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Part I



Nature and Observer

Nature and Observer interact in a world;
Nature holds the truth;
Observer seeks the truth but is confined to belief;
A situation involves observations from an experiment;
In any situation, Observer strives for knowledge.

A view and an assumption:
knowledge is the synthesis of extensive experience –
and knowledge can be derived from truth and belief.

Notation pertaining to any given situation:
x for a truth instance
y for a belief instance
z for a knowledge instance

In more detail, we assume: There is a function Π,
the (global) interactor such that z = Π(x, y).

A world,W, is often characterized only by the
interactor and we writeW =WΠ.



Examples of worlds

The interactor

Π1(x, y) = x

defines a classical world , W1. In this world, “truth is
observable” or you may say that “truth is learnable” . It
may be called the Boltzmann-Gibbs-Shannon world .
As another extreme,

Π0(x, y) = y

defines a black hole ,W0. In this world “what you see
is what you believe” (WYSIWYB). No reflection of a
truth which lies outside you can be observed.

If the set of possible truth instances and the set of
possible belief instances are both embeddable in the
same linear space, we can also consider, for any real
parameter q, the interactor

Πq(x, y) = qx + (1− q)y ;

this defines the Tsallis world Wq.



control, descriptor, description effort

The focus of Observer could be, either

2 speculative, directed at the truth: “what could the
truth be?” Task: to determine, in a Bayesean way,
say based on prior knowledge a good belief instance

or
2 constructive, directed at the question: “What can
I do about it?” Task: design of experiments , aim-
ing at only having to allocate a low effort on the way
to knowledge when making observations associated
with the suggested experiments.

Regarding the second task: key objects we call con-
trol instances or simply controls (w). They should tell
Observer how he can “control” a given situation. Their
determination depends on an overall strategy for de-
scription , which will, typically, be adapted to the world
once and for all. (more details next slide)

· · · · · · · · ·
NOTE: Other names could be codes, code length functions, de-

scription instances – reason for my choice will be clear later.



Key assumptions: Many overall strategies for obser-
vation are available. Each such strategy is called a
descriptor (κ). Having selected κ (by adapting it to the
world), there is a bijection between belief instances
and control instances, written

y
κ
←→ w or w = ŷ or y = w̌ .

For each descriptor, there is a function Φ, description
effort (or cost) , which determines the effort required
by Observer in any situation with truth- and belief in-
stances x and y when using the overall strategy κ.
This is denoted by either of the two expressions

ΦΠ(x, y|κ) or ΨΠ(x, w|κ) ,

it being assumed that y
κ
←→ w.

We ought to write WΠ,Φ or WΠ,κ when characteriz-
ing the world. However, for examples considered, we
shall see that κ and then also Φ are uniquely deter-
mined in a natural way from the interactor Π. Thus we
only need the notationWΠ (orW if Π is understood).



How can Observer select κ? PMP!

All interactors which we will consider will be sound ,
i.e. Π(x, y) = x when belief matches truth (y = x).

A variational principle: Consider WΠ. Among all
descriptors κ, Observer should choose one which sat-
isfies the perfect match principle (PMP): description
effort should be the least when belief matches truth ,
i.e. ΦΠ(x, y|κ) ≥ ΦΠ(x, x|κ) should hold.

Equivalently, PMP says ΨΠ(x, ŷ) ≥ ΨΠ(x, x̂). If
∃κ unique s.t. PMP holds, κ is the ideal descriptor
forWΠ. Then write ΦΠ(x, y) and ΨΠ(x, w) (drop κ)
and define entropy, divergence and redundancy by

HΠ(x) = ΦΠ(x, x) (minimal description effort),
DΠ(x, y) = ΦΠ(x, y)−HΠ(x),
RΠ(x, w) = ΨΠ(x, w)−HΠ(x).

For divergence, PMP says DΠ(x, y) ≥ 0. This is the
fundamental inequality (FI). The worldWΠ is regular
if DΠ(x, y) = 0⇔ y = x,. If not,WΠ is singular .



finally: examples!

Relativization in a geometrical model: Simple mod-
els are obtained in a classical world when truth-, belief-
and control-instamces are of the same type and the
ideal descriptor is the identity map (ŷ = y for all y).
As an example, take x- and y-instances as elements
of a Hilbert space and let Φ measure squared dis-
tance relative to a prior y0:

Φ(x, y) = ‖x− y‖2 − ‖x− y0‖
2 .

(If you replace y by ŷ and only consider surjective
maps y 7→ ŷ as descriptors, the identity map is eaily
seen to be the only descriptor satisfying the PMP).

For this example,
H(x) = −‖x− y0‖

2 and D(x, y) = ‖x− y‖2.
Maximizing entropy is the same as minimizing the dis-
tance to y0.



Probabilistic modeling, the world Wπ,κ

Now, x’s and y’s are probability distributions over an
alphabet A, z’s are functions over A. A technical as-
sumption: xi > 0 ⇒ yi > 0. The local interactor π

determines Π by
(

Π(x, y)
)

i
= π(xi, yi) for i ∈ A.

The descriptor κ is smooth on [0,1], κ(1) = 0 and
κ′(1) = −1 (normalization ). We assume that π is
sound, (π(s, s) = s), finite on [0,1]×]0,1], smooth
on ]0,1[×]0,1[, continuous on [0,1]2 \ {(0,0)}.
Below, zi = π(xi, yi) and wi = κ(yi).

x y z control w local
A truth belief knowledge (codelgth.) effort φ

· · · · · ·
i xi yi zi wi ziwi

· · · · · ·

Φ(x, y|κ) =
∑

i∈A

ziwi =
∑

i∈A

π(xi, yi)κ(yi)

Local effort is the function φ(s, t) = π(s, t)κ(t).



NOTE: No reference to coding!
Let us remind ourselves how things look with coding
for the BGS-world and the standard descriptor
(measuring in bits).

1. i x y code w φ

a 1:2 1:4 00 2 bit 1
b 1:4 1:4 01 2 bit 1/2
c 1:8 1:4 10 2 bit 1/4
d 1:8 1:4 11 2 bit 1/4

2. i x y code w φ

a 1:2 1:2 0 1 bit 1/2
b 1:4 1:4 10 2 bit 1/2
c 1:8 1:8 110 3 bit 3/8
d 1:8 1:8 111 3 bit 3/8

Note that (total) description effort, Φ, is the average
of the w’s and the sum of the φ’s.

Case 1: Φ = 2.
Case 2: Φ = 7

4, in fact, this is optimal, so H = 7
4

when the true probability vector is as stated.
The above points to the fact that with descriptor
t 7→ log 1

t
, PMP holds for the classical BGS-world.



PMP forWπ

There are many possible interactors, but typically, they
fall in families . The q-family consists of interactors of
the form:

πξ
q(s, t) = ξ−1

(

πq

(

ξ(s), ξ(t)
)

)

for some one-to-one function ξ. For ξ the identity we
find πq(s, t) = qs + (1 − q)t, for ξ the natural loga-
rithm we find πG

q (s, t) = sqt1−q.

An interactor is consistent if
∑

i zi = 1 for all proba-
bility vectors x and y with z = Π(x, y).

If π is consistent, then π ≡ πq for some q ∈ R

The interactors π
ξ
q are ξ-consistent. (just a definition).



Theorem. Let π be an interactor, denote by χ the func-
tion on ]0,1[ defined by

χ(t) =
∂π

∂t
(t, t)

and assume that χ is bounded in the vicinity of t = 1.
Then, there can only be one descriptor such that PMP
holds, viz., in ]0,1[, the solution to the differential
equation

χ(t)κ(t) + tκ′(t) = −1

for which κ(1) = limt→1 κ(t) = 0.

Proof Assume (π, κ) satisfies PMP. Put

f(t) = χ(t)κ(t) + tκ′(t) .

Consider a fixed probability vector x = (x1, x2, x3)

with positive point probabilities. By PMP, F given by

F(y) = F(y1, y2, y3) =
3

∑

1

π(xi, yi)κ(yi)



on ]0,1[×]0,1[×]0,1[ assumes its minimal value for
the interior point y = x when restricted to probabil-
ity distributions. As standard regularity conditions are
fulfilled, there exists a Lagrange multiplier λ such that

∂

∂yi

(

F(y)− λ
3

∑

1

yi

)

= 0 for i = 1,2,3

when y = x. This shows that f(x1) = f(x2) =

f(x3).

Take (x1, x2, x3) = (1
2, x, 1

2 − x) for x ∈]0, 1
2[ and

conclude that f is constant on ]0, 1
2]. Then consider

a value x ∈]12,1[ and the probability vector (x, 1
2(1−

x), 1
2(1−x)) and conclude that f(x) = f(1

2(1−x)).
As 0 < 1

2(1−x) < 1
2, we conclude that f(x) = f(1

2).
Thus f is constant on ]0,1[. By letting t → 1 in the
differential equation, we conclude that the value of the
constant is −1. 2



Given (π, κ), the divergence generator is the function
δ = δπ,κ given by

δ(s, t) =
(

π(s, t)κ(t) + t
)

−
(

sκ(s) + s
)

.

By the pointwise fundamental inequality , PFI, we un-
derstand that δ(s, t) ≥ 0 holds for every (s, t) ∈

[0,1]×]0,1]. When so, then, for every (x, y),

Φπ(x, y|κ) + 1 =
∑

{i|yi>0}

(

π(xi, yi)κ(yi) + yi

)

≥
∑

{i|yi>0}

(

π(xi, xi)κ(xi) + xi

)

=
∑

i∈A

(

π(xi, xi)κ(xi) + xi

)

= Φπ(x, x|κ) + 1 ,

and we conclude that PMP holds.

So PMP follows from PFI.

Conjecture: The converse is also true.



The close relation btw. PMP and PFI makes us define
adjusted notions of local as well as total description
effort:

φ̃(s, t) = φ(s, t) + t

Φ̃(x, y) =
∑

i∈A

φ̃(xi, yi) .

The added term, t, in φ̃ is interpreted as the contribu-
tion to the total overhead due to a basic event with be-
lieved probability t. Total overhead is always

∑

yi =

1. In other words, the normalization κ′(1) = −1

implies that overhead cost is the unit we work with.
Adjusting also the entropy function, one finds that ad-
justed entropy is always bounded below by the over-
head cost, 1 nat.

OBS: Knowing the descriptor does not determine the
world. Several interactors give the same descriptor.
Without going into details, we mention that the inter-
actors of the form π

ξ
q determine the same ideal de-

scriptor as πq (q fixed ≥ 0).



The Tsallis family

The deformed logarithms lnq are (Tsallis 1994):

lnq t =







ln t if q = 1
1

1−q

(

t1−q − 1
)

otherwise .

Theorem Assume π is consistent. Then, π = πq with
q = π(1,0), hence Wπ = Wq. If q < 0, PMP fails
whatever the descriptor. If q ≥ 0, ideal descriptor is

κq(y) = lnq
1

y
.

All worldsWq with q > 0 are regular,W0 is singular,
in fact, D0 ≡ 0.

Proof The first part we know already. Fix q. Then
χ = 1 − q. Solving the differential equation, we find
that only κq could work. If q < 0, PMP fails by easy
examples. To check PMP when q ≥ 0, we verify PFI.
For q = 0, δ0(s, t) = 0 when t > 0, hence PFI holds



(but δ0(s,0) = −1 for s > 0). Then assume q > 0.
PFI for q = 1 is classical. For remaining cases, write

δq(s, t) =
q

1− q
stq−1 + tq −

1

1− q
sq .

Apply the GA-inequality and PFI follows (consider the
cases 0 < q < 1 and q > 1 separately and collect
the two positive terms). 2

Key formulas for Tsallis case are really:
πq(s, t) = qs + (1− q)t and κq(t) = lnq

1
t

in connection with the general formulas:
Φ(x, y) =

∑

i π(xi, yi)κ(yi), H(x) =
∑

i xiκ(xi)

D(x, y) = Φ(x, y)−H(x) =
∑

i δ(xi, yi) with
δ(s, t) =

(

π(s, t)κ(t) + t
)

−
(

sκ(s) + s
)

.
Of course, if you insist, here are the concrete formulas:

Φq(x, y) =
∑

i∈A

(

q
1−qxiy

q−1
i + y

q
i −

1
1−qxi

)

Hq(x) = 1
1−q

∑

i∈A(x
q
i − xi) = 1

1−q

(

∑

i∈A x
q
i − 1

)

Dq(x, y) =
∑

i∈A

(

q
1−qxiy

q−1
i + y

q
i −

1
1−qx

q
i

)



On the significance of κ

For a Tsallis world, the ideal descriptor can be char-
acterized in two ways:
• Direct view: Given t ∈ [0,1], κ(t) is the effort
needed in nats in order to describe an event with prob-
ability t.
• Reversed view: Consider pr : [0,∞[→ [0,1], de-
fined as the inverse function of κ (extended properly if
κ(0) <∞). Call this function either the
κ-reciprocal-exponential or the κ-probability checker .
Then, given a ≥ 0, you can ask the question: “how
complex events can I describe with access to a nats?” .
The lower probability, the more complex the event.
The answer is: You can describe any event with a
probability ≥ pr(a).



Part II



Nature versus Observer

The setting:

A regular world W with interactor Π and descriptor
satisfying PMP. Description effort is Φ(x, y) or, better,
in terms of controls, Ψ(x, w).

Consider a two-person zero-sum game with Nature
and Observer as players and with truth- and control
instances as available strategies. They fight over the
objective function , taken to be description effort Ψ(x, w),
with Nature as maximizer and Observer as minimizer .

The values of the game for, respectively Nature and
Observer are

sup
x

inf
w

Ψ(x, w) and inf
w

sup
x

Ψ(x, w) .

But what are the sets of strategies over which sup’s
and inf’s are taken?



We assume that control instances range over a fixed
set, K, the Observer strategies , whereas the truth in-
stances may vary over a set, the preparation P , which
depends on the situation. It is the strategy set for Na-
ture . Note that the value for Nature is the maximum
entropy value

Hmax(P) = sup
x∈P

H(x) . (1)

The value for Observer is the minimal risk value

Rmin(P) = inf
w

R(w) with R(w|P) = sup
x∈P

Ψ(x, w) .

Notation: γ(P) for the game considered.

Note that Hmax(P) ≤ Rmin(P), the minimax in-
equality . If “=” holds (and is finite), the game is in
game theoretical equilibrium (GTE). An optimal strat-
egy for Nature is a truth instance in P with maximal
entropy. An optimal strategy for Observer is a control
w ∈ K with R(w) = Rmin.



Another concept of equilibrium: A control ε∗ is robust
if, for some h ∈ R, Ψ(x, ε∗) = h for all x ∈ P ; and h

is the level of robustness . Important connection:

Robustness lemma If x∗ ∈ P and ε∗ = x̂∗ is robust
with level h, then GTE holds for γ(P). The value of
γ(P) is h and the Pythagorean inequalities hold:

∀x ∈ P : H(x) + R(x, ε∗) ≤ Hmax(P)

∀w ∈ K : R(w) ≥ Hmax(P) + R(x∗, w) .

Proof [Really, an easy consequence of Nash’s sad-
dle value inequalities] By assumption, R(ε∗) = h =

Ψ(x∗, ε∗) = H(x∗), hence GTE holds with x∗ and
ε∗ as optimal strategies. For any x ∈ P , H(x) ≤

H(x) + R(x, ε∗) = Ψ(x, ε∗) = h and, for the other
inequality, R(w) ≥ Ψ(x∗, w), and result follows as
Ψ(x, w) = H(x) + R(x, w) (the linking identity ). 2

Standard form of Pythagorean inequality:
H(x) + D(x, x∗) ≤ Hmax(P) (Chentsov, Csiszár).



What can you know?

“which are the preparations Observer can realize i.e.
enforce on Nature?
“which are the experiments, Observer can perform?”

Answer: Basicly, Observer can choose one or more
controls and select associated levels . With just one
choice of w and h, the preparation is the level set

Lw(h) = {x|Ψ(x, w) = h} = {x|Ψw = h} ,

with Ψw for the marginal function.

Roughly: Observer decides on a way of looking at the
world via w. He uses w to arrange an experimental
set-up consisting of machinery, instruments and so
on, including a special handle which he uses to fix
the level of effort, h. This restricts the truth instances
to the set Lw(h). The scene is set, and observations
can begin with the reading of measuring instruments
etc. Observer may use the same experimental set-up



for several experiments by using the handle to fix a
desired level.

We take the non-empty finite intersections of level sets
to constitute the family of feasible preparations . For
simplicity we restrict attention to the level sets them-
selves (genus-1 type feasible preparations).

Why do the level sets play a central role? Because
1) they allow robustness considerations, 2) because
sub-level sets do. These sets are defined by

SLw(h) = {x|Ψ(x, w) ≤ h} = {Ψw ≤ h} .

maximal preparations Assume that WΠ is regu-
lar. Consider x∗ and w∗. Then GTE holds for some
γ(P) with x∗ and w∗ as optimal strategies iff h∗ =

Ψ(x∗, w∗) <∞ and w∗ = x̂∗. If so, the largest such
set is SLw∗(h∗).



Proof By Nash’ saddle value inequalities ,if P works,

∀x ∈ P∀w ∈ K : Ψ(x, w∗) ≤ Ψ(x∗, w∗) ≤ Ψ(x∗, w)

and Ψ(x∗, w∗) is finite. From right hand inequality
and regularity of WΠ, w∗ = x̂∗. The left hand in-
equality says that P ⊆ SLw∗(h∗). That all properties
hold for P = SLw∗(h∗) follows from sufficiency of the
saddle value inequalities and PMP. 2

To make ideas precise, let w be a control and denote
by Lw the family of non-empty sets of the form Lw(h).
The associated exponential family , denoted Êw is the
set of controls ε which are robust for all preparations
in Lw. In terms of belief instances this is the family
Ew of all belief instances x∗ which match one of the
controls in Ew (x∗ = ε̌ for some ε ∈ Ew).

From definitions and the robustness lemma you find:



Consider a preparation family Lw. Let x∗ be a truth
instance, put ε∗ = x̂∗ and assume that ε∗ ∈ Êw. Put
h = Ψ(x∗, w). Then γ(Lw(h)) is in GTE and has
x∗ and ε∗ as optimal strategies. In particular, x∗ is the
maximum entropy strategy for the preparation Lw(h).

Example 1: geometry

Recall: Hilbert space, classical world, prior y0, y
κ
←→

w means w = y, Φ(x, y) = ‖x − y‖2 − ‖x − y0‖
2,

H(x) = −‖x− y0‖
2 and D(x, y) = ‖x− y‖2.

Fix w 6= y0. Then Lw consists of all hyperplanes with
wy0 as normal and Êw = Ew consists of all y on the
line determined by w and y0. In this case our theo-
rems give the standard results on projections on a hy-
perplane and the standard Pythagorean (in)equalities.



Example 2: Tsallis world Wq

Below, the index q is suppressed. Fix y
κ
←→ w. Then

Lw consists of all preparations for which Ψw is con-
stant, i.e. all preparations P of the form

P = {x|∃h : Ψ(x, w) = h}

= {x|∃h :
∑

i

(

qxi + (1− q)yi

)

wi = h}

= {x|∃c :
(

qx + (1− q)y
)

· w = c}

= {x|∃c : x · w∗ = c}

For x ∈ P , also x · 1 = 1 holds. Thus, for any α, β,
x · (α + βw) is constant over P .

Conclusion: all controls of the form α + βw are in Êw

Let ε = α + βw and let ρ
κ
←→ ε. We must insist that

∑

i ρi = 1, i.e. that



∑

i

pr
(

α + βwi

)

= 1 .

The value of α for which this is true (if...) we denote
by α = LNZ(β). Write

ε(β) = LNZ(β) + βw and adjust β such that
∑

i

pr
(

LNZ(β) + βwi

)

wi

has the appropriate value . ...



What have we achieved?

• provided a transparent interpretation of Tsallis en-
tropy
• developed a basis for an abstract theory
• provided elements for establishing a bridge to infor-
mation geometry (?)
• clarifyed role of FI via PMP; focus on PFI as the nat-
ural basis for establishing FI and hence PMP
• identified the unit of entropy as an overhead
• answered the question “what can we know”
• found good (the right ?) definition of an exponential
family
• Stressed dual role of preparations and exponential
families
• brought games into the picture, thereby showing
how Nash’s general results pave the way to equilib-
rium and optimal strategies (even without introducing
Lagrange multipliers)
• separated Nature from Observer in key expressions



... and what can we still ask?

• interaction, how?
• how can we know the world we work in?
• control, how?
• coding interpretation possible ?
• ...


