

Faculty of Science

From Truth, Belief and Knowledge to Tsallis Entropy

Flemming Topsøe, topsoe@math.ku.dk Department of Mathematical Sciences, University of Copenhagen

Seminar, NBI, March 10th, 2010 Slide 2/21

indications: key notions, key questions

truth belief, tendency to act knowledge, perception, extended experience interaction experiment, preparation, control description, effort, information

what is "information"? – a potential saving of effort! what then is "entropy"? – minimal effort, given the truth! and, what *c* a *n* we know? – well, depends on your belief ...

information: cost and associated effort

What is the cost of information or, how much are you willing to pay – or *have* to pay – in order to know that an event has happened?

Or, what is the effort you are willing to/have to allocate?

Depends on the probability t, you *believe* the event has: $\kappa(t)$. κ tells us the individual effort. It is the effort-function or the descriptor.

effort \longleftrightarrow description ?

Requirements: $\kappa(1) = 0$, κ is smooth (and decreasing). Further, natural with normalization via the differential cost $\iota = -\kappa'(1)$. If $\iota = 1$, we obtain natural units, nats; if $\iota = \ln 2$, we measure in binary units, bits.

the power hierarchy, the exponential hierarchy Which kind of descriptors would you expect? Note that any "reasonable" monotone function f defines a descriptor via linearization. Simply take

$$\kappa(t) = \frac{f(1) - f(t)}{f'(1)}.$$

Suggestions: The power hierarchy is defined from the functions $t \mapsto t^a$ $(-\infty < a < \infty)$ and gives the descriptors:

$$t\mapsto rac{1-t^a}{a}$$
.

... and the exponential hierarchy is defined from the functions $t \mapsto b^t \ (b > 0)$ and gives the descriptors

$$t\mapsto \frac{1-b^{t-1}}{\ln b}$$

But are any of these "sensible"? - and what does that mean?

accumulated effort in a probabilistic context

Consider distributions over a discrete alphabet \mathbb{A} : $x = (x_i)_{i \in \mathbb{A}}$ represents truth, $y = (y_i)_{i \in \mathbb{A}}$ represents belief. Accumulated effort (expected per observation) is

$$\Phi(x,y) = \sum_{i\in\mathbb{A}} x_i \kappa(y_i).$$

 Φ satisfies the perfect match principle (for short is proper) if

$$\Phi(x,y) \geq \Phi(x,x)$$

with equality only for y = x (or $\Phi(x, x) = \infty$).

Theorem There is only one descriptor κ , the classical descriptor, for which Φ above is proper, viz. (nats)

$$\kappa(t) = \ln rac{1}{t}$$
 .

questioning the basic definition

Surely, $\Phi(x, y) = \sum x_i \kappa(y_i)$ is the right expression for accumulated effort as seen by someone, who knows the truth as well as the belief ...

... but is this how **you** perceive accumulated effort?

What if the x_i 's above are not what you perceive as truth?

... perhaps this also depends on what you believe – and Φ should rather be something like $\sum \pi(x_i, y_i)\kappa(y_i)$.

Let's leave the probabilistic setting for a while and go philosophical:

the beginnings of a philosophy of information

The whole is the world, ${\cal V}$

Situations from the world involve Nature and you, Observer.

Nature has no mind but holds the truth (x),

Observer has a creative mind,

- seeks the truth (x)
- is confined to belief (y)
- aims at knowledge (z).

But what is "knowledge"? Knowledge is

- the synthesis of extensive experience
- an expression of how Observer perceives situations from ${\cal V}$
- a manifestation of truth for Observer, for you.

interaction and effort

Proposal: Knowledge (z) depends on truth and belief via a characteristic interactor Π : $z = \Pi(x, y)$ $\mathcal{V} = \mathcal{V}_{\Pi}$.

 $\begin{array}{l} \Pi_1:(x,y)\mapsto x \text{ defines the classical world } \mathcal{V}_1\\ \Pi_0:(x,y)\mapsto y \text{ defines a black hole } \mathcal{V}_0\\ \Pi_q:(x,y)\mapsto qx+(1-q)y \text{ defines mixtures, Tsallis' } \mathcal{V}_q\text{'s} \end{array}$

Associated with \mathcal{V}_{Π} are, possibly many, effort functions, Φ 's. Extending the previous definition, an effort function is proper if it satisfies the perfect match principle (PMP): $\Phi(x, y) \ge \Phi(x, x)$ with equality iff there is a perfect match, i.e. y = x (or $\Phi(x, x) = \infty$).

Thesis Given \mathcal{V}_{Π} , there is at most one proper Φ -function

entropy, divergence, the fundamental inequality

Abstract modelling involves effort (Φ), entropy (H), and divergence (D). Φ is assumed proper.

Entropy is defined as minimal effort, given the truth, divergence as excess (or redundant) effort:

$$H(x) = \Phi(x,x); \ D(x,y) = \Phi(x,y) - H(x).$$

The properness of Φ may be expressed in terms of D by the fundamental inequality of information theory (FI):

$$D(x, y) \ge 0$$
 with equality iff $y = x$.

Further notions and properties are best discussed for probabilistic modelling.

probabilistic modelling (discrete)

Truth-, belief- and knowledge instances are $x = (x_i)$, $y = (y_i)$ and $z = (z_i)$ (*i* ranging over an alfabet \mathbb{A}). x and y are probability distributions, z just a function on \mathbb{A} .

Interaction, Π , acts via the local interactor π : $(\Pi(x, y))_{i \in \mathbb{A}} = (\pi(x_i, y_i))_{i \in \mathbb{A}}$. π is always assumed sound, i.e. $\pi(s, t) = s$ if t = s (perfect match). π is weakly consistent if $\forall x \forall y : \sum z_i = 1$. Strong consistency requires that z is always a probability distribution.

Proposition: Only the π_q 's given by $\pi_q(s, t) = qs + (1 - q)t$ are weakly consistent; strong consistency requires $0 \le q \le 1$.

accumulated effort, the one and only

Accumulated effort always chosen among $\Phi_{\pi,\kappa}$ where κ is a descriptor and

$$\Phi_{\pi,\kappa}(x,y) = \sum_{i\in\mathbb{A}} \pi(x_i,y_i)\kappa(y_i).$$

Theorem (modulo regularity conditions). Given $\pi = \pi(s, t)$, let $\pi'_2 = \frac{\partial \pi}{\partial t}$ and put $\chi(t) = \pi'_2(t,t)$. Only one among the $\Phi_{\pi,\kappa}$'s can be proper, viz. the solution to $t\kappa'(t) + \chi(t)\kappa(t) = -1, \ \kappa(1) = 0.$ (*) If π is consistent, hence one of the π_{a} 's, then a proper $\Phi_{\pi,\kappa}$ exists iff q > 0 (q = 0 OK as a singular case, though). If so, the unique descriptor concerned is the one depending linearly on t^{q-1} , i.e. $\left[\kappa_q(t) = \ln_q \frac{1}{t}\right]$ (recall: $\ln_q u = \frac{1}{1-q}(u^{1-q}-1)$).

gross effort, pointwise fundamental inequality

Introduce gross (accumulated) effort and gross entropy by adding a term representing overhead cost (or effort):

gross effort:
$$\tilde{\Phi}(x, y) = \sum_{i \in \mathbb{A}} (\pi(x_i, y_i)\kappa(y_i) + y_i) = \Phi(x, y) + 1$$
,
gross entropy: $\tilde{H}(x) = \sum_{i \in \mathbb{A}} (x_i\kappa(x_i) + x_i) = H(x) + 1$.

Clearly, "gross divergencee"=divergence and, defining the divergence generator by $\delta(s,t) = (\pi(s,t)\kappa(t) + t) - (s\kappa(s) + s)$, one has $D(x,y) = \sum \delta(x_i, y_i)$. We refer to the inequality $\delta \ge 0$ as the pointwise fundamental inequality (PFI). Clearly PFI \Longrightarrow FI. Conjecture Converse also true In practice, PMP and FI are always proved via PFI !

given κ , which world are you in?

Given π , we insist, when possible, to choose κ such that the resulting function Φ is proper. This gives a unique choice, the ideal descriptor. You determine κ from π , but **Warning:** you cannot determine π from κ

Thus knowing the entropy function does not reveal the world.

Examples: Let $\pi=\pi_q~(q>0)$ and consider π^{ξ} of the form

$$\pi^{\xi}(s,t) = \xi^{-1}\Big(\piig(\xi(s),\xi(t)ig)\Big)\,.$$

Then the differential equation (*) is unchanged, hence you find the same descriptor κ_q . E.g. for $\xi(u) = \ln u$, $\pi^{\xi}(s, t) = s^q t^{1-q}$; by PFI, the associated effort is proper.

Problem which κ 's are associated with (meaningful) π 's?

e.g.
$$\kappa(t) = \frac{1}{2}(t^{-2} - 1)$$
; or $\kappa(t) = 1 - \exp(t - 1)$?

what *c* a *n* we know? (abstract modelling)

Setting: World V_{π} with ideal descriptor and effort fct. Φ . I.J. Good (1952): Belief is a tendency to act !

To us, this is expressed via controls, w's. There is a bijection $y \leftrightarrow w$ ($w = \hat{y}; y = \check{w}$). In our probabilistic modelling this is given by $w_i = \kappa(y_i); i \in \mathbb{A}$. Expressed via controls, the effort function is denoted Ψ : $\Psi(x, w) = \Phi(x, y)$ with $y \leftrightarrow w$.

What can Observer do? via control ! preparations which are sets of x's, typically denoted by \mathcal{P} .

A feasible preparation is one which Observer can realize.

more on preparations

Typical example (of genus 1): Fix a control w and a level h. Set-up an experiment (!?) which constrains Natures possibilities to the preparation

$$\mathcal{P}(w,h) = \{x | \Psi(x,w) = h\}$$

or to the variant $\mathcal{P}_{\leq}(w,h) = \{x | \Psi(x,w) \leq h\}$.

Finite non-empty intersections of such level sets (or sub-level sets) constitute the feasible preparations and show what Observer can know !

equilibrium, MaxEnt and all that!

A closer study of a fixed preparation \mathcal{P} requires game theory and exploits thinking of John Nash. We shall only outline this. The two players are Nature with truth instances $x \in \mathcal{P}$ as strategies and Observer with controls w as strategies. As objective function we take $\Psi = \Psi(x, w)$. The maxmin value is easily seen to be the MaxEnt value

$$H_{\max}(\mathcal{P}) = \sup_{x \in \mathcal{P}} H(x).$$

If this equals the minmax value (required finite), the game is in equilibrium .

Another notion, often overlooked: A control ε^* is robust if, for some finite h, $\Psi(x, \varepsilon^*) = h$ for all $x \in \mathcal{P}$. Then h is the level of robustness.

By results of Nash:

robustness lemma, exponential families

Robustness lemma If $x^* \in \mathcal{P}$ and $\varepsilon^* = \hat{x^*}$ is robust with level h, then the game is in equilibrium with x^* and ε^* as optimal strategies, in particular, x^* is the MaxEnt strategy. (furthermore, the celebrated Pythagorean inequalities hold).

Let w be a control, let \mathcal{L}^w be the preparation family of non-empty sets of the form $\mathcal{P}(w, h)$. The associated exponential family, denoted $\hat{\mathcal{E}}^w$ is the set of controls ε which are robust for all preparations in \mathcal{L}^w . From robustness lemma:

Consider a preparation family \mathcal{L}^w . Let x^* be a truth instance, put $\varepsilon^* = \hat{x^*}$ and assume that $\varepsilon^* \in \hat{\mathcal{E}}^w$. Put $h = \Psi(x^*, w)$. Then the game corresponding to $\mathcal{P}(w, h)$ is in equilibrium and has x^* and ε^* as optimal strategies. In particular, x^* is the MaxEnt distribution for $\mathcal{P}(w, h)$.

sketch of MaxEnt calculations in \mathcal{V}_q

Return to probabilistic setting and consider a Tsallis world $\mathcal{V} = \mathcal{V}_q$, cor. to π_q with q > 0. Fix $y \leftrightarrow w$. Then \mathcal{L}^w consists of all preparations \mathcal{P} for which $\Psi(x, w)$ is constant over \mathcal{P} . But $\Psi(x, w) = \sum (qx_i + (1 - q)y_i)w_i$ so condition is equivalent to $\sum x_i w_i$ being constant over \mathcal{P} . For fixed constants α and β this implies that $\sum x_i(\alpha + \beta w_i)$ is constant over \mathcal{P} . Now, if $\alpha + \beta w$ is a control, say w^* , $\sum x_i w_i^*$ is constant over \mathcal{P} , hence $\Psi(x, w^*)$ is constant over \mathcal{P} , i.e. $w^* \in \hat{\mathcal{E}}^w$ and the robustness lemma applies. Then, given β , try to adjust α so that $\alpha + \beta w$ is a control. Classically, α is the logarithm of the partition function.

Finally, adjust β (\approx inverse temperature) to desired level ...

what have we achieved?

- found a reasonably transparent interpretation of Tsallis entropy
- developed a basis for an abstract theory
- clarified role of FI via PMP; focus on PFI as the natural basis for establishing FI and hence PMP
- identified the unit of entropy as an overhead
- answered the question "what can we know"
- found good (the right ?) definition of an exponential family
- indicated dual role of preparations and exponential families
- exploited games and wisdom of Nash, enabled MaxEnt calculations without introducing Lagrange multipliers
- separated Nature from Observer in key expressions

what needs being done?

- interaction, how?
- description, how?
- control, how?
- expand, quantum setting ...
- link to information geometry
- ...

thank you !