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NOTE: Essentially same slides used for internal talk:

Isotone Regression and Universal Coding

(September 3rd, University of Copenhagen).
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Outline

Goal: To develop abstract theory inspired by information
theoretical thinking, aiming at fascillitating inference in
situations involving elements of cognition.

Approach: Via two-person zero-sum games with Nature,
holder of “truth” , and Observer, steared by belief, as players.

What do players fight about: Either effort Φ = Φ(x , y) with
N as maximizer and O as minimizer, or gain ( same as utility)
U = U(x , y) with N as minimizer and O as maximizer.

Inference: Will be based on theorems of (Nash-) equilibrium.
Results only briefly indicated on next slide.

Focus: This will be on three problems which serve as
examples and indicate the range of possible applications.
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Indication of basic elements of abstract theory

Effort based information triple (Φ,H,D) should satisfy
Φ(x , y) = H(x) + D(x , y): : Effort=entropy+divergence.

Information triple based on gain (U,M,D) should satisfy
U(x , y) = M(x)− D(x , y): Gain = maxgain - divergence.

In both cases, divergence should satisfy the fundamental
inequality: D(x , y) ≥ 0 with D(x , y) = 0 ⇔ y = x .

Adding assumptions (like affinity of Φ(·, y) or U(·, y)) one
finds that “TYPICALLY” :

• If N- and O-strategies are of the same kind, there exists a
bi-optimal strategy x∗ = y∗, i.e. one which is optimal for both
players.
• If N- and O-strategies are of different kinds, unique optimal
strategies, x∗ and y∗, still exist and in this case y∗ is derived
directly from x∗ in a natural way (e.g. y∗ = barycentre of x∗).

Slide 4/19



un i v e r s i ty of cop enhagen

1.st problem: From Geometric Location Theory

Sylvester (1857):“It is required to find the least circle which shall
contain a given system (P) of points in the plane”.

So, task is to minimize maxx∈P ‖x − y‖. Can we take
Φ(x , y) = ‖x − y‖? No!

1.st modification: May as well replace ‖ · ‖ with any
increasing function f of ‖ · ‖ (say with f (0) = 0). Still no
chance of equilibrium as maximin-value is 0.

2.nd modification: Randomize! Combining with 1., you
should look at Φ(α, y) =

∑

x∈P αx‖x − y‖2 with α’s certain
weights.

This works!
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2.nd probl.: From universal prediction and coding

Let Ω = (Ω,≤) be a finite partially ordered set and consider
the model A of all antitone probability distributions over Ω
(a ≤ b ⇒ x(a) ≥ x(b)). Requested is the distribution y = y∗,
the universal predictor, with

sup
x∈A

D(x , y) = sup
x∈A

∑

a∈Ω

x(a) ln
x(a)

y(a)

minimal. As you see, here D is Kullback-Leibler divergence .

Similar remarks as those to Sylvester’s problem apply.

The equivalent problem of universal coding is to find the
code length function κ = κ∗ associated with y∗, i.e.
κ∗(a) = ln 1

y∗(a) for a ∈ Ω.

Note: κ’s are isotone (a ≤ b ⇒ κ(a) ≤ κ(b)).
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3.rd problem: From statistics, isotone regression

Again, Ω is a finite partially ordered set. Given is a weight
function W (e.g. the uniform distribution) and a prior, y0,
just any function on Ω, referred to as a valuation. Sought is
y = y∗, the posterior, required to be the isotone valuation
closest to y0 in squared norm.
Thus we should minimize

‖y0 − y‖2 =
∑

a∈Ω

W (a)|y0(a)− y(a)|2 (1)

subject to a requirement on y of isotonicity.

Existence and uniqueness of y∗ is pretty evident. It is the
isotone regression of y0.
This problem we shall study in more detail. Let us start with
a simple example:
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(Ω, y0): Butterfly set with prior y0 depending on

parameter t; listing also its isotone regression y ∗

0 0

1 t

1
3

1
3

1
3 t

Case 1: t < 1
3

t+1
4

t+1
4

t+1
4

t+1
4

Case 2: 1
3
≤ t ≤ 3

t
3

t
3

1 t
3

Case 3: t > 3

NOTE: Every valuation y is determined by a decomposition
Sy of Ω in maximal connected sets of y -constancy and the
associated values αy =

(

αy (S)
)

S∈Sy
. So, problem is to

determine Sy∗ and αy∗ . In fact, only Sy∗ is needed:
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Below, a lower set L is a union of left sections (write L ∈ L).
For A ⊆ Ω, conditional y0-average over A is denoted A, i.e.
A =

∑

a∈A W (a|A)y0(a) =
1

W (A)

∑

a∈A W (a)yo(a).

Theorem [Identification] With y0 as prior, assume that a
valuation y is given in terms of Sy and αy . Then, necessary
and sufficient for y to be the isotone regression of y0 (y = y∗)
is that the following holds:

(i) [ordering] Sy is partially ordered in the natural ordering;

(ii) [monotonicity] A < B ⇒ α(A) < α(B) for A,B ∈ Sy ;

(iii) [proper values] for A ∈ Sy , α(A) = A;

(iv) [boundedness] for A ∈ Sy and L ∈ L, α(A) ≤ A ∩ L.

Proof: Necessity (No game needed for this part!):
(i) and (ii): Obvious! (iii) and (iv): Consider A ∈ Sy and a
lower set L which intersects A. Define a distortion yβ of y by
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Ω

A

L
A ∩ L

yβ(a) =

{

β if a ∈ A ∩ L

y(a) otherwise.

Observe that for β < αy (A) sufficiently close to αy (A),
isotonicity is preserved. Thus

d

dβ
‖yβ − y0‖

2 evaluated at β = αy (A) is ≤ 0 , hence

∑

a∈A∩L

2W (a)
(

β − y0(a)
)

≤ 0 at β = αy (A) and

W (A ∩ L)αy (A)−
∑

a∈A∩L

W (a)y0(a) ≤ 0 follows,

hence αy (A) ≤ A ∩ L. This proves (iv).
In case A ∩ L = A, e.g. if L = Ω, also a slight increase of the
value of y on A preserves isotonicity. Hence, the derivative
from before must vanish. Thus αy (A) = A, i.e. (iii) holds.
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Sufficiency: For this part we appeal to a game. Let
N=NATURE choose an isotone valuation x (write x ∈ I) and
O=OBSERVER choose any valuation y . Consider the game
of updating with updating gain U = U|y0

given by

U|y0
(x , y) = ‖x − y0‖

2 − ‖x − y‖2 .

Such games are in (Nash-) equilibrium and both players have
unique optimal strategies which coincide. Since, for every
x ∈ I , maxy U|y0

(x , y) = ‖x − y0‖
2, the optimal strategy for

N is the sought isotone regression.

Now assume that our y satisfies (i)–(iv). Put, in anticipation,
x∗ = y∗ = y . We have to verify optimality of these strategies.
For this we verify Nash’s inequalities, which express that O’s
value under the strategy y∗ is equal to N’s value under the
strategy x∗.
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As one inequality is obvious (by the general minimax ineq.),
we need only check the other direction, i.e. that

inf
x∈I

U|y0
(x , y∗) ≥ ‖x∗ − y0‖

2

or, for every x ∈ I , that

‖x − y0‖
2 − ‖x − y∗‖2 ≥ ‖x∗ − y0‖

2 ,

and, as x∗ = y∗, this inequality is equivalent to

〈x − y∗, y∗ − y0〉 ≥ 0 . (2)

This has a clear geometric interpretation (...). We shall
analyze it analytically and, for a given x ∈ I , rewrite (2) as

∑

A∈Sy

∑

a∈A

W (a)
(

x(a) − A
)(

A − y0(a)
)

=
∑

A∈Sy

∑

a∈A

W (a)x(a)
(

A − y0(a)
)

=
∑

A∈Sy

∑

a∈A

x(a)δA(a) (by definition of δA) .
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Fix A ∈ Sy . We shall prove that
∑

a∈A x(a)δA(a) ≥ 0. As

δA(a) = W (a)
(

A − y0(a)
)

; for a ∈ A

and by (iii) and (iv), we have
∑

a∈A δA(a) = 0 as well as
∑

a∈A∩L δA(a) ≤ 0 for every lower set L.

Now, let α0 < α1 < · · · < αn be the values assumed by x and
write x in the form

x = αn −
n

∑

i=1

(αi − αi−1)1Li
(3)

with Li the lower set Li = {x < αi}. From this representation
and above observations, the desired result
∑

a∈A x(a)δA(a) ≥ 0 follows. Putting things together,
sufficiency is proved. 2

This is not the end! More results are needed, especially we
want to know how to construct the sought regression.
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A toy example: linear order with equal weights

7 7 8

9 9 9 8

6 6 6 6 6

3 3 4 4 4 4 4 4

5 5 5 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4

start y0

5 vio-

lates -

pool

it!

4 vio-

lates -

pool

it!

9 vio-

lates -

pool

it!

solution

y∗
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An algorithm for a general co-tree

For an arbitrary co-tree Ω, there is an efficient algorithm, a
pool adjacent violaters algorithm, which rather precisely
follows the ideas of the toy example.

We construct, incrementally, a decomposition S of Ω. At
each step, â denotes the set in the relevant part of S which
contains a. We start from the bottom, the minimal elements,
and continue up the co-tree. At each stage the basic
subroutine (see next slide) is called with focus on a node a

for which all objects related to nodes further down the co-tree
have already been calculated. Aim is to:

• calculate S(a) = â as if the co-tree was a↓ = {b|b ≤ a}
• calculate α(a) = S(a)
• dismiss all previous S(b)’s with b < a which are
“swallowed up” by the new set S(a).

So then, here is the basic subroutine:

Slide 15/19



un i v e r s i ty of cop enhagen

a
input (a) and initialization

(S, α, . . .)
calculation of testquan-

tity (β)

α > β

adjusting, pooling of vi-

olators

output: (S(a), S(a) = α,S :=
. . .)

next a

No

Try again
Yes

• at time of input: S(b)’s and α(a) = S(b)’s with b < a

known; the S(b)’s constitute a decomposition of a↓ \ {a};
• initialization: S := {a}, α := y0(a), D := ∅ (placeholder for
sets to be dismissed), ∂ := a−, set of nearest neighb. b < a;
• testquantity: β := maxb∈∂ S(b)
• adjusting, pooling: ∂0 = {b ∈ ∂|S(b) = β},
S := S ∪

⋃

b∈∂0
S(b); α := S ;

∂ := (∂ \ ∂0) ∪
⋃

b∈∂0
∂(S(b)) ; D := {S(b)|b ∈ ∂0}

• output: S(a) = S , α(a) = α, S:=
(

S \ D
)

∪ {S};
∂(S(a)) = ∂.
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regarding the proof

The proof that the algorithm works, i.e. that the
monotonicity (obvious) and the boundedness (more difficult)
properties hold for the final decomposition S, depends on
some properties of conditional expectations and on co-trees.
It is not shown here.

We end by showing a surprising connection between the
problems of universal coding and isotone regression.
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From isotone regression to universal coding
Theorem. With N(a) for the number of b ∈ Ω with b ≤ a, take
as prior the valuation y0 given by

y0(a) = N(a) ln N(a) −
∑

b∈a−

N(b) ln N(b)

and denote by y∗ the isotone regression of y0, providing Ω with
the uniform distribution. Then the universal code κ∗ is:

κ∗(a) = y∗(a) + ln Z where Z =
∑

a∈Ω

exp(−y∗(a)) .

Presently, the proof is via an algorithm developed for the
calculation of κ∗ (joint work with Henrik Densing Petersen).
The key is that the model A is a simplex and that, for the
distribution P associated with y0

(P(a) =constant· exp(−y0(a))), D(Q‖P) is constant for every
extremal element in A. Now, to conclusions:
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Can we conclude that: yes, here is a sound theory, worth while
developing further which has a proven potential of incorporating
basic classical optimization problems of Shannon Theory as well
as going beyond that?

I hope so! Relations to other theories of learning, of
complexity, of MDL, ... (with several developers present here)
should be investigated, further consolidation carried out, e.g.
thorough exposition of the basic theory (on its way),
axiomatization (initiated), new developments (e.g. re
algorithms), more applications ...
Acknowledgments: To Boris Ryabko (discussions re universal
prediction, especially in order structures), Henrik Densing
Petersen (co-author re algorithm for co-trees), NN (referee of
the paper with HDP who pointed to the possible connection
to isotone regression), Peter Harremoës (step in proof of
identification theorem) and, then to WITMSE-organizers for
providing a platform of exchange which, now for the third
time, has allowed me to present ideas to a group of specialists.

Slide 19/19


