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Classical Information Theory: Complexity, entropy
and divergence: either

Φ(x, y) =
∑

xi ln
1

yi
,

H(x) =
∑

xi ln
1

xi
,

D(x, y) =
∑

xi ln
xi

yi
.

over X = Y = M1
+(A) or (often better!)

Φ(x, y) =
∑

xiyi ,

H(x) = Φ(x, x̂) ,

D(x, y) = Φ(x, y)−H(x) .

over X = M1
+(A), Y = K(A) and with response

x y x̂ = y defined by yi = ln 1
xi

where K(A) is
the set of code length functions over A, functions y

satisfying Kraft’s inequality
∑

e−yi ≤ 1 .

x’s: “truth” ; y’s: Belief, expectation, descriptor...



Axioms for Complexity, entropy, divergence.

Strategy sets are X, Y , a map x y x̂ of X into Y

gives the response.
MOL(X) = {molecular measures}
= {α ∈ M1

+(X)| supp(α) finite } .

Axiom 1 Linking: Φ(x, y) = H(x) + D(x, y) with
D ≥ 0 and D(x, y) = 0 ⇔ y = x̂ .

Axiom 2 Affinity: X is convex and Φ affine in its first
variable: For y ∈ Y , α ∈ MOL(X),

Φ
( ∑

x∈X

αxx, y

)
=

∑
x∈X

αxΦ(x, y) .

First consequences: Introduce barycentre
b(α) =

∑
x∈X αxx, and associated information rate

I(α) =
∑

x∈X

αx D(x, b̂(α)) .

Concavity and convexity properties:



Let α ∈ MOL(X). Then

H
( ∑

x∈X

αxx

)
=

∑
x∈X

αx H(x) + I(α)

and, if H(b(α)) < ∞, then, for every y ∈ Y ,∑
x∈X

αx D(x, y) = D
( ∑

x∈X

αxx, y
)
+ I(α) (*)

(*) is the compensation identity. Only depends on D!

Special case of information rate gives Jensen-Shannon
divergence:
JSD(x1, x2) = 1

2 D(x1, x̂) + 1
2 D(x2, x̂) with

x = 1
2x1+ 1

2x2. Often defines the square of a metric!

Problems/ opportunities
1. good examples (+proofs!) and counterexamples
2. isometrically embeddable in Hilbert space?
3. new non-standard entropy inequalities!
4. quantum case?



Proposition JSD is the square of a metric if and only
if, for every x1, x2, x3

3∑
k=1

(
[ij]2 − 2[ik][jk] + 2[ij][k]− [i][j]

)
≤ 0

where

[ij] = H(
1

2
xi +

1

2
xj) and [i] = [ii] = H(xi) .



Models and exponential families For X0 ⊆ X, γΦ(X0)

denotes two-person zero-sum game over X0×Y with
Φ as objective function, Player I as maximizer and Pl.
II as minimizer. Write γΦ(X0) ∈ GTE(x, y) if γΦ is
in equilibrium with (x, y) as optimal strategies.
From Nash’s saddle-value theorem:

Theorem A given pair (x0, y0) is an optimal pair for a
subgame in equilibrium iff Φ(x0, y0) ∈ R and y0 = x̂.
If so, the possible models are all X0 with
{x0} ⊆ X0 ⊆ {Φy0 ≤ h} with h = Φ(x0, y0) .

Natural models (genus-1 case): are the non-empty
level-sets: Lf(h) = {Φf = h} = {x|Φ(x, f) = h}
LetLf = class of non-empty models of the form Lf(h).
The associated exponential family is the family
E(f) = {y|∀L ∈ Lf∃c ∈ R : L ⊆ Ly(h)} .

y ∈ E(f) , y = x̂ ⇒ Lf(Φy(x)) ∈ GTE(x, y)

Problems: Generalized notions needed, relation to
standard theory, to weaker notions of equilibrium etc.



Reminder: Games, some general considerations

Φ:X×Y → R defines a two-person zero-sum game ,
γΦ. It has Φ as objective function (complexity!).
Player I, a maximizer, chooses x ∈ X,
Player II, a minimizer, chooses y ∈ Y .
Specific and global values:

valI(x) = inf
y∈Y

Φ(x, y) = inf Φx

(
entropy! H(x)

)
valII(y) = sup

x∈X
Φ(x, y) = supΦy

(
risk! R(y)

)
valI = sup

x∈X
valI(x) , valII = inf

y∈Y
valII(y) .

y is an optimal response to x (or x matches y) if
y ∈ x̂ = argminΦx.

Redundancy: Compare the potentially possible with
the actually achieved to obtain Player-I redundancy
and Player-II redundancy:

δI(x, y) = valII(y)−Φ(x, y) ,

δII(x, y) = Φ(x, y)− valI(x)
(
divergence! D(x, y)

)
.



With span(x, y) = valII(y)− valI(x),
span(x, y) = δI(x, y) + δII(x, y) , hence:
valI ≤ valII (minimax inequality).

Game Theoretical Equilibrium: if valI = valII ∈ R.
Ideally: GTE applies and optimal strategies exist, say
(x0, y0). Notation: γΦ ∈ GTE(x0, y0) .

Saddle-value theorem (Nash): Assume that
Φ(x0, y0) ∈ R. Then γΦ ∈ GTE(x0, y0) iff
∀(x, y) : Φ(x, y0) ≤ Φ(x0, y0) ≤ Φ(x0, y) .

(FT): If so, abstract pythagorean inequalities hold:
∀x : valI(x) + δ(x, y0) ≤ val(γΦ) (forward ineq.),
∀y : val(γΦ)+δ(x0, y) ≤ valII(y) (backward ineq.).
Here, δ = δI, δII or even δI + δII. [symmetry!]

Proof: With δ = δI + δII, the inequalities become
identities! 2

Corollary: Assume that Φ(x0, y0) ∈ R. Then, if y0 is
an optimal response to x0 and if Φ(x, y0) is indepen-
dent of x ∈ X, γΦ ∈ GTE(x0, y0). [asymmetry!]



Creation of Information Triples

Atomic Triples, Integration

(φ,h,d) with X = Y =real interval, and response
the identity leads to atomic information triples .

Example 1 y0 a prior ,

φ(x, y) = (x− y)2 − (x− y0)
2 ,

h(x) = −(x− y0)
2 ,

d(x, y) = (x− y)2 .

Example 2

φ(x, y) = x ln
1

y
,

h(x) = x ln
1

x
,

d(x, y) = x ln
x

y
.



Examples are of Bregman type: for “smooth” strictly
concave h, (φ,h,d) with φ and d defined by

φ(x, y) = h(y) + (x− y) h′(y) ,

d(x, y) = h(y)− h(x) + (x− y) h′(y) ,

is an atomic information triple.

A natural process of integration leads to more general
triples. Given measure µ on set T and then some
function space X ⊆ IT , take identity as response and
define (Φ,H,D) by integration, i.e.

Φ(x, y) =
∫
T

φ
(
x(t), y(t)

)
dµ(t)

and similarly for H and D. ...

By integration, Example 1 extends to a triple over Hilbert
space:

Φ(x, y) = ‖x− y‖2 − ‖x− y0‖2 ,

H(x) = −‖x− y0‖2 ,

D(x, y) = ‖x− y‖2 .

And similarly, Example 2 leads to standard discrete
information theory by integration w.r.t. counting mea-
sure over an “alphabet”.



Equivalence, Relativization

Equivalence results from adding to both Φ and to H

an affine function defined on X

If (Φ,H,D) is given and you add x y −Φ(x, y0),
you obtain the relativized triple with y0 as prior :

Φ̃(x, y) = D(x, y)−D(x, y0)

H̃(x) = −D(x, y0)

D̃(x, y) = D(x, y) .

(for this, it suffices that D satisfies the compensa-
tion identity). Leads to Kullback’s minimum informa-
tion discrimination principle , related to the problem of
proper updating .



Randomization

Start with (Φ,H,D). Allow randomized strategies α ∈
MOL(X) for Player I. Put b(α) =

∑
x∈X αxx. Ran-

domization then gives:

α̂ = b̂(α) ,

Φ̃(α, y) =
∑

x∈X

αxΦ(x, y) ,

H̃(α) =
∑

x∈X

αxΦ
(
x, b̂(α)

)
,

D̃(α, y) = D(b(α), y) .

By equivalence you obtain:

Φ̃0(α, y) =
∑

x∈X

αx D(x, y) ,

H̃0(α) =
∑

x∈X

αx D(x, b̂(α)) ,

D̃0(α, y) = D(b(α), y) .



Singling out special entropy functions

Put yourself in the shoes of the physicist who is plan-
ning observations and see if you can accept the con-
siderations below.

1 Events have three kinds of assignments,
related to, respectively, truth, belief and ex-
perience. Truth- and belief assignments are
numbers in [0,1].

2 A characteristic feature of my world is that there
is an interaction between truth and belief expressed
by a function π on [0,1] × [0,1]. The idea is (see
table!) that πi = π(xi, yi).



A Truth Belief Experience
· · · ·
· · · ·
· · · ·
i xi yi πi
· · · ·
· · · ·
· · · ·

Example A: The classical world is a world of
“no interaction”, hence π(x, y) = x.

Example B: The black hole is a world of
“no information”, hence π(x, y) = y.

3 I believe that my world is consistent in the sense
that

∑
i∈A πi = 1 whenever (xi)i∈A and (yi)i∈A

are probability assignments and πi = π(xi, yi).

Note: Then interaction must be sound, i.e. a
perfect match gives no change: For all x ∈ [0,1],
π(x, x) = x.



4 Any event I may observe entails a certain effort on
my part. The effort must only depend on my belief,
y, and is denoted by κ(y). The function κ, is the
coder (or descriptor). Of course: κ(1) = 0.

5 Separability applies: My total effort related to ob-
servations from a particular situation is the sum of in-
dividual contributions. Weights must be assigned to
each contribution according to the weight with which
I will experience the various events. The total effort
is the complexity (or description cost), Φ. Thus:

Φ(x, y) =
∑
i∈A

π(xi, yi)κ(yi)

with x = (xi)i∈A the truth- and y = (yi)i∈A the
belief-assignments associated with the events.



6 I will attempt to minimize complexity and shall ap-
peal to the principle that complexity is the smallest
when belief matches truth , ((yi)i∈A = (xi)i∈A). As∑

i∈A
π(xi, yi)κ(yi)−

∑
i∈A

xiκ(xi)

represents my frustration , the principle says that
frustration is the least, in fact disappears, when
(yi)i∈A = (xi)i∈A.

Note: Given x = (xi)i∈A, minimal complexity is what
I am aiming at. It is an important quantity. I will call it
entropy:

H(x) = inf
y=(yi)i∈A

Φ(x, y) =
∑
i∈A

xiκ(xi) .

Frustration too looks important. Perhaps I better call it
divergence:

D(x, y) = Φ(x, y)−H(x) .

Can you accept all this? If so, you can conclude:



Theorem: Modulo regularity conditions and a con-
dition of normalization, q = π(1,0) must be non-
negative and π and κ uniquely determined from q

by:

π(x, y) = qx + (1− q)y ,

κ(y) = ln q
1

y
,

where the q-logarithm is given by

ln qx =

 ln x if q = 1,
x1−q−1

1−q if q 6= 1 .

Hence entropy is given by

H(x) =
∑
i∈A

xi ln q
1

xi
.



Challenges:
• explain interaction on physical grounds,
• suggest possibilities for an accompanying process
of real coding,
• illuminate the good sense (if any :-)) of the views
put forward in well studied concrete cases (possibly
distinguishing between the cases 0 < q < 1, 1 <

q ≤ 2 and q > 2).

Let us look into the following:

• proof of theorem
• connection with Bregman generation
• relaxing the condition of consistency.



Indication of proof of main result

Functions π and κ are assumed continuous on their
domains and continuously differentiable and finite val-
ued on the interiors of their domains. Normalization of
κ means that κ(1) = 0 and that κ′(1) = −1.

You can exploit the consistency condition to show that,
for all (x, y) ∈ [0,1]2,

π(x, y) = qx + (1− q)y

with q = π(1,0).

Consider a fixed finite probability vector (xi)i∈A with
all xi positive. Varying (yi)i∈A we find, via the intro-
duction of a Lagrange multiplier, that f given by

f(x) =
∂π

∂y
(x, x)κ(x) + π(x, x)κ′(x)

is constant on {xi|i ∈ A}. Exploiting this for three-
element alphabets A shows that f ≡ −1. Then the
formula for κ is readily derived.



Bregman generation: Look at concave generator hq

and associated “Bregman quantities”:

hq(x) = x ln q
1
x ,

φq(x, y) = hq(y) + (x− y)h′q(y) ,

dq(x, y) = hq(y)− hq(x) + (x− y)h′q(y) ,

Φq(P, Q) =
∑

a∈A φq(pi, qi) ,

Hq(P ) =
∑

a∈A hq(pi) ,

Dq(P, Q) =
∑

a∈A dq(pi, qi) .

-compare with “interaction quantities”:

πq(x, y) = qx + (1− q)y (interaction) ,

κq(x) = ln q
1
x (coder) ,

ξ(x, y) = y − x , (corrector) ,

Φq(P, Q) =
∑

a∈A πq(pi, qi)κq(qi)

=
∑

a∈A

(
πq(pi, qi)κq(qi) + ξ(pi, qi)

)
,

Hq(P ) =
∑

a∈A piκq(pi) ,

Dq(P, Q) =
∑

a∈A

(
πq(pi, qi)κq(qi)− piκq(pi)

)
=

∑
a∈A

(
πq(pi, qi)κq(qi)− piκq(pi) + ξ(pi, qi)

)
.



Here, ξ is the corrector introduced so that the Bregman-
and interaction- quantities are synchronized. Indeed,
then the individual quantities coincide, in particular,

πq(pi, qi)κq(qi) + ξ(pi, qi) = φq(pi, qi) .

Note that the corrector is independent of q. When
seeking further physically founded explanations for the
whole set-up it may well be important to take the cor-
rector into account.

Quantities written out:

Φ(P, Q) =
1

1− q

(
− 1 +

∑
i∈A

(
qpiq

q−1
i + (1− q)qq

i

))
,

H(P ) =
1

1− q

(
− 1 +

∑
i∈A

p
q
i

)
,

D(P, Q) =
1

1− q

∑
i∈A

(
qpiq

q−1
i − p

q
i + (1− q)qq

i

)
.



Relaxing the condition of consistence: If we only
assume that π is sound, i.e. that π(x, x) = x for
0 ≤ x ≤ 1, then other forms of interaction may leed
to Tsallis-entropy as well. This happens with

π(x, y) = xqy1−q .

Thus, many quite different forms of interaction may
give the same entropy function. But of course, the
complexity- and divergence-functions will be different.



References in brief:
• Havrda and Charvát (1967): first appearence in the
mathematical literature
• Lindhard and Nielsen (1971) and Lindhard (1974):
first appearence in the physical literature
• Tsallis (1988): well known (:-)) take-off point which
triggered much research and debate.

As recent contributions relevant for the present re-
search, I mention Naudts (2008) and my own contri-
bution from (2007).


