On the generation of measures of entropy, divergence and complexity [Question:

Complexity := Description cost ?]

Flemming Topsøe University of Copenhagen Department of Mathematical Sciences Presentation at the Entropy workshop in Lausanne, September 8-9, 2008 Classical Information Theory: Complexity, entropy and divergence: either

$$\Phi(x,y) = \sum x_i \ln \frac{1}{y_i},$$
$$H(x) = \sum x_i \ln \frac{1}{x_i},$$
$$D(x,y) = \sum x_i \ln \frac{x_i}{y_i}.$$

over $X = Y = M^1_+(\mathbb{A})$ or (often better!)

$$\Phi(x,y) = \sum x_i y_i,$$

$$H(x) = \Phi(x,\hat{x}),$$

$$D(x,y) = \Phi(x,y) - H(x)$$

over $X = M^1_+(\mathbb{A})$, $Y = K(\mathbb{A})$ and with response $x \curvearrowright \hat{x} = y$ defined by $y_i = \ln \frac{1}{x_i}$ where $K(\mathbb{A})$ is the set of code length functions over \mathbb{A} , functions y satisfying Kraft's inequality $\sum e^{-y_i} \leq 1$.

x's: "truth"; y's: Belief, expectation, descriptor...

Axioms for Complexity, entropy, divergence.

Strategy sets are X, Y, a map $x \curvearrowright \hat{x}$ of X into Y gives the response. $MOL(X) = \{molecular measures\}$ $= \{\alpha \in M^1_+(X) | supp(\alpha) \text{ finite } \}.$

Axiom 1 Linking: $\Phi(x, y) = H(x) + D(x, y)$ with $D \ge 0$ and $D(x, y) = 0 \Leftrightarrow y = \hat{x}$. Axiom 2 Affinity: X is convex and Φ affine in its first variable: For $y \in Y$, $\alpha \in MOL(X)$, $\Phi\left(\sum_{x \in Y} \alpha_x x, y\right) = \sum_{x \in Y} \alpha_x \Phi(x, y)$.

First consequences: Introduce barycentre $b(\alpha) = \sum_{x \in X} \alpha_x x$, and associated information rate

$$I(\alpha) = \sum_{x \in X} \alpha_x D(x, \widehat{b(\alpha)}).$$

Concavity and convexity properties:

Let
$$\alpha \in MOL(X)$$
. Then

$$H\left(\sum_{x \in X} \alpha_x x\right) = \sum_{x \in X} \alpha_x H(x) + I(\alpha)$$
and, if $H(b(\alpha)) < \infty$, then, for every $y \in Y$,

$$\sum_{x \in X} \alpha_x D(x, y) = D\left(\sum_{x \in X} \alpha_x x, y\right) + I(\alpha)$$
(*)

(*) is the compensation identity. Only depends on D!

Special case of information rate gives Jensen-Shannon divergence:

 $JSD(x_1, x_2) = \frac{1}{2}D(x_1, \hat{x}) + \frac{1}{2}D(x_2, \hat{x})$ with $x = \frac{1}{2}x_1 + \frac{1}{2}x_2$. Often defines the square of a metric!

Problems/ opportunities

- 1. good examples (+proofs!) and counterexamples
- 2. isometrically embeddable in Hilbert space?
- 3. new non-standard entropy inequalities!
- 4. quantum case?

Proposition JSD is the square of a metric if and only if, for every x_1, x_2, x_3

$$\sum_{k=1}^{3} \left([ij]^2 - 2[ik][jk] + 2[ij][k] - [i][j] \right) \le 0$$

where

$$[ij] = H(\frac{1}{2}x_i + \frac{1}{2}x_j)$$
 and $[i] = [ii] = H(x_i)$.

Models and exponential families For $X_0 \subseteq X$, $\gamma_{\Phi}(X_0)$ denotes two-person zero-sum game over $X_0 \times Y$ with Φ as objective function, Player I as maximizer and Pl. II as minimizer. Write $\gamma_{\Phi}(X_0) \in G \top E(x, y)$ if γ_{Φ} is in equilibrium with (x, y) as optimal strategies. From Nash's saddle-value theorem:

Theorem A given pair (x_0, y_0) is an optimal pair for a subgame in equilibrium *iff* $\Phi(x_0, y_0) \in \mathbb{R}$ and $y_0 = \hat{x}$. If so, the possible models are all X_0 with $\{x_0\} \subseteq X_0 \subseteq \{\Phi^{y_0} \le h\}$ with $h = \Phi(x_0, y_0)$.

Natural models (genus-1 case): are the non-empty level-sets: $L^f(h) = \{\Phi^f = h\} = \{x | \Phi(x, f) = h\}$ Let \mathcal{L}^f = class of non-empty models of the form $L^f(h)$. The associated exponential family is the family $\mathcal{E}(f) = \{y | \forall L \in \mathcal{L}^f \exists c \in \mathbb{R} : L \subseteq L^y(h)\}.$

 $y \in \mathcal{E}(f), y = \hat{x} \Rightarrow L^{f}(\Phi^{y}(x)) \in \mathsf{GTE}(x, y)$ **Problems:** Generalized notions needed, relation to standard theory, to weaker notions of equilibrium etc.

Reminder: Games, some general considerations

 $\Phi: X \times Y \to \mathbb{R}$ defines a two-person zero-sum game, γ_{Φ} . It has Φ as objective function (complexity!). Player I, a maximizer, chooses $x \in X$, Player II, a minimizer, chooses $y \in Y$. Specific and global values:

$$\operatorname{val}_{\mathrm{I}}(x) = \inf_{y \in Y} \Phi(x, y) = \inf \Phi_{x} \left(\operatorname{entropy!} \operatorname{H}(x) \right)$$
$$\operatorname{val}_{\mathrm{II}}(y) = \sup_{x \in X} \Phi(x, y) = \sup \Phi^{y} \left(\operatorname{risk!} \operatorname{R}(y) \right)$$
$$\operatorname{val}_{\mathrm{I}} = \sup_{x \in X} \operatorname{val}_{\mathrm{I}}(x), \quad \operatorname{val}_{\mathrm{II}} = \inf_{y \in Y} \operatorname{val}_{\mathrm{II}}(y).$$
$$y \text{ is an optimal response to } x \text{ (or } x \text{ matches } y) \text{ if } y \in \widehat{x} = \operatorname{argmin} \Phi_{x}.$$

Redundancy: Compare the potentially possible with the actually achieved to obtain Player-I redundancy and Player-II redundancy:

$$\delta_{\mathbf{I}}(x,y) = \operatorname{val}_{\mathbf{II}}(y) - \Phi(x,y),$$

$$\delta_{\mathbf{II}}(x,y) = \Phi(x,y) - \operatorname{val}_{\mathbf{I}}(x) \left(\operatorname{divergence!} D(x,y) \right).$$

With span $(x, y) = \text{val}_{\text{II}}(y) - \text{val}_{\text{I}}(x)$, span $(x, y) = \delta_{\text{I}}(x, y) + \delta_{\text{II}}(x, y)$, hence: val_{\text{I}} \leq \text{val}_{\text{II}} (minimax inequality).

Game Theoretical Equilibrium: if $val_{I} = val_{II} \in \mathbb{R}$. Ideally: GTE applies and optimal strategies exist, say (x_0, y_0) . Notation: $\gamma_{\Phi} \in GTE(x_0, y_0)$.

Saddle-value theorem (Nash): Assume that $\Phi(x_0, y_0) \in \mathbb{R}$. Then $\gamma_{\Phi} \in GTE(x_0, y_0)$ *iff* $\forall (x, y) : \Phi(x, y_0) \leq \Phi(x_0, y_0) \leq \Phi(x_0, y)$. (FT): If so, abstract pythagorean inequalities hold: $\forall x : val_I(x) + \delta(x, y_0) \leq val(\gamma_{\Phi})$ (forward ineq.), $\forall y : val(\gamma_{\Phi}) + \delta(x_0, y) \leq val_{II}(y)$ (backward ineq.). Here, $\delta = \delta_I$, δ_{II} or even $\delta_I + \delta_{II}$. [symmetry!]

Proof: With $\delta = \delta_{I} + \delta_{II}$, the inequalities become identities! \Box

Corollary: Assume that $\Phi(x_0, y_0) \in \mathbb{R}$. Then, if y_0 is an optimal response to x_0 and if $\Phi(x, y_0)$ is independent of $x \in X$, $\gamma_{\Phi} \in \mathsf{GTE}(x_0, y_0)$. [asymmetry!]

Creation of Information Triples

Atomic Triples, Integration

 (ϕ, h, d) with X = Y =real interval, and response the identity leads to atomic information triples.

Example 1 y_0 a prior,

$$\phi(x, y) = (x - y)^2 - (x - y_0)^2,$$

$$h(x) = -(x - y_0)^2,$$

$$d(x, y) = (x - y)^2.$$

Example 2

$$\phi(x, y) = x \ln \frac{1}{y},$$
$$h(x) = x \ln \frac{1}{x},$$
$$d(x, y) = x \ln \frac{x}{y}.$$

Examples are of Bregman type: for "smooth" strictly concave h, (ϕ , h, d) with ϕ and d defined by

$$\phi(x, y) = h(y) + (x - y) h'(y),$$

$$d(x, y) = h(y) - h(x) + (x - y) h'(y),$$

is an atomic information triple.

A natural process of integration leads to more general triples. Given measure μ on set T and then some function space $X \subseteq I^T$, take identity as response and define (Φ , H, D) by integration, i.e.

$$\Phi(x,y) = \int_T \phi(x(t), y(t)) d\mu(t)$$

and similarly for H and D. ...

By integration, Example 1 extends to a triple over Hilbert space:

$$\Phi(x,y) = \|x - y\|^2 - \|x - y_0\|^2,$$

$$H(x) = -\|x - y_0\|^2,$$

$$D(x,y) = \|x - y\|^2.$$

And similarly, Example 2 leads to standard discrete information theory by integration w.r.t. counting measure over an "alphabet".

Equivalence, Relativization

Equivalence results from adding to both Φ and to H an affine function defined on X

If (Φ, H, D) is given and you add $x \curvearrowright -\Phi(x, y_0)$, you obtain the relativized triple with y_0 as prior :

$$\begin{split} \tilde{\Phi}(x,y) &= \mathsf{D}(x,y) - \mathsf{D}(x,y_0) \\ \tilde{\mathsf{H}}(x) &= - \mathsf{D}(x,y_0) \\ \tilde{\mathsf{D}}(x,y) &= D(x,y) \,. \end{split}$$

(for this, it suffices that D satisfies the compensation identity). Leads to Kullback's minimum information discrimination principle, related to the problem of proper updating.

Randomization

Start with (Φ, H, D) . Allow randomized strategies $\alpha \in MOL(X)$ for Player I. Put $b(\alpha) = \sum_{x \in X} \alpha_x x$. Randomization then gives:

$$\widehat{\alpha} = \widehat{b(\alpha)},$$

$$\widetilde{\Phi}(\alpha, y) = \sum_{x \in X} \alpha_x \Phi(x, y),$$

$$\widetilde{H}(\alpha) = \sum_{x \in X} \alpha_x \Phi(x, \widehat{b(\alpha)}),$$

$$\widetilde{D}(\alpha, y) = D(b(\alpha), y).$$

By equivalence you obtain:

$$\begin{split} \tilde{\Phi}_0(\alpha, y) &= \sum_{x \in X} \alpha_x \, \mathsf{D}(x, y) \,, \\ \tilde{\mathsf{H}}_0(\alpha) &= \sum_{x \in X} \alpha_x \, \mathsf{D}(x, \widehat{b(\alpha)}) \,, \\ \tilde{\mathsf{D}}_0(\alpha, y) &= \mathsf{D}(b(\alpha), y) \,. \end{split}$$

Singling out special entropy functions

Put yourself in the shoes of the physicist who is planning observations and see if you can accept the considerations below.

1 Events have three kinds of assignments, related to, respectively, truth, belief and experience. Truth- and belief assignments are numbers in [0, 1].

2 A characteristic feature of my world is that there is an interaction between truth and belief expressed by a function π on $[0, 1] \times [0, 1]$. The idea is (see table!) that $\pi_i = \pi(x_i, y_i)$.

A	Truth	Belief	Experience
•	•	٠	•
•	•	•	•
•	•	•	•
i	x_i	y_i	π_i
•	•	•	•
•	•	•	•
•	•	•	•

Example A: The classical world is a world of "no interaction", hence $\pi(x, y) = x$.

Example B: The black hole is a world of "no information", hence $\pi(x, y) = y$.

3 I believe that my world is consistent in the sense that $\sum_{i \in \mathbb{A}} \pi_i = 1$ whenever $(x_i)_{i \in \mathbb{A}}$ and $(y_i)_{i \in \mathbb{A}}$ are probability assignments and $\pi_i = \pi(x_i, y_i)$.

Note: Then interaction must be sound, i.e. a perfect match gives no change: For all $x \in [0, 1]$, $\pi(x, x) = x$.

4 Any event I may observe entails a certain effort on my part. The effort must only depend on my belief, y, and is denoted by $\kappa(y)$. The function κ , is the coder (or descriptor). Of course: $\kappa(1) = 0$.

5 Separability applies: My total effort related to observations from a particular situation is the sum of individual contributions. Weights must be assigned to each contribution according to the weight with which I will experience the various events. The total effort is the complexity (or description cost), Φ . Thus:

$$\Phi(x,y) = \sum_{i \in \mathbb{A}} \pi(x_i, y_i) \kappa(y_i)$$

with $x = (x_i)_{i \in \mathbb{A}}$ the truth- and $y = (y_i)_{i \in \mathbb{A}}$ the belief-assignments associated with the events.

6 I will attempt to minimize complexity and shall appeal to the principle that complexity is the smallest when belief matches truth, $((y_i)_{i \in \mathbb{A}} = (x_i)_{i \in \mathbb{A}})$. As

$$\sum_{i\in\mathbb{A}}\pi(x_i,y_i)\kappa(y_i)-\sum_{i\in\mathbb{A}}x_i\kappa(x_i)$$

represents my frustration, the principle says that frustration is the least, in fact disappears, when $(y_i)_{i\in\mathbb{A}} = (x_i)_{i\in\mathbb{A}}.$

Note: Given $x = (x_i)_{i \in \mathbb{A}}$, minimal complexity is what I am aiming at. It is an important quantity. I will call it entropy:

$$\mathsf{H}(x) = \inf_{y=(y_i)_{i\in\mathbb{A}}} \Phi(x,y) = \sum_{i\in\mathbb{A}} x_i \kappa(x_i) \,.$$

Frustration too looks important. Perhaps I better call it divergence:

$$\mathsf{D}(x,y) = \Phi(x,y) - \mathsf{H}(x) \, .$$

Can you accept all this? If so, you can conclude:

Theorem: Modulo regularity conditions and a condition of normalization, $q = \pi(1,0)$ must be nonnegative and π and κ uniquely determined from qby:

$$\pi(x,y) = qx + (1-q)y,$$

$$\kappa(y) = \ln q \frac{1}{y},$$

where the *q*-logarithm is given by

$$\ln q x = \begin{cases} \ln x \text{ if } q = 1, \\ \frac{x^{1-q}-1}{1-q} \text{ if } q \neq 1. \end{cases}$$

Hence entropy is given by

$$\mathsf{H}(x) = \sum_{i \in \mathbb{A}} x_i \ln q \frac{1}{x_i}.$$

- explain interaction on physical grounds,
- suggest possibilities for an accompanying process of real coding,

• illuminate the good sense (if any :-)) of the views put forward in well studied concrete cases (possibly distinguishing between the cases $0 < q < 1, 1 < q \leq 2$ and q > 2).

Let us look into the following:

- proof of theorem
- connection with Bregman generation
- relaxing the condition of consistency.

Indication of proof of main result

Functions π and κ are assumed continuous on their domains and continuously differentiable and finite valued on the interiors of their domains. Normalization of κ means that $\kappa(1) = 0$ and that $\kappa'(1) = -1$.

You can exploit the consistency condition to show that, for all $(x, y) \in [0, 1]^2$,

$$\pi(x,y) = qx + (1-q)y$$

with $q = \pi(1, 0)$.

Consider a fixed finite probability vector $(x_i)_{i \in \mathbb{A}}$ with all x_i positive. Varying $(y_i)_{i \in \mathbb{A}}$ we find, via the introduction of a Lagrange multiplier, that f given by

$$f(x) = \frac{\partial \pi}{\partial y}(x, x)\kappa(x) + \pi(x, x)\kappa'(x)$$

is constant on $\{x_i | i \in \mathbb{A}\}$. Exploiting this for threeelement alphabets \mathbb{A} shows that $f \equiv -1$. Then the formula for κ is readily derived. **Bregman generation:** Look at concave generator h_q and associated "Bregman quantities":

$$h_{q}(x) = x \ln q \frac{1}{x},$$

$$\phi_{q}(x, y) = h_{q}(y) + (x - y)h'_{q}(y),$$

$$d_{q}(x, y) = h_{q}(y) - h_{q}(x) + (x - y)h'_{q}(y),$$

$$\Phi_{q}(P, Q) = \sum_{a \in \mathbb{A}} \phi_{q}(p_{i}, q_{i}),$$

$$H_{q}(P) = \sum_{a \in \mathbb{A}} h_{q}(p_{i}),$$

$$D_{q}(P, Q) = \sum_{a \in \mathbb{A}} d_{q}(p_{i}, q_{i}).$$

-compare with "interaction quantities":

$$\begin{aligned} \pi_q(x,y) &= qx + (1-q)y \text{ (interaction)}, \\ \kappa_q(x) &= \ln \frac{1}{q_x} \text{ (coder)}, \\ \xi(x,y) &= y - x, \text{ (corrector)}, \\ \Phi_q(P,Q) &= \sum_{a \in \mathbb{A}} \pi_q(p_i, q_i)\kappa_q(q_i) \\ &= \sum_{a \in \mathbb{A}} \left(\pi_q(p_i, q_i)\kappa_q(q_i) + \xi(p_i, q_i) \right), \\ \mathsf{H}_q(P) &= \sum_{a \in \mathbb{A}} p_i \kappa_q(p_i), \\ \mathsf{D}_q(P,Q) &= \sum_{a \in \mathbb{A}} \left(\pi_q(p_i, q_i)\kappa_q(q_i) - p_i \kappa_q(p_i) \right) \\ &= \sum_{a \in \mathbb{A}} \left(\pi_q(p_i, q_i)\kappa_q(q_i) - p_i \kappa_q(p_i) + \xi(p_i, q_i) \right). \end{aligned}$$

Here, ξ is the corrector introduced so that the Bregmanand interaction- quantities are synchronized. Indeed, then the individual quantities coincide, in particular,

$$\pi_q(p_i, q_i)\kappa_q(q_i) + \xi(p_i, q_i) = \phi_q(p_i, q_i).$$

Note that the corrector is independent of q. When seeking further physically founded explanations for the whole set-up it may well be important to take the corrector into account.

Quantities written out:

$$\Phi(P,Q) = \frac{1}{1-q} \left(-1 + \sum_{i \in \mathbb{A}} \left(q p_i q_i^{q-1} + (1-q) q_i^q \right) \right),$$

$$H(P) = \frac{1}{1-q} \left(-1 + \sum_{i \in \mathbb{A}} p_i^q \right),$$

$$D(P,Q) = \frac{1}{1-q} \sum_{i \in \mathbb{A}} \left(q p_i q_i^{q-1} - p_i^q + (1-q) q_i^q \right).$$

Relaxing the condition of consistence: If we only assume that π is sound, i.e. that $\pi(x, x) = x$ for $0 \le x \le 1$, then other forms of interaction may leed to Tsallis-entropy as well. This happens with

$$\pi(x,y) = x^q y^{1-q}.$$

Thus, many quite different forms of interaction may give the same entropy function. But of course, the complexity- and divergence-functions will be different.

References in brief:

• Havrda and Charvát (1967): first appearence in the mathematical literature

• Lindhard and Nielsen (1971) and Lindhard (1974): first appearence in the physical literature

• Tsallis (1988): well known (:-)) take-off point which triggered much research and debate.

As recent contributions relevant for the present research, I mention Naudts (2008) and my own contribution from (2007).