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So said Kolmogorov (1983):
“Information theory

must
precede probability theory

and not be based on it”

Let us follow him!

Nature Observer
holds the truth! seeks the truth

does not have a mind! has a mind
an absolute YOU!

passive inventive



In so doing, I reveal nature of entropy and divergence:
• Entropy is minimal complexity
• Divergence measures discrepancy between

actual and minimal complexity
– and what then is complexity ?
• Complexity is whatever complexity should be

in any concrete situation.
– hmmm. So axiomatize based on game theoretical
thinking! — but why games?

- because they provide a perfect setting for the
modeling of conflict situations

Is that what information is about? yes(!?)
Which tools?

- the simplest are the most important:
two-person zero-sum games!

Modeling of un-symmetric conflict situations between
players, one having a mind, the other not - with focus:
complexity (Φ), entropy (H) and divergence (D)

or: pay-off (Ψ), maximal pay-off (Π), divergence (D)



• strategy sets X and Y (e.g. X=Y),
• connection X → Y written x y x̂ (e.g. x̂ = x),
• complexity Φ : X × Y →]−∞,∞] (or [0,∞]),
• entropy H : X →]−∞,∞] (or [0,∞]),
• divergence D : X × Y → [0,∞]

• and possibly a preparation X0 ⊆ X (or more!)

Axiom 1 (linking): For (x, y) ∈ X × Y ,
Φ(x, y) = H(x) + D(x, y) (linking identity) and
D(x, y) = 0 ⇔ y = x̂

Axiom 2 (affinity): X is convex and Φ affine in
first variable: Φ(

∑
aνxν, y) =

∑
aνΦ(xν, y)

Axiom 3 (semi-continuity): reference topology (X, τ) is
Hausdorff, algebraic operations continuous and, for any
(x0, y0), x y D(x, y0) and x y D(x0, x̂)

are τ -lower semi-continuous.
Axiom 4 (weak completeness): For a sequence
(xn) in X, put xn,m = 1

2xn + 1
2xm and

yn,m = x̂n,m. If “Cauchy property” D(xn, yn,m) → 0

as n, m →∞ then ∃x, (xnk)k≥1 such that xnk → x

strong convergence: xn � x if D(xn, x̂) → 0



Sometimes pay-off Ψ, maximal pay-off Π and Diver-
gence D as before are more natural to work with.
By “duality” you pass from the one system to the other:
(Φ,H,D) ↔ (Ψ,Π,D) with Φ = −Ψ, H = −Π.
We talk about information triples based on complexity
and information triples based on pay-off.

Example 1(classical information theory) A a discrete
alphabet, X = M1

+(A), set of probability distribu-
tions over A, Y = K(A), set of code length functions
over A, i.e. set of κ : A → [0,∞] such that Krafts
equality holds:

∑
i∈A exp(−κi) = 1. Let P y P̂ be

the bijection P ↔ κ with κi = ln 1
pi

, pi = exp(−κi).
With Φ as average code length and with

Φ(P, κ) = 〈κ, P 〉 =
∑
i∈A

piκi

H(P ) =
n∑

i=1

pi ln
1

pi

D(P, κ) =
n∑

i=1

pi ln
pi

qi
(here Q ↔ κ) 2



Example (geometric version of updating)

X = Y , a Hilbert space, with identity as connection.
Let y0 be a point in Y , the prior. With

Ψ(x, y) = ‖x− y0‖2 − ‖x− y‖2

Π(x) = ‖x− y0‖2

D(x, y) = ‖x− y‖2 ,

Axioms 1-4 hold. 2

For standard updating you will replace ‖x − y‖2 by a
standard divergence, say Kullback-Leibler divergence.
The reason why seemingly different objects can be
used for the same task lies in the common identities
fulfilled by these quantities. They involve entropy, di-
vergence and information rate I(·) (really the same
as mutual information ) and hold whenever Axioms 1
and 2 hold. Let MOL(X) be the set of probability
distributions over X with finite support. Then, for
α ∈ MOL(X), define

I(α) =
∑

x∈X

αx D(x, x̂)



Theorem (identities re concavity- and convexity)
(i) Let x =

∑
x∈X αxx be a convex combination of ele-

ments in X corresponding to α ∈ MOL(X). Then

H
( ∑

x∈X

αxx

)
=

∑
x∈X

αx H(x) + I(α) .

(ii) With notation as in (i), assume that H(x) < ∞ and
let y ∈ Y . Then∑

x∈X

αx D(x, y) = D(
∑

x∈X

αxx, y) + I(α) .

(iii) For elements α1, · · · , αm in MOL(X) with
barycentres x1 . . . , xm, and for any mixture α =∑m

1 wkαk with a barycentre x of finite entropy, the fol-
lowing identity holds:

I
( m∑

k=1

wkαk

)
=

m∑
k=1

wk I(αk) +
m∑

k=1

wk D(xk, x) .

Proof: (i) is trivial by linking and (i)⇒ (ii)⇒. (iii) 2



Consider (Φ,H,D) satisfying Axioms 1-4 and a
preparation X0. This defines two-person zero-sum
game γ(X0) with Φ as objective function, Observer
as minimizer and Nature as optimizer, but with re-
striction to strategies in X0. Some important notions:
• x ∈ X0: consistent strategy
• supx∈X0

infy∈Y Φ(x, y) = supx∈X0
H(x):

maximum entropy value, Hmax = Hmax(X0)

• infy∈Y supx∈X0
Φ(x, y) = infy∈Y R(y):

minimal risk, Rmin = Rmin(X0).
• minimax inequality: Hmax ≤ Rmin.
• equilibrium means that Hmax = Rmin < ∞.
• x MaxEnt-strategy: consistent x with H(x) = Hmax.
• A sequence (xn) of consistent strategies is

asymptotically optimal if limn→∞H(xn) = Hmax.
• x ∈ X is a Hmax-attractor if xn � x for

every asymptotically optimal sequence (xn).
• y ∈ Y Rmin-strategy if R(y) = Rmin(X0).
• (x∗, y∗) optimal pair: x∗ MaxEnt-strat., y∗ Rmin-strat.



Main Theorem X0 convex, Hmax(X0) < ∞. Then:
• Observer has unique optimal strategy y∗

• an Hmax-attractor x∗ exists and y∗ = x̂∗.
• Hmax-attractors are equivalent, hence unique if con-
nection is injective
• the game is in equilibrium: Hmax(X0) = Rmin(X0)

• for x ∈ X0, y ∈ Y strong inequalities hold:

H(x) + D(x, y∗) ≤ Hmax(X0)

Rmin(X0) + D(x∗, y) ≤ R(y) .

Application to updating: Consider (Φ,H,D) satisfy-
ing Axioms 1-4 with x y x̂ injective and, to simplify,
Φ finite. Let X0 ⊆ X be convex and let y0 ∈ Y be a
“prior”. Define:

Ψ(x, y) = D(x, y0)−D(x, y)

Π(x) = D(x, y0) .

Consider corresponding game. For y ∈ Y , let

Γ(y) = inf
x∈X0

Ψ(x, y)



guaranteed updating gain associated with y and let

Γmax = sup
y∈Y

Γ(y) , Dmin = inf
x∈X0

D(x, y0)

A strategy x∗ ∈ X is the generalized I-projection of
y0 on X0 if xn � x∗ for every sequence (xn) in
X0 which is asymptotically optimal in the sense that
limn→∞D(x, y0) = Dmin.

Theorem The game is in equilibrium: Γmax = Dmin.
There is a unique generalized I-projection x∗ of y0 on
X0 and y∗ = x̂∗ is the unique optimal strategy for Ob-
server: Γ(y∗) = Γmax. Furthermore, for (x, y) ∈
X0 × Y ,

D(x, y0) ≥ Dmin +D(x, y∗) ,

Γ(y) + D(x∗, y) ≤ Γmax .

This follows from applying main theorem to

(x, y) y −Ψ(x, y) = D(x, y)−D(x, y0)

x y H(x)−Φ(x, y0) = −D(x, y0)

(x, y) y Φ(x, y)−H(x) = D(x, y) .



Theorem Let X0 be a closed convex subset of the
Hilbert space Y and let y0 /∈ X0. Then there exists
a hyperplane which separates y0 from X0.

Proof: Take (Ψ,Π,D) as before:

Ψ(x, y) = ‖x− y0‖2 − ‖x− y‖2

Π(x) = ‖x− y0‖2

D(x, y) = ‖x− y‖2 ,

Conclude from main Theorem that the associated game
is in equilibrium. The value for Nature is
infx∈X0

‖x − y0‖2 which is positive by assumption.
Therefore, the value of the game for Observer must
also be positive, i.e.

sup
y∈Y

inf
x∈X0

(
‖x− y0‖2 − ‖x− y‖2

)
> 0 .

We conclude that there exists y ∈ Y such that

‖x− y0‖ > ‖x− y‖ for all x ∈ X0 .

This shows that the hyperplane of all x with the same
distance to y as to y0 separates y0 and X0. 2



Change focus from existence to identification. Key
to this: Nash equilibrium! Requires pair (x∗, y∗) ∈
(X0, Y ) such that saddle value inequalities Φ(x, y∗) ≤
Φ(x∗, y∗) ≤ Φ(x∗, y) hold for all (x, y) ∈ X0× Y . If
also Φ(x∗, y∗) < ∞, equilibrium follows with (x∗, y∗)
a (MaxEnt,Rmin)-pair. With our special assumptions
we find:

TheoremLet x∗ ∈ X0, put y∗ = x̂∗. Then the game
is in equilibrium with (x∗, y∗) as (MaxEnt,Rmin)-pair iff
H(x∗) < ∞ and Nash’s inequality
Φ(x, y∗) ≤ Φ(x∗, y∗) holds for all x ∈ X0.

Nash inequality gives strong inequalities (Pythagorean
ineq.).
Useful corollaries: Kuhn-Tucker type theorems (not
discussed here) and robustness lemma below. Given
preparation X0, y ∈ Y is robust if ∃c < ∞∀x ∈ X0 :
Φ(x, y) = c. Define exponential family:
E = E(X0) = {y|y robust }.

Lemma If x∗ is consistent and y∗ = x̂∗ robust then
(x∗, y∗) is a (MaxEnt,Rmin)-pair.

Only Axiom 1 required for this! Proof is easy.



Return to standard probabilistic setting:

Discrete alphabet A, both strategy sets = M1
+(A),

connection=identity. Now use notation: P , Q rather
than x, y and P for typical preparation. We aim at
discussing preparations given by linear constraints.
Given set f = (fν)1≤ν≤k of real functions on A. The
natural preparations are

Pa = {P |〈fν, P 〉 = aν for 1 ≤ ν ≤ k}

with a = (aν)1≤ν≤k ∈ Rk.
Natural exponential family:

E = {Q| Q robust for all the Pa} .

Question: which complexity measures ?
try to simplify search for distributions in E !



key idea: Take Φ of the form

Φ(P, Q) = ξQ

(
〈κ(Q), P 〉

)
where

(
κ(Q)

)
(i) = κ(qi) for i ∈ A thus

〈κ(Q), P 〉 =
∑
i∈A

piκ(qi) .

with assumptions:
•The ξQ’s increasing and concave (e.g. linear)
•the coder κ is smooth, decreasing, convex, κ(1) = 0

•Φ satisfies Axiom 1

classical: ξQ’s the identity map, κ(q) = ln 1
q

Then κ−1 is restriction of x y exp (−x) to [0,∞]. En-
tropy generated by this measure of complexity is stan-
dard BGS-entropy.



From previous page:

Φ(P, Q) = ξQ

(
〈κ(Q), P 〉

)
where

〈κ(Q), P 〉 =
∑
i∈A

piκ(qi) .

Trivial but key observation: any Q for which κ(Q) is a
linear combination of the constant function 1 and the
given functions f1, · · · , fk, i.e. of the form

κ(Q) = λ0 + λ1f1 + · · ·+ λkfk = λ0 + λ · f

for certain constants λ0 and λ = (λ1, · · · , λk), is a
member of E .

Motivated by this, fix constants λ = (λ1, · · · , λk) and
ask: ∃λ0, Q : κ(Q) = λ0 + λ · f? This amounts to
qi = κ−1(λ0+λ·f(i)). Summarizing what this leads
to we find:



Theorem (MaxEnt calculus) Let λ = (λ1, · · · , λk) be
given constants. Then “normally” , the equation∑

i∈A
κ−1

(
λ0 + λ · f(i)

)
= 1

has a solution, necessarily unique, and Q given by

qi = κ−1
(
λ0 + λ · f(i)

)
for i ∈ A

has the stipulated form, hence belongs to the exponen-
tial family E . This distribution is the MaxEnt-distribution
for Pa with a = (a1, · · · , ak) given by

aν =
∑
i∈A

qifν(i) for ν = 1, · · · , k

and, for this value of a,

Hmax(Φ,Pa) = ξQ(λ0 + λ · a) .

Theorem replaces and expands the standard recipe
for MaxEnt-calculations. Focus on λ0 rather than on
the classical partition function.

Which complexity measures?



Example The complexity measures

ΦB(P, Q) =
1

q − 1
+

∑ (
q
q
i −

q

q − 1
piq

q−1
i

)
ΦC(P, Q) =

1

1− q

∑
p
q
i (1− q

1−q
i )

ΦR(P, Q) =
1

1− q

( ∑
p
q
i∑

p
q
i q

1−q
i

− 1
)

.

all give Tsallis entropy. Only ΦB is good! 2

First restrict form of Φ: From

Φ(P, Q) = ξQ

(
〈κ(Q), P 〉

)
to

Φ(P, Q) = 〈κ(Q), P 〉+ ξ(Q) with

ξ(Q) =
∑
i∈A

ξ(qi) .

κ is the coder, ξ the corrector.



Generation of information triples à la Bregman:

Bregman generator: a strictly concave and smooth
real function h defined on [0,1] with h(0) = h(1) =
0 and h′(1) = −1.

From h we generate two more functions, φ = φ(p, q),
and d = d(p, q):

φ(p, q) = h(q) + (p− q) h′(q) ,

d(p, q) = h(q)− h(p) + (p− q) h′(q) .

Consider the internal functions, Φ = Φh, H = Hh
and D = Dh generated by φ, h and d:

Φ(P, Q) =
∑
i∈A

φ(pi, qi) ,

H(P ) =
∑
i∈A

h(pi) ,

D(P, Q) =
∑
i∈A

d(pi, qi) .



[ the slides ended here – orally I ended by stressing
the importance of not considering entropy alone, and
the essentials of using the method of generation à la
Bregman ]


