On the generation of measures of

 entropy, divergence and complexity[Question:
Complexity := Description cost ?]
Flemming Topsøe
University of Copenhagen
Department of Mathematical Sciences
Presentation at the Entropy workshop in Lausanne, September 8-9, 2008

Classical Information Theory: Complexity, entropy and divergence: either

$$
\begin{aligned}
\Phi(x, y) & =\sum x_{i} \ln \frac{1}{y_{i}}, \\
\mathrm{H}(x) & =\sum x_{i} \ln \frac{1}{x_{i}}, \\
\mathrm{D}(x, y) & =\sum x_{i} \ln \frac{x_{i}}{y_{i}} .
\end{aligned}
$$

over $X=Y=M_{+}^{1}(\mathbb{A})$ or (often better!)

$$
\begin{aligned}
\Phi(x, y) & =\sum x_{i} y_{i}, \\
\mathrm{H}(x) & =\Phi(x, \hat{x}), \\
\mathrm{D}(x, y) & =\Phi(x, y)-\mathrm{H}(x) .
\end{aligned}
$$

over $X=M_{+}^{1}(\mathbb{A}), Y=K(\mathbb{A})$ and with response $x \curvearrowright \hat{x}=y$ defined by $y_{i}=\ln \frac{1}{x_{i}}$ where $K(\mathbb{A})$ is the set of code length functions over \mathbb{A}, functions y satisfying Kraft's inequality $\sum e^{-y_{i}} \leq 1$.
x's: "truth" ; y's: Belief, expectation, descriptor...

Axioms for Complexity, entropy, divergence.

Strategy sets are X, Y, a map $x \curvearrowright \hat{x}$ of X into Y gives the response.
$\operatorname{MOL}(X)=\{$ molecular measures $\}$
$=\left\{\alpha \in M_{+}^{1}(X) \mid \operatorname{supp}(\alpha)\right.$ finite $\}$.

Axiom 1 Linking: $\Phi(x, y)=\mathrm{H}(x)+\mathrm{D}(x, y)$ with $\mathrm{D} \geq 0$ and $\mathrm{D}(x, y)=0 \Leftrightarrow y=\hat{x}$.
Axiom 2 Affinity: X is convex and Φ affine in its first variable: For $y \in Y, \alpha \in \operatorname{MOL}(X)$,

$$
\Phi\left(\sum_{x \in X} \alpha_{x} x, y\right)=\sum_{x \in X} \alpha_{x} \Phi(x, y) .
$$

First consequences: Introduce barycentre $b(\alpha)=\sum_{x \in X} \alpha_{x} x$, and associated information rate

$$
\mathrm{I}(\alpha)=\sum_{x \in X} \alpha_{x} \mathrm{D}(x, \widehat{b(\alpha)}) .
$$

Concavity and convexity properties:

$$
\begin{aligned}
& \text { Let } \alpha \in \operatorname{MOL}(X) \text {. Then } \\
& \qquad \begin{aligned}
\mathrm{H}\left(\sum_{x \in X} \alpha_{x} x\right) & =\sum_{x \in X} \alpha_{x} \mathrm{H}(x)+\mathrm{I}(\alpha)
\end{aligned} \\
& \text { and, if } \mathrm{H}(b(\alpha))<\infty \text {, then, for every } y \in Y, \\
& \sum_{x \in X} \alpha_{x} \mathrm{D}(x, y)=\mathrm{D}\left(\sum_{x \in X} \alpha_{x} x, y\right)+\mathrm{I}(\alpha)
\end{aligned}
$$

$\left(^{*}\right)$ is the compensation identity. Only depends on D!

Special case of information rate gives Jensen-Shannon divergence:
$J S D\left(x_{1}, x_{2}\right)=\frac{1}{2} \mathrm{D}\left(x_{1}, \hat{x}\right)+\frac{1}{2} \mathrm{D}\left(x_{2}, \hat{x}\right)$ with
$x=\frac{1}{2} x_{1}+\frac{1}{2} x_{2}$. Often defines the square of a metric!

Problems/ opportunities

1. good examples (+proofs!) and counterexamples
2. isometrically embeddable in Hilbert space?
3. new non-standard entropy inequalities!
4. quantum case?

Proposition JSD is the square of a metric if and only if, for every x_{1}, x_{2}, x_{3}

$$
\sum_{k=1}^{3}\left([i j]^{2}-2[i k][j k]+2[i j][k]-[i][j]\right) \leq 0
$$

where

$$
[i j]=\mathrm{H}\left(\frac{1}{2} x_{i}+\frac{1}{2} x_{j}\right) \text { and }[i]=[i i]=\mathrm{H}\left(x_{i}\right) .
$$

Models and exponential families For $X_{0} \subseteq X, \gamma_{\Phi}\left(X_{0}\right)$ denotes two-person zero-sum game over $X_{0} \times Y$ with Φ as objective function, Player I as maximizer and PI . II as minimizer. Write $\gamma_{\Phi}\left(X_{0}\right) \in \operatorname{GTE}(x, y)$ if γ_{Φ} is in equilibrium with (x, y) as optimal strategies.
From Nash's saddle-value theorem:

Theorem A given pair (x_{0}, y_{0}) is an optimal pair for a subgame in equilibrium iff $\Phi\left(x_{0}, y_{0}\right) \in \mathbb{R}$ and $y_{0}=\hat{x}$. If so, the possible models are all X_{0} with $\left\{x_{0}\right\} \subseteq X_{0} \subseteq\left\{\Phi^{y_{0}} \leq h\right\}$ with $h=\Phi\left(x_{0}, y_{0}\right)$.

Natural models (genus-1 case): are the non-empty level-sets: $\mathrm{L}^{f}(h)=\left\{\Phi^{f}=h\right\}=\{x \mid \Phi(x, f)=h\}$ Let $\mathcal{L}^{f}=$ class of non-empty models of the form $L^{f}(h)$. The associated exponential family is the family $\mathcal{E}(f)=\left\{y \mid \forall L \in \mathcal{L}^{f} \exists c \in \mathbb{R}: L \subseteq L^{y}(h)\right\}$.

$$
y \in \mathcal{E}(f), y=\widehat{x} \Rightarrow L^{f}\left(\Phi^{y}(x)\right) \in \operatorname{GTE}(x, y)
$$

Problems: Generalized notions needed, relation to standard theory, to weaker notions of equilibrium etc.

Reminder: Games, some general considerations

$\Phi: X \times Y \rightarrow \overline{\mathbb{R}}$ defines a two-person zero-sum game, γ_{Φ}. It has Φ as objective function (complexity!).
Player I, a maximizer, chooses $x \in X$,
Player II, a minimizer, chooses $y \in Y$.
Specific and global values:

$$
\begin{aligned}
& \operatorname{val}_{\mathrm{I}}(x)=\inf _{y \in Y} \Phi(x, y)=\inf \Phi_{x}(\text { entropy! } \mathrm{H}(x)) \\
& \operatorname{val}_{\mathrm{II}}(y)=\sup _{x \in X} \Phi(x, y)=\sup \Phi^{y}(\text { risk! } \mathrm{R}(y)) \\
& \operatorname{val}_{\mathrm{I}}=\sup _{x \in X} \operatorname{val}_{\mathrm{I}}(x), \quad \mathrm{val}_{\mathrm{II}}=\inf _{y \in Y} \operatorname{val}_{\mathrm{II}}(y)
\end{aligned}
$$

y is an optimal response to x (or x matches y) if $y \in \widehat{x}=\operatorname{argmin} \Phi_{x}$.

Redundancy: Compare the potentially possible with the actually achieved to obtain Player-I redundancy and Player-II redundancy:

$$
\begin{aligned}
& \delta_{\mathrm{I}}(x, y)=\operatorname{val}_{\mathrm{II}}(y)-\Phi(x, y), \\
& \delta_{\mathrm{II}}(x, y)=\Phi(x, y)-\operatorname{val}_{\mathrm{I}}(x)(\text { divergence! } \mathrm{D}(x, y)) .
\end{aligned}
$$

With $\operatorname{span}(x, y)=\operatorname{val}_{\mathrm{II}}(y)-\operatorname{val}_{\mathrm{I}}(x)$,
$\operatorname{span}(x, y)=\delta_{\mathrm{I}}(x, y)+\delta_{\mathrm{II}}(x, y)$, hence:
$\mathrm{val}_{\mathrm{I}} \leq \mathrm{val}_{\text {II }}$ (minimax inequality).
Game Theoretical Equilibrium: if val $_{\mathrm{I}}=\mathrm{val}_{\mathrm{II}} \in \mathbb{R}$. Ideally: GTE applies and optimal strategies exist, say $\left(x_{0}, y_{0}\right)$. Notation: $\gamma_{\Phi} \in \operatorname{GTE}\left(x_{0}, y_{0}\right)$.

Saddle-value theorem (Nash): Assume that $\Phi\left(x_{0}, y_{0}\right) \in \mathbb{R}$. Then $\gamma_{\Phi} \in \operatorname{GTE}\left(x_{0}, y_{0}\right)$ iff
$\forall(x, y): \Phi\left(x, y_{0}\right) \leq \Phi\left(x_{0}, y_{0}\right) \leq \Phi\left(x_{0}, y\right)$.
(FT): If so, abstract pythagorean inequalities hold:
$\forall x: \operatorname{val}_{\mathrm{I}}(x)+\delta\left(x, y_{0}\right) \leq \operatorname{val}\left(\gamma_{\Phi}\right) \quad$ (forward ineq.),
$\forall y: \operatorname{val}\left(\gamma_{\Phi}\right)+\delta\left(x_{0}, y\right) \leq \operatorname{val}_{\mathrm{II}}(y)$ (backward ineq.). Here, $\delta=\delta_{\mathrm{I}}$, $\delta_{\text {II }}$ or even $\delta_{\mathrm{I}}+\delta_{\text {II }}$.
[symmetry!]
Proof: With $\delta=\delta_{\mathrm{I}}+\delta_{\mathrm{II}}$, the inequalities become identities! \square

Corollary: Assume that $\Phi\left(x_{0}, y_{0}\right) \in \mathbb{R}$. Then, if y_{0} is an optimal response to x_{0} and if $\Phi\left(x, y_{0}\right)$ is independent of $x \in X, \gamma_{\Phi} \in \operatorname{GTE}\left(x_{0}, y_{0}\right)$. [asymmetry!]

Creation of Information Triples

Atomic Triples, Integration

($\phi, \mathrm{h}, \mathrm{d}$) with $X=Y=$ real interval, and response the identity leads to atomic information triples.

Example $1 y_{0}$ a prior,

$$
\begin{aligned}
\phi(x, y) & =(x-y)^{2}-\left(x-y_{0}\right)^{2}, \\
\mathrm{~h}(x) & =-\left(x-y_{0}\right)^{2}, \\
\mathrm{~d}(x, y) & =(x-y)^{2} .
\end{aligned}
$$

Example 2

$$
\begin{aligned}
\phi(x, y) & =x \ln \frac{1}{y}, \\
\mathrm{~h}(x) & =x \ln \frac{1}{x}, \\
\mathrm{~d}(x, y) & =x \ln \frac{x}{y} .
\end{aligned}
$$

Examples are of Bregman type: for "smooth" strictly concave $\mathrm{h},(\phi, \mathrm{h}, \mathrm{d})$ with ϕ and d defined by

$$
\begin{aligned}
& \phi(x, y)=\mathrm{h}(y)+(x-y) \mathrm{h}^{\prime}(y), \\
& \mathrm{d}(x, y)=\mathrm{h}(y)-\mathrm{h}(x)+(x-y) \mathrm{h}^{\prime}(y),
\end{aligned}
$$

is an atomic information triple.
A natural process of integration leads to more general triples. Given measure μ on set T and then some function space $X \subseteq I^{T}$, take identity as response and define (Φ, H, D) by integration, i.e.

$$
\Phi(x, y)=\int_{T} \phi(x(t), y(t)) d \mu(t)
$$

and similarly for H and D
By integration, Example 1 extends to a triple over Hilbert space:

$$
\begin{aligned}
\Phi(x, y) & =\|x-y\|^{2}-\left\|x-y_{0}\right\|^{2}, \\
\mathrm{H}(x) & =-\left\|x-y_{0}\right\|^{2} \\
\mathrm{D}(x, y) & =\|x-y\|^{2} .
\end{aligned}
$$

And similarly, Example 2 leads to standard discrete information theory by integration w.r.t. counting measure over an "alphabet".

Equivalence, Relativization

Equivalence results from adding to both Φ and to H an affine function defined on X

If (Φ, H, D) is given and you add $x \curvearrowright-\Phi\left(x, y_{0}\right)$, you obtain the relativized triple with y_{0} as prior:

$$
\begin{aligned}
\tilde{\Phi}(x, y) & =\mathrm{D}(x, y)-\mathrm{D}\left(x, y_{0}\right) \\
\tilde{\mathrm{H}}(x) & =-\mathrm{D}\left(x, y_{0}\right) \\
\tilde{\mathrm{D}}(x, y) & =D(x, y) .
\end{aligned}
$$

(for this, it suffices that D satisfies the compensation identity). Leads to Kullback's minimum information discrimination principle, related to the problem of proper updating.

Randomization

Start with (Φ, H, D). Allow randomized strategies $\alpha \in$ $\operatorname{MOL}(X)$ for Player I. Put $b(\alpha)=\sum_{x \in X} \alpha_{x} x$. Randomization then gives:

$$
\begin{aligned}
\widehat{\alpha} & =\widehat{b(\alpha)}, \\
\tilde{\Phi}(\alpha, y) & =\sum_{x \in X} \alpha_{x} \Phi(x, y), \\
\tilde{\mathrm{H}}(\alpha) & =\sum_{x \in X} \alpha_{x} \Phi(x, \widehat{b(\alpha)}), \\
\tilde{\mathrm{D}}(\alpha, y) & =\mathrm{D}(b(\alpha), y) .
\end{aligned}
$$

By equivalence you obtain:

$$
\begin{aligned}
\tilde{\Phi}_{0}(\alpha, y) & =\sum_{x \in X} \alpha_{x} \mathrm{D}(x, y), \\
\tilde{\mathrm{H}}_{0}(\alpha) & =\sum_{x \in X} \alpha_{x} \mathrm{D}(x, \widehat{b(\alpha)}), \\
\tilde{\mathrm{D}}_{0}(\alpha, y) & =\mathrm{D}(b(\alpha), y) .
\end{aligned}
$$

Singling out special entropy functions

Put yourself in the shoes of the physicist who is planning observations and see if you can accept the considerations below.

1 Events have three kinds of assignments, related to, respectively, truth, belief and experience. Truth- and belief assignments are numbers in $[0,1]$.

2 A characteristic feature of my world is that there is an interaction between truth and belief expressed by a function π on $[0,1] \times[0,1]$. The idea is (see table!) that $\pi_{i}=\pi\left(x_{i}, y_{i}\right)$.

\mathbb{A}	Truth	Belief	Experience
\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot
i	x_{i}	y_{i}	π_{i}
\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot

Example A: The classical world is a world of "no interaction", hence $\pi(x, y)=x$.

Example B: The black hole is a world of "no information", hence $\pi(x, y)=y$.

3 I believe that my world is consistent in the sense that $\sum_{i \in \mathbb{A}} \pi_{i}=1$ whenever $\left(x_{i}\right)_{i \in \mathbb{A}}$ and $\left(y_{i}\right)_{i \in \mathbb{A}}$ are probability assignments and $\pi_{i}=\pi\left(x_{i}, y_{i}\right)$.

Note: Then interaction must be sound, i.e. a perfect match gives no change: For all $x \in[0,1]$, $\pi(x, x)=x$.

4 Any event I may observe entails a certain effort on my part. The effort must only depend on my belief, y, and is denoted by $\kappa(y)$. The function κ, is the coder (or descriptor). Of course: $\kappa(1)=0$.

5 Separability applies: My total effort related to observations from a particular situation is the sum of individual contributions. Weights must be assigned to each contribution according to the weight with which I will experience the various events. The total effort is the complexity (or description cost), Φ. Thus:

$$
\Phi(x, y)=\sum_{i \in \mathbb{A}} \pi\left(x_{i}, y_{i}\right) \kappa\left(y_{i}\right)
$$

with $x=\left(x_{i}\right)_{i \in \mathbb{A}}$ the truth- and $y=\left(y_{i}\right)_{i \in \mathbb{A}}$ the belief-assignments associated with the events.

6 I will attempt to minimize complexity and shall appeal to the principle that complexity is the smallest when belief matches truth, $\left(\left(y_{i}\right)_{i \in \mathbb{A}}=\left(x_{i}\right)_{i \in \mathbb{A}}\right)$. As

$$
\sum_{i \in \mathbb{A}} \pi\left(x_{i}, y_{i}\right) \kappa\left(y_{i}\right)-\sum_{i \in \mathbb{A}} x_{i} \kappa\left(x_{i}\right)
$$

represents my frustration, the principle says that frustration is the least, in fact disappears, when

$$
\left(y_{i}\right)_{i \in \mathbb{A}}=\left(x_{i}\right)_{i \in \mathbb{A}} .
$$

Note: Given $x=\left(x_{i}\right)_{i \in \mathbb{A}}$, minimal complexity is what I am aiming at. It is an important quantity. I will call it entropy:

$$
\mathrm{H}(x)=\inf _{y=\left(y_{i}\right)_{i \in \mathbb{A}}} \Phi(x, y)=\sum_{i \in \mathbb{A}} x_{i} \kappa\left(x_{i}\right) .
$$

Frustration too looks important. Perhaps I better call it divergence:

$$
\mathrm{D}(x, y)=\Phi(x, y)-\mathrm{H}(x) .
$$

Can you accept all this? If so, you can conclude:

Theorem: Modulo regularity conditions and a condition of normalization, $q=\pi(1,0)$ must be nonnegative and π and κ uniquely determined from q by:

$$
\begin{aligned}
\pi(x, y) & =q x+(1-q) y \\
\kappa(y) & =\ln _{q} \frac{1}{y}
\end{aligned}
$$

where the q-logarithm is given by

$$
\ln _{q} x=\left\{\begin{array}{l}
\ln x \text { if } q=1, \\
\frac{x^{1-q}-1}{1-q} \text { if } q \neq 1 .
\end{array}\right.
$$

Hence entropy is given by

$$
\mathrm{H}(x)=\sum_{i \in \mathbb{A}} x_{i} \ln q \frac{1}{x_{i}}
$$

Challenges:

- explain interaction on physical grounds,
- suggest possibilities for an accompanying process of real coding,
- illuminate the good sense (if any :-)) of the views put forward in well studied concrete cases (possibly distinguishing between the cases $0<q<1,1<$ $q \leq 2$ and $q>2$).

Let us look into the following:

- proof of theorem
- connection with Bregman generation
- relaxing the condition of consistency.

Indication of proof of main result

Functions π and κ are assumed continuous on their domains and continuously differentiable and finite valued on the interiors of their domains. Normalization of κ means that $\kappa(1)=0$ and that $\kappa^{\prime}(1)=-1$.

You can exploit the consistency condition to show that, for all $(x, y) \in[0,1]^{2}$,

$$
\pi(x, y)=q x+(1-q) y
$$

with $q=\pi(1,0)$.

Consider a fixed finite probability vector $\left(x_{i}\right)_{i \in \mathbb{A}}$ with all x_{i} positive. Varying $\left(y_{i}\right)_{i \in \mathbb{A}}$ we find, via the introduction of a Lagrange multiplier, that f given by

$$
f(x)=\frac{\partial \pi}{\partial y}(x, x) \kappa(x)+\pi(x, x) \kappa^{\prime}(x)
$$

is constant on $\left\{x_{i} \mid i \in \mathbb{A}\right\}$. Exploiting this for threeelement alphabets \mathbb{A} shows that $f \equiv-1$. Then the formula for κ is readily derived.

Bregman generation: Look at concave generator h_{q} and associated "Bregman quantities":

$$
\left\{\begin{array}{l}
h_{q}(x)=x \ln _{q} \frac{1}{x}, \\
\phi_{q}(x, y)=h_{q}(y)+(x-y) h_{q}^{\prime}(y), \\
d_{q}(x, y)=h_{q}(y)-h_{q}(x)+(x-y) h_{q}^{\prime}(y), \\
\Phi_{q}(P, Q)=\sum_{a \in \mathbb{A}} \phi_{q}\left(p_{i}, q_{i}\right), \\
\mathrm{H}_{q}(P)=\sum_{a \in \mathbb{A}} h_{q}\left(p_{i}\right), \\
\mathrm{D}_{q}(P, Q)=\sum_{a \in \mathbb{A}} d_{q}\left(p_{i}, q_{i}\right) .
\end{array}\right.
$$

-compare with "interaction quantities":

$$
\left\{\begin{array}{l}
\pi_{q}(x, y)=q x+(1-q) y \text { (interaction) } \\
\kappa_{q}(x)=\ln q^{\frac{1}{x}} \text { (coder), } \\
\xi(x, y)=y-x,(\text { corrector) }, \\
\Phi_{q}(P, Q)=\sum_{a \in \mathbb{A}} \pi_{q}\left(p_{i}, q_{i}\right) \kappa_{q}\left(q_{i}\right) \\
\quad=\sum_{a \in \mathbb{A}}\left(\pi_{q}\left(p_{i}, q_{i}\right) \kappa_{q}\left(q_{i}\right)+\xi\left(p_{i}, q_{i}\right)\right) \\
\mathrm{H}_{q}(P)=\sum_{a \in \mathbb{A}} p_{i} \kappa_{q}\left(p_{i}\right), \\
\mathrm{D}_{q}(P, Q)=\sum_{a \in \mathbb{A}}\left(\pi_{q}\left(p_{i}, q_{i}\right) \kappa_{q}\left(q_{i}\right)-p_{i} \kappa_{q}\left(p_{i}\right)\right) \\
\quad=\sum_{a \in \mathbb{A}}\left(\pi_{q}\left(p_{i}, q_{i}\right) \kappa_{q}\left(q_{i}\right)-p_{i} \kappa_{q}\left(p_{i}\right)+\xi\left(p_{i}, q_{i}\right)\right) .
\end{array}\right.
$$

Here, ξ is the corrector introduced so that the Bregmanand interaction- quantities are synchronized. Indeed, then the individual quantities coincide, in particular,

$$
\pi_{q}\left(p_{i}, q_{i}\right) \kappa_{q}\left(q_{i}\right)+\xi\left(p_{i}, q_{i}\right)=\phi_{q}\left(p_{i}, q_{i}\right) .
$$

Note that the corrector is independent of q. When seeking further physically founded explanations for the whole set-up it may well be important to take the corrector into account.

Quantities written out:

$$
\begin{aligned}
\Phi(P, Q) & =\frac{1}{1-q}\left(-1+\sum_{i \in \mathbb{A}}\left(q p_{i} q_{i}^{q-1}+(1-q) q_{i}^{q}\right)\right) \\
\mathrm{H}(P) & =\frac{1}{1-q}\left(-1+\sum_{i \in \mathbb{A}} p_{i}^{q}\right) \\
\mathrm{D}(P, Q) & =\frac{1}{1-q} \sum_{i \in \mathbb{A}}\left(q p_{i} q_{i}^{q-1}-p_{i}^{q}+(1-q) q_{i}^{q}\right) .
\end{aligned}
$$

Relaxing the condition of consistence: If we only assume that π is sound, i.e. that $\pi(x, x)=x$ for $0 \leq x \leq 1$, then other forms of interaction may leed to Tsallis-entropy as well. This happens with

$$
\pi(x, y)=x^{q} y^{1-q} .
$$

Thus, many quite different forms of interaction may give the same entropy function. But of course, the complexity- and divergence-functions will be different.

References in brief:

- Havrda and Charvát (1967): first appearence in the mathematical literature
- Lindhard and Nielsen (1971) and Lindhard (1974): first appearence in the physical literature
- Tsallis (1988): well known (:-)) take-off point which triggered much research and debate.

As recent contributions relevant for the present research, I mention Naudts (2008) and my own contribution from (2007).

