Interaction between Truth, Belief and

 Knowledge as the key to entropy measures of statistical physicsFlemming Topsøe
University of Copenhagen
Department of Mathematical Sciences
Presentation at MECO34, Leipzig 29.03-02.04, 2009

What is entropy?

Entropy operates in the interface
God \leftrightarrow man or Nature \leftrightarrow man or
system \leftrightarrow physicist studying or actually observing.
Entropy assigns to the true state x of a system the complexity of the system in that state as seen by man. More precisely, the entropy of x is given by

$$
\mathrm{S}(x)=\min _{y} \Phi(x, y) \text { where }
$$

$\Phi(x, y)=$ description cost (or effort) needed to describe the system when the truth is x and your belief is y.

So: Entropy is minimal description effort

Note: Focus on Φ with S as a derived concept. Another important derived concept is redundancy (divergence) D defined by $\mathrm{D}(x, y)=\Phi(x, y)-\mathrm{S}(x)$.

Problem: $\Phi=$?

Answer requires knowledge about nature, the world we operate in, and input from man who should design efficient descriprion strategies via descriptors (see later).

truth x
belief y knowledge z

Regarding z : outcome from extended observations, synthesis of extended experience, knowledge.
x and y will be distributions over some alphabet, \mathbb{A} : $x=\left(x_{i}\right)_{i \in \mathbb{A}}, y=\left(y_{i}\right)_{i \in \mathbb{A}}$ and similarly for y.

Possible worlds

Key postulate: There is an interaction between x, y, z of the form $z=\Pi(x, y)$. Π characterizes the world. Some possibilities:
$\Pi(x, y)=x$: classical world,
$\Pi(x, y)=y$: black hole,
$\Pi(x, y)=q x+(1-q) y$: mixtures.
Assume that interaction acts locally via interactor π : $z=\Pi(x, y)$ with $z_{i}=\pi\left(x_{i}, y_{i}\right)$. Always assume that $\pi(s, t)=s$ if $t=s$ (soundness).

Examples: $\pi_{q}(s, t)=q s+(1-q) t$ corresponding to classical world ($q=1$), black hole ($q=0$) or mixtures.

There are many other possible interactors, but: under consistency the π_{q} 's are the only ones.

Consistency:
$\sum z_{i}=1$, for x, y probability distributions, $z=\Pi(x, y)$.

What can the physicist do?

We assume that the world is known to the physicist through the interactor π.

Every observation entails a cost (or effort). The cost depends on the event being observed. An event with high probability has little cost. Thus define a descriptor κ to be a decreasing function on $[0,1]$ with $\kappa(1)=$ 0 . Also insist that κ satisfies the normalization condition $\kappa^{\prime}(1)=-1$, corresponding to a choice of unit.

Interpretation: $\kappa(t)$ is the effort associated with observations from an event which you believe occurs with probability t (equal to some y_{i}, say).

Total description cost, $\Phi(x, y)$, when truth is x and belief is y is given by

$$
\Phi(x, y)=\sum_{i \in \mathbb{A}} z_{i} \kappa\left(y_{i}\right)=\sum_{i \in \mathbb{A}} \pi\left(x_{i}, y_{i}\right) \kappa\left(y_{i}\right)
$$

The perfect match principle (PMP)

To design κ, hence Φ, apply perfect match principle:
PMP: Φ is the smallest when belief matches truth: $\Phi(x, y) \geq \Phi(x, x)$, i.e. $\Phi(x, y) \geq \mathbf{S}(x)$.

Theorem Given π, the only possible descriptor satisfying PMP is the solution to

$$
\frac{\partial \pi}{\partial t}(t, t) \kappa(t)+t \kappa^{\prime}(t)=-1 ; \kappa(1)=0 .
$$

If $\pi=\pi_{q}$, this becomes

$$
(1-q) \kappa(t)+t \kappa^{\prime}(t)=-1 ; \kappa(1)=0
$$

with solution $\kappa=\kappa_{q}$ given by

$$
\begin{aligned}
\kappa_{q}(t) & =\ln _{q} \frac{1}{t} \text { with } q \text {-logarithm given by } \\
\ln _{q} x & =\left\{\begin{array}{l}
\ln x \text { if } q=1, \\
\frac{1}{1-q}\left(x^{1-q}-1\right)
\end{array} \text { if } q \neq 1 .\right.
\end{aligned}
$$

However, this only satisfies PMP if $q \geq 0$.

Comments on the proof

The differential equation comes up via standard variational principles (introduce Lagrange multipliers!).

Re π_{q}, κ_{q} : Failure of PMP for $q<0$: simple direct counter examples with a 3 -element alphabet.

Validity of PMP for $q \geq 0$: via PFI, the pointwise fundamental inequality, which states that $d(s, t) \geq 0$ where

$$
d(s, t)=(\pi(s, t) \kappa(t)+t)-(s \kappa(s)+s) .
$$

Indeed,

$$
\mathrm{D}(x, y)=\sum d\left(x_{i}, y_{i}\right)
$$

and PMP really says that $\mathrm{D}(x, y) \geq 0$ (with "=" iff $y=x$). Writing up the formulas with π_{q} and κ_{q} in place of π and κ one finds that a simple application of the geometric/arithmetic mean inequality leads to the desired inequality $d(s, t) \geq 0$.

Comments on result:

- Strong argument in favour of the view that only possible entropy measures of statistical physics are those in the Tsallis family: $S_{q}(x)=\sum x_{i} \kappa_{q}\left(x_{i}\right)$
$=\left(\sum x_{i}^{q}-1\right) /(1-q)$ for $q \geq 0$. Classical value for $q=1$, and for black hole, $\mathrm{S}(x)=n-1$, number of degrees of freedom ($n=$ size of alphabet).
- Φ more important than S , gives more, e.g. shows which are the feasable preparations, viz. those of the form $\mathcal{P}=\left\{x \mid \Phi\left(x, y_{0}\right)=c\right\}$, and Φ also assists greatly in finding equilibrium distributions (via MaxEnt, and even without introducing Lagrange multipliers - instead a natural, therefore better, intrinsic approach is used). (more on next slides)
- The roles of God and man (nature and man, system and man) clearly separated!
- Formulas are mathematically attractive, e.g. lines up with popular Bregman divergencies ... there "must be some truth in them"!
- main outstanding issues are: interaction, how? description, how - via coding as in classical case (à la Shannon)?

Equilibrium calculations

Background theorem \mathcal{P} any preparation (set of x 's). Given x^{*}, y^{*} such that: $x^{*} \in \mathcal{P}, y^{*}$ robust, i.e. $\exists h \forall x \in \mathcal{P}: \Phi\left(x, y^{*}\right)=h$, and $y^{*}=x^{*}$. Then x^{*} is the MaxEnt distribution of \mathcal{P} (and y^{*} the MinRisk strategy for the physicist, i.e. $\left.\operatorname{argmin}\left(\max _{x \in \mathcal{P}} \Phi(x, y)\right)=y^{*}\right)$.

Proof: Assume $\Phi\left(x, y^{*}\right)=h$ for all $x \in \mathcal{P}$. Then $\mathrm{S}\left(x^{*}\right)=\Phi\left(x^{*}, x^{*}\right)=\Phi\left(x^{*}, y^{*}\right)=h$, and, for $x \in$ \mathcal{P} and $x \neq x^{*}$ we have $\mathrm{S}(x)<\mathrm{S}(x)+\mathrm{D}\left(x, y^{*}\right)=h$. The min-risk part is proved just as easily.

Define: $y^{*} \in \mathcal{E}(y)$, the exponential family of y, if $\Phi\left(x, y^{*}\right)$ only depends on $\Phi(x, y)$. In short:

$$
\mathcal{E}(y)=\left\{y^{*} \mid \exists \xi: \Phi\left(x, y^{*}\right)=\xi(\Phi(x, y))\right\} .
$$

Corollary Put $L^{y}(h)=\{x \mid \Phi(x, y)=h\}$. If $\mathcal{P}=L^{y}(h)$ and x^{*}, y^{*} are given such that: $x^{*} \in \mathcal{P}, y^{*} \in \mathcal{E}(y)$ and $y^{*}=x^{*}$, then x^{*} is the MaxEnt distribution of \mathcal{P}.

... continued

Let \mathcal{L}^{y} be the class of non-empty models of the form $L^{y}(h)$ with $h \in \mathbb{R}$. The associated exponential family or equilibrium generating family, is the family

$$
\mathcal{E}(y)=\left\{x \mid \forall L \in \mathcal{L}^{y} \exists c \in \mathbb{R}: L \subseteq L^{x}(c)\right\}
$$

$$
x \in \mathcal{E}(y), \mathrm{S}(x)=h \Rightarrow x \text { is MaxEnt dist. of } L^{x}(h)
$$

Thus one should try and determine the elements in $\mathcal{E}(y)$. Looking at it, you find that for the worlds determined by one of the interactions π_{q}, every x for which there exist constants α and β such that

$$
\forall i \in \mathbb{A}: \kappa\left(x_{i}\right)=\alpha+\beta \kappa\left(y_{i}\right)
$$

are in $\mathcal{E}(y)$. For $q=1$ this leads to classical analysis (with partition function etc.) and even without the use of Lagrange multipliers. For the general case, you have to adjust constants so that

$$
\sum_{i \in \mathbb{A}} \kappa^{-1}\left(\alpha+\beta \kappa\left(y_{i}\right)\right)=1
$$

Figure shows family $\left(\kappa_{q}\right)_{q \geq 0}$ of descriptors
So, given a probability t, you can see what effort is needed, measured in nats (natural units), in order to describe events with probability t when you use the chosen descriptor.

Figure shows inverses of descriptors. "probability checkers"

You can use these functions (q-deformed exponentials) to check, for a chosen descriptor, how complicated events you can describe with a given number of nat's available, i.e. how low a probability an event can have and still be describable with the available number of nat's. This kind of consideration is important in order to carry out MaxEnt calculations indicated previously.

