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Inspired by previous work on information theoret-
ical optimization, an axiomatic approach to cer-
tain special two-person zero-sum games is devel-
oped. One of the players (the statistician, physi-
cist, investor, planner, or ...), is imagined to have a
"mind", the other (the data, the physical system,
the market, the costumers, ...) not. Somewhat
provacatorially, it is the ambition of the speaker
that after the talk, the audience will (finally!) under-
stand what lies behind the notion of an exponential
family.



A source of inspiration

Natures side Observers side (you!)
Player I Player II

A situation of conflict between two “persons”:
Player I who does not have a mind,
Player II – you – who does.



... and another

Motto:
When you seek an extremum, don’t differentiate!

Example: minimum of x2 − 6x + 1=?

1.st method: Differentiate
– and you are done.

2.nd method: Write expression as (x − 3)2 − 8

– and you are done

Best method? 2.nd! And more clear, e.g. you do
indeed find a minimum this way.

Motto turned positive:
If your problem is natural ,
there is an intrinsic method !



Games!

(X, Y,Φ) defines a two-person zero-sum game with
Φ as objective function (or complexity) if Φ : X ×

Y → R (or R) and we associate notions of optimal
strategies and equilibrium with this function.

Players and strategies:
Player I is a maximizer, , chooses x

Player II is a minimizer, chooses y.

Specific and global values:

valI(x) = inf
y∈Y

Φ(x, y) = inf Φx

(
entropy! H(x)

)

valI = sup
x∈X

valI(x) ,

valII(y) = sup
x∈X

Φ(x, y) = supΦy
(

risk! R(y)
)

valII = inf
y∈Y

valII(y) .

y ∈ Y is an optimal response to x ∈ X if
Φ(x, y) = valI(x). We put x̂ = respII(x) = argminΦx.



Terminology: y is adapted to x or x is a matching
strategy to y (matches Pl.-II aim to respond optimally).

y ∈ respII(x) ⇔ x ∈ matchI(y) ⇔ y ∈ argminΦx ,

x ∈ respI(y) ⇔ y ∈ matchII(x) ⇔ x ∈ argmaxΦy .

Visualization: e.g. as a matrix

y1 y2 y3 y4 y5 valI(·)
x1 0 0 5 1 3 0
x2 3 5 1 1 1 1

x3 2 0 1 5 2 0

valII(·) 3 5 5 5 3

Redundancy: Compare the potentially possible with
the actually achieved to obtain Player-I redundancy
and Player-II redundancy:

δI(x, y) = valII(y) − Φ(x, y) ,

δII(x, y) = Φ(x, y) − valI(x)
(
divergence! D(x, y)

)
.

Define span(x, y) = valII(y) − valI(x) , then:
span(x, y) = δI(x, y) + δII(x, y) , hence:
minimax inequality holds: valI ≤ valII.



Game Theoretical Equilibrium: If valI = valII ∈ R.
Ideally: γΦ is in game theoretical equilibrium and has
optimal strategies, say (x0, y0). Notation: γΦ ∈

GTE(x0, y0) . If (x0, y0) not specified, write γΦ ∈

GTE∗.

If Φ(x0, y0) ∈ R, then (Player-I satisfaction ):

Φ(x, y0) ≤ Φ(x0, y0) for all x ∈ X ,

valII(y0) = Φ(x0, y0) ,

δI(x0, y0) = 0 ,

x0 ∈ respI(y0) ,

y0 ∈ matchII(x0)

are equivalent and so are (Player-II satisfaction ):

Φ(x0, y0) ≤ Φ(x0, y) for all y ∈ Y ,

valI(x0) = Φ(x0, y0) ,

δII(x0, y0) = 0 ,

y0 ∈ respII(x0) ,

x0 ∈ matchI(y0) .



saddle-value theorem: Let (x0, y0) ∈ X × Y and
assume that Φ(x0, y0) ∈ R. Then the following con-
ditions are equivalent:

γΦ ∈ GTE(x0, y0) ,

→ ∀(x, y) : Φ(x, y0) ≤ Φ(x0, y0) ≤ Φ(x0, y) ,

valI(x0) = Φ(x0, y0) = valII(y0) ,

δI(x0, y0) = δII(x0, y0) = 0 ,

x0 ∈ respI(y0) and y0 ∈ respII(x0) ,

y0 ∈ matchII(x0) and x0 ∈ matchI(y0) .

If so, val(γΦ) = Φ(x0, y0).

In this case, we talk about: Nash equilibrium, Nash
equilibrium pair, saddle-value inequalities, saddle point.
Thus γΦ ∈ GTE∗ ⇔ ∃ saddle point.

...

(figures very helpful - plan to have some on the black-
board)



Subgames, preparations

Introduce subgames by restricting strategy set for Player
I: γΦ(X0) corresponding to a preparation, X0. Let Γ
be class of all subgames. Expand notation: valI(X0),
valII(y|X0) and valII(X0) if necessary.

Level- and sub-level sets become important: Ly(h) =

{Φy = h}, SLy(h) = {Φy ≤ h}, in full:

SLy(h) = {x ∈ X|Φy(x) ≤ h} = {x ∈ X|Φ(x, y) ≤ h}

From the saddle-value theorem:

(x0, y0) are optimal strategies for a subgame in
equilibrium iff Φ(x0, y0) ∈ R and y0 is adapted to x0.
If so, the possible preparations are all X0 with

{x0} ⊆ X0 ⊆ SLy0(h) with h = Φ(x0, y0) .

The sets (SLy(h))y,h with the level h some finite
value of Φy for an argument which matches y are thus
the maximal preparations .



Typically the maximal preparations are not “practically
feasible” – but level sets are. Given a preparation X0,
define the exponential family (Player-II domain), by

EII(X0) = {y ∈ Y |∃h ∈ R : X0 ⊆ Ly(h)} .

An y ∈ EII(X0) is a robust Pl.-II strategy and h is the
level of robustness.

If y0 is robust and adapted to x0 ∈ X0,
then γΦ(X0) ∈ GTE(x0, y0) and
val(γΦ(X0)) = Φ(x0, y0).

Exponential family for a preparation family X :

EII(X) =
⋂

X0∈X

EII(X0) .

If EII is an exponential family (Pl.-II domain), the cor-
responding exponential family (Pl.-I domain) is

EI = {x| respII(x) ∩ EII 6= ∅} = matchI(EII) .

From EII define family X of associated preparations:

E⊥
II =

⋃

y∈EII

{Ly(h)|h ∈ R} .

More another time, to be worked out (geometry etc.)



Axioms for Complexity, entropy, divergence.

Strategy sets are X, Y , a map x y x̂ of X into Y

gives the response. MOL(X) denotes set of molec-
ular measures : {α ∈ M1

+(X)| supp(α) finite } .

Axiom 1 Linking identity Φ(x, y) = H(x) + D(x, y)

holds, D ≥ 0 and D(x, y) = 0 ⇔ y = x̂ .

Axiom 2 X is convex and Φ affine in first variable: For
y ∈ Y , α ∈ MOL(X),

Φ

( ∑

x∈X

αxx, y

)
=

∑

x∈X

αxΦ(x, y) .

Axiom 3 X is topological, algebraic operations contin-
uous and, for each (x0, y0) ∈ X × Y , x y D(x, y0)

and x y D(x0, x̂) are lower semi-continuous.
Axiom 4 Every D-Cauchy sequence has a conver-
gent subsequence.

(xn)n≥1 D-Cauchy means:
limn,m→∞D

(
xn, (1

2xn + 1
2xm)̂

)
= 0.



First consequences

Introduce barycentre b(α) =
∑

x∈X αxx, and asso-
ciated information rate

I(α) =
∑

x∈X

αx D(x, b̂(α)) .

Concavity and convexity properties:

Let α ∈ MOL(X). Then

H

( ∑

x∈X

αxx

)
=

∑

x∈X

αx H(x) + I(α)

and, if H(b(α)) < ∞, then, for every y ∈ Y ,
∑

x∈X

αx D(x, y) = D
( ∑

x∈X

αxx, y
)
+ I(α) .

Last identity is the compensation identity.



Main theorem

Assume Axioms 1-4 are satisfied and let X0 be a con-
vex preparation.

A sequence (xn) ⊆ X0 is asymptotically optimal if
limn→∞H(xn) = Hmax. A strategy x ∈ X (not nec-
essarily in X0) is an Hmax-attractor if D(xn, x̂) → 0

for every asymptotically optimal sequence (xn).

If X0 is convex and Hmax(X0) < ∞, then Pl. II has
a unique optimal strategy y∗, and a Hmax-attractor x∗

exists and y∗ = x̂∗. The game is in equilibrium and for
each x ∈ X0 and each y ∈ Y :

H(x) + D(x, y∗) ≤ Hmax(X0) .



Creation of Information Triples

Atomic Triples, Integration

(φ,h,d) with X = Y =real interval, and response
the identity leads to atomic information triples .

Example 1 y0 a prior ,

φ(x, y) = (x − y)2 − (x − y0)
2 ,

h(x) = −(x − y0)
2 ,

d(x, y) = (x − y)2 .

Example 2

φ(x, y) = x ln
1

y
,

h(x) = x ln
1

x
,

d(x, y) = x ln
x

y
.



Examples are of Bregman type: for “smooth” strictly
concave h, (φ,h,d) with φ and d defined by

φ(x, y) = h(y) + (x − y) h′(y) ,

d(x, y) = h(y) − h(x) + (x − y) h′(y) ,

is an atomic information triple.

A natural process of integration leads to more general
triples. Given measure µ on set T and then some
function space X ⊆ IT , take identity as response and
define (Φ,H,D) by integration, i.e.

Φ(x, y) =

∫

T
φ

(
x(t), y(t)

)
dµ(t)

and similarly for H and D. ...

By integration, Example 1 extends to a triple over Hilbert
space:

Φ(x, y) = ‖x − y‖2 − ‖x − y0‖
2 ,

H(x) = −‖x − y0‖
2 ,

D(x, y) = ‖x − y‖2 .



And similarly, Example 2 leads to standard discrete
information theory by integration w.r.t. counting mea-
sure over an “alphabet”.

Equivalence, Relativization

Equivalence results from adding to both Φ and to H

an affine function defined on X

If (Φ,H,D) is given and you add x y −Φ(x, y0),
you obtain the relativized triple with y0 as prior :

Φ̃(x, y) = D(x, y) − D(x, y0)

H̃(x) = −D(x, y0)

D̃(x, y) = D(x, y) .

(for this, it suffices that D satisfies the compensation
identity). Leads to Kullback’s minimum information
discrimination principle .



Randomization

Start with (Φ,H,D). Allow randomized strategies α ∈

MOL(X) for Player I. Put b(α) =
∑

x∈X αxx. Ran-
domization then gives:

α̂ = b̂(α) ,

Φ̃(α, y) =
∑

x∈X

αxΦ(x, y) ,

H̃(α) =
∑

x∈X

αxΦ
(
x, b̂(α)

)
,

D̃(α, y) = D(b(α), y) .

By equivalence you obtain:

Φ̃0(α, y) =
∑

x∈X

αx D(x, y) ,

H̃0(α) =
∑

x∈X

αx D(x, b̂(α)) ,

D̃0(α, y) = D(b(α), y) .



Classical Information Theory

Let A, the alphabet, be discrete, put X = M1
+(A),

and Y = K(A), the set of code length functions over
A, i.e. the set of κ : A → [0,∞] such that Krafts
equality

∑

i∈A

e−κi = 1

holds. The response P y κ is defined by κi =

ln 1
pi

; i ∈ A and for Φ we take average code length,
i.e.

Φ(P, κ) = 〈κ, P 〉 =
∑

i∈A

piκi .

Then

H(P) =
n∑

i=1

pi ln
1

pi
,

D(P, Q) =
n∑

i=1

pi ln
pi

qi
.



Consider preparation of the form

P = {P |〈fk, P 〉 = ak for k = 1, · · · , m}

and seek MaxEnt-distribution. Lagrange multipliers
one possibility. Better: Seek κ ∈ EII. Clearly, κ of
the form

κ = α + β1f1 + · · · + βmfm

works. By Krafts equality this requires that

α = ln Z(β1, · · · , βm)

with the partition function given by

Z(β1, · · · , βm) =
∑

i∈A

exp
(
−β1f1(i)−· · ·−βmfm(i)

)
.

Adjust coefficients so that the matching distribution is
consistent (∈ P), and you are done.

...............................

Further examples include separation, location theory,
universal coding, determination of capacity, duality and
more ... Next time!


