game de�ned above. The two values of the game are de�nedas usual, 
f. [6℄ or [7℄, for instan
e. The value seen from the point of view of Nature is
sup
x∈P

inf
w∈K

Ψ(x,w) . (26)



As the in�mum here is nothing but the entropy S(x), we �nd that the value given by (26) isthe maximum entropy value asso
iated with P:
Smax(P) = sup

x∈P

S(x) . (27)As for the other value of the game, it is given by
inf
w∈K

sup
x∈P

Ψ(x,w) . (28)For every w ∈ K, the asso
iated individual risk is de�ned by
Ri(w) = Ri(w|P) = sup

x∈P

Ψ(x,w) . (29)The minimal risk value asso
iated with P is then de�ned as
Rimin(P) = inf

w∈K

Ri(w) , (30)i.e. as the value given by (28).Clearly, Smax(P) ≤ Rimin(P). This is the minimax inequality. If equality holds and de�nesa �nite quantity, the game is in game theoreti
al equilibrium or just in equilibrium. An optimalstrategy for Nature is the same as a truth instan
e in P with maximal entropy. An optimalstrategy for Observer is the same as a 
ontrol w with Ri(w) = Rimin.Another 
on
ept of equilibrium is related to robustness: A 
ontrol w∗ is robust if, for some
h ∈ R, Ψ(x,w∗) = h for all x ∈ P. The number h is the level of robustness. If Observer 
hoosesa robust strategy, the des
ription e�ort will be independent of whi
h strategy Nature has 
hosen.There is an important 
onne
tion between the two 
on
epts of equilibria:Theorem 3 (robustness and pythagorean inequalities). Assume that x∗ ∈ P and that w∗ = x̂∗is robust with robustness level h. Then γ(P) is in equilibrium with h as value. Furthermore, forany x ∈ P,

S(x) + R(x,w∗) ≤ Smax(P) (31)and, for every 
ontrol w,
Ri(w) ≥ Smax(P) + R(x∗, w) . (32)Proof. Though the argument is known and easy, 
f. Theorem 6.2 of [8℄, we present it here too.Firstly, by assumption, Ri(w∗) = h = Ψ(x∗, w∗) = S(x∗), hen
e the game is in equilibrium with

x∗ as optimal strategy for Nature and w∗ as optimal strategy for Observer.For any x ∈ P we �nd that S(x) ≤ S(x) + R(x,w∗) = Ψ(x,w∗) = h, i.e. (31) holds. And forany 
ontrol w, Ri(w) ≥ Ψ(x∗, w), hen
e (32) follows from the linking identity (7).Equation (31), in the form S(x) + D(x, x∗) ≤ Smax(P), is the pythagorean inequality goingba
k to �en
ov [9℄ and Csiszár [10℄, and (32) is the reverse pythagorean inequality. From agame theoreti
al point of view, these inequalities are trivial 
onsequen
es of Nash's saddle valueinequalities.



6. Exponential familiesWe shall develop a simple 
riterion whi
h fa
ilitates the identi�
ation of situations of equilibriumand also fa
ilitates the sear
h for optimal strategies for both Nature and Observer. The �rstresult will help us understand why the level sets play a 
entral role. A
tually, we �rst run intosub-level sets, de�ned by
P≤(w, h) = {x|Ψ(x,w) ≤ h} (33)Proposition 3. Consider a truth instan
e x∗ and a 
ontrol w∗. Then a ne
essary and su�
ient
ondition that there exists a preparation P for whi
h the game γ(P) is in equilibrium and has x∗and w∗ as optimal strategies, is that h∗ = Ψ(x∗, w∗) < ∞ and that w∗ = x̂∗. And when these
onditions are ful�lled, the largest su
h set is the sub-level set P≤(w∗, h∗).Proof. (Compare with [8℄, Theorem 8.2). If, for some P, γ(P) is in equilibrium with x∗ and w∗as optimal strategies then, by Nash's saddle value inequalities,

Ψ(x,w∗) ≤ Ψ(x∗, w∗) ≤ Ψ(x∗, w) (34)for every x ∈ P and every 
ontrol w. Furthermore, Ψ(x∗, w∗) is �nite. Let y∗ = w̌∗. Then, bythe right hand inequality of (34), and as Φ is a proper s
ore fun
tion, Φ(x∗, x∗) ≥ Φ(x∗, y∗) ≥
Φ(x∗, x∗), hen
e Φ(x∗, y∗) = Φ(x∗, x∗) and we 
on
lude that y∗ = x∗. It follows that w∗ = x̂∗. Itonly remains to remark that the left hand inequality of (34) implies dire
tly that P ⊆ P≤(w∗, h∗)and the �rst part of the proof is 
omplete.For the se
ond half, assume that h∗ = Ψ(x∗, w∗) < ∞ and that w∗ = x̂∗. From the latter
ondition, the saddle value inequalities (34) are veri�ed for the preparation P≤(w∗, h∗) and then,using also the former 
ondition, equilibrium follows as well as optimality of the strategies x∗ and
w∗.The result points to a unique role for the sub-level sets. However, we hold the view that it isthe highest level whi
h is of relevan
e, and hen
e we sti
k to (interse
tions of) level sets, ratherthan sub-level sets. Also, this will allow us to exploit results on robustness.These 
onsiderations lead to an expedient approa
h to the most 
ommon type of problemswithin statisti
al physi
s as well as many other bran
hes of s
ien
e where questions of entropyoptimization and equilibrium 
ome up. First, for a �nite set w = (w1, · · · , wn) of 
ontrols anda 
orresponding set of levels, h = (h1, · · · , hn), we put P(w,h) = ∩n

ν=1P(wν , hν) (if non-empty,this is a feasible preparation of genus at most n) and for w �xed, we denote by P(w) the familyof all feasible preparations of this form. The 
orresponding exponential family, denoted by Ê(w),is the set of 
ontrols ε whi
h are robust for all preparations in the family P(w). In terms of beliefinstan
es, the exponential family is the family E(w) of all belief instan
es ξ for whi
h ξ = ε̌ forsome ε ∈ E(w).From the de�nitions introdu
ed and from Theorem 3 on robustness you �nd the followingsimple, but useful result:Theorem 4. Consider a family w = (w1, · · · , wn) of 
ontrols and the asso
iated family P(w) ofpreparations. Let x∗ be a truth instan
e, ε∗ the 
orresponding 
ontrol (ε∗ = x̂∗) and assume that
ε∗ ∈ Ê(w). Put h = (h1, · · · , hn) with hν = Ψ(x∗, wν) for ν = 1, · · · , n. Then γ(P

(

w,h)
) is inequilibrium and has x∗ and w∗ as optimal strategies. In parti
ular, x∗ is the maximum entropydistribution for the preparation P(w,h).A simpli�
ation o

urs in 
ase the world we 
onsider is one of the Tsallis worlds Vq = V(πq, κq)for a q > 0 as then one 
an identify 
ontrols in the exponential family. The reason is that inview of the linear 
hara
ter of πq, we realize that every 
ontrol ε of the form α +

∑n
1

βνwν for



suitable 
onstants α and β1, · · · , βn is a member of Ě(w). Typi
ally, for given β1, · · · , βn youadapt α to these numbers so that α +
∑n

1
βνwν is a genuine 
ontrol. This requires that

∑

i∈A

ρq

(

α + β1w1,i + · · · + βnwn,i

)

= 1 , (35)where ρq is the probability 
he
ker for κq, 
f. (23). Note that for the 
lassi
al 
ase q = 1, anextra simpli�
ation is that, given the β's, α 
an be solved from this equation.7. Dis
ussionThe present study has been pre
eeded by [11℄ and [12℄, and will, a

ording to plan, be followedby a more detailed publi
ation. However, it may well be that the present exposition is the idealstarting point for any reader who will embark on resear
h in the dire
tion taken. In parti
ular,we have made 
ertain simplifying assumptions and also, we have toned down the very abstra
t
onsiderations and mainly stayed within more standard probabilisti
 modelling.The main result on the identi�
ation of Tsallis entropy, Theorem 2, is derived based on theassumption that, �rstly, one should allow for an intera
tion between truth, belief and knowledgeand, se
ondly, one should a

ept a rather inno
ent variational prin
iple, that optimal performan
eis obtained when there is a perfe
t mat
h between truth and belief. It should be emphasizedthat though these prin
iples 
ould, by some adversary, be viewed as axioms, they are intendedas key elements of an operational interpretation. Further studies may justify this view, possiblybased on a deeper insight into physi
s than here displayed. It is a bit disturbing to the authorthat, a

ording to previous studies (also reported in the re
ent monograph [2℄), Tsallis entropywith q negative is of importan
e for the dis
ussion of 
ertain physi
al phenomena, whereas ourapproa
h does not really a

ept negative values of q.It is noted that our study is devoid of a dynami
al dimension. The only impli
it dynami
alelement is the natural su

ession in time of truth, belief and knowledge (via experiments andobservations). Again, further resear
h is needed on this point.Another dire
tion of resear
h, whi
h should �t well into the pronoun
ed philosophi
al basis,would be an extension to also 
over the quantum setting.The author has put great emphasis on the 
hoi
e of terminology. However, espe
ially
on
erning one issue, the proper naming of what here appears as s
ore fun
tions, there maywell be other attra
tive options. The term ina

ura
y, following Kerridge [13℄, did not appeal tothe author, e�ort fun
tion hits better the intended interpretation and is kept �in reserve� whereas
omplexity is overloaded and des
ription fun
tion or similar is �ne for the 
lassi
al setting, butwith no 
lari�
ation of an eventual role of more physi
al des
ription (or 
oding) outside the
lassi
al 
ase, it would appear a bit premature. Finally, s
ore fun
tion and proper s
ore fun
tionwere 
hosen as these notions appear in statisti
al de
ision theory and has a long history whi
h
an be tra
ed from Csiszár, [14℄. There, and in works referred to, one will also �nd what we havetermed the Perfe
t Mat
h Prin
iple. One disadvantage with the term �s
ore� is that it gives theimpression of something attra
tive seen with Observers eyes, quite opposite to what is the 
ase.Of 
ourse, one 
ould say that a high s
ore is attra
tive when seen with the eyes of Nature if youfollow the game theoreti
al line of thought. Or one 
ould say that when Observer has a
quiredknowledge, the s
ore 
an be taken as a quantitative measure of the information gained. Thesituation is similar to the one 
on
erning the appearan
e of both entropy and �negentropy� in
ertain texts. Without 
iting extensively from the literature on s
ore fun
tions, we point to [15℄by Good, mainly be
ause there we found the view that belief is a tenden
y to a
t, a view whi
h�ts ni
ely into the philosophy here adopted. As a �nal 
omment, note that when restri
ted to



the 
lassi
al setting, the 
onsideration of proper s
oring fun
tions gives an elegant introdu
tionto Shannon entropy whi
h is more des
riptive than axiomati
, we �nd, and whi
h provides anattra
tive supplement to the more 
ommon approa
hes via 
oding.As already indi
ated, further resear
h on the fundamental nature of the quantities
hara
terized is mu
h desired. This also 
on
erns a more 
omplete interpretation of des
riptorsoutside the 
lassi
al 
ase. In this 
onne
tion, [16℄, [17℄ and referen
es there as well as [18℄ maybe relevant.Regarding the, admittedly, rather brief treatment of maximum entropy optimization in Se
tion6, note that this does not rely on the introdu
tion of Lagrange multipliers, but uses a more dire
tapproa
h in line with [19℄. Also note that the usual introdu
tion of partition fun
tions does not,apparently, generalize in an adequate way when we study generalized entropies. In 
ontrast, thelog-partition fun
tion does generalize in a natural way, viz. as the solution α to (35).Further 
on
rete results on proper s
oring fun
tions may be developed by going outside theprobabilisti
 setting, say by 
onsidering more general real valued fun
tions than distributionsand other 
on
rete generalized meanvalues than the two 
hosen here, the arithmeti
- and thegeometri
 meanvalues.The 
onne
tion (duality) between feasible preparations and exponential families might �twell into geometri
 ideas as developed by Amari and his s
hool, 
f. [20℄. Other possibilitiesto apply duality 
onsiderations are rather obvious, but not developed here. In this 
onne
tion,a somewhat di�erent and purely axiomati
 approa
h developed in a preliminary setting in [21℄should also be of relevan
e.The untraditional approa
h in Se
tion 6 to the mu
h studied notion of exponential familiesis emphasized. It appears to be natural with referen
e to reasonably sound interpretations (via
ontrols et
.) and also, the approa
h applies in other 
ontexts than probabilisti
 ones, e.g.related to geometry (an appli
ation to Sylvesters problem of lo
ation theory is brie�y indi
atedin [22℄). The key role of game theory is evident. To the author, it is surprising that general andrather simple results as developed by Nash are so powerful � beyond what many resear
hers havepresently realized, it seems. For the 
lassi
al 
ase, the game theoreti
al approa
h was studiedin [8℄. From that referen
e, we point to the dis
ussion after Corollary 4.2 and to the importantTheorem 6.9 whi
h shows that no opportunities are missed when fo
using on robustness as isdone in our de�nition of exponential families.For other works whi
h emphasize the role of exponential families for statisti
al physi
s, seeNaudts, [23℄ and [24℄. These works have some similarity with the present approa
h.Finally, some 
omments on the appearan
e of Tsallis entropy. The �rst publi
ations areHavrda and Charvát [25℄ and, independently, Daró
zy [26℄. The latter author emphasized a
hara
terization via fun
tional equations, 
f. also [27℄ and the more re
ent referen
e work [28℄.The �rst appearan
e in the physi
al literature is due to Lindhard and Nielsen [29℄. Subsequently,Lindhard gave a 
areful treatment of aspe
ts of the measuring pro
ess, 
f. [30℄, whi
h may alsobe of relevan
e to our treatment. The trend-setting publi
ation [1℄ from 1988 by Tsallis marksthe e�
ient introdu
tion of the generalized entropies within the physi
al 
ommunity. At thetime of publi
ation, Tsallis was unaware of the earlier resear
h. Regarding [29℄ and [30℄, thesepapers were largely ignored, though there is a 
asual referen
e to Lindhard's work in [31℄.The su

ess of Tsallis in laun
hing the entropy measures whi
h now bear his name is due tothe dire
t approa
h and the fa
t that when 
ombined with Jaynes Maximum Entropy Prin
iple,
f. [32℄, main problems of statisti
al physi
s lead to power laws, a popular 
lass of distributionswhen heavy-tailed distributions are needed.The present approa
h is in line with earlier game theoreti
al 
onsiderations, 
f. [19℄. Be
auseof a relation to Bregman divergen
es, we also point the reader to [23℄ and works referred to there.
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