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information without probability

Inspiration: Ingarden and Urbanik: “... information seems
intuitively a much simpler and more elementary notion than
that of probability ... [it] represents a more primary step of
knowledge than that of cognition of probability ...”

Previous work: Kampé de Fériet, Kolmogorov, Jumarie,
Shafer and Vovk.

Areas involved: semiotics, philosophy, symbolic linguistics,
social information, learning theory, logic ...

Criticism of some of this: quite philosophical, not open to
quantitative analysis, impractical, of theoretical interest only,
not downward compatible with Shannon theory.

Recent inspiration: letter from Igor...
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interpretations first or axiomatics first?

Interpretations and operational definitions, of course!
But we are past that stage. So let us axiomatize!

• Ingredients: A set X , the state space, another set Y , the
action space, a map between them. x 7→ x̂ , the response.
Equivalence defined by x1 ≡ x2 ⇔ x̂1 = x̂2.

• More ingredients: A function Φ : X × Y 7→]−∞,∞],
description effort, a function H : X 7→]−∞,∞], entropy, a
function D : X × Y 7→ [0,∞], divergence.

Axiom 1 For all (x , y) ∈ X × Y :
Φ(x , y) = H(x) + D(x , y) (linking identity)
D ≥ 0 and D(x , y) = 0 ⇔ y = x̂ (fundamental inequality)

Classically: Φ Kerridge inaccuracy H Shannon entropy D Kullback-Leibler divergence

given by, respectively,
P

pi ln 1
qi

,
P

pi ln 1
pi

and
P

pi ln
pi
qi
.
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adding extra structure; convexity, topology
Axiom 2 X convex, Φ affine in x :
∀y ∈ Y , ∀α = (αx): Φ

( ∑
x αxx , y

)
=

∑
x αxΦ(x , y) .

α = (αx)x ∈ MOL(X ): αx ’s ≥ 0, finite support,
∑

x αx = 1.

Axiom 3 A topology τ on X renders algebraic operations
continuous. Further, for y0 ∈ Y , x 7→ D(x , y0) and for
x0 ∈ X , x 7→ D(x0, x̂) are lower semi-continuous.

Axiom 4 If (xn) is D-Cauchy , i.e. if D(xn, yn,m) → 0
for n, m → ∞ with yn,m = (1

2xn + 1
2xm)̂, then it has a

τ -convergent subsequence.

Write xn � x if D(xn, x̂) → 0 (strong convergence).

Observations: xn � x ⇒ D-Cauchy;
xn � x1, xn → x2 ⇒ x1 ≡ x2;
xn � x ⇒ xn → x if response is injective.
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consequences of Axioms 1 and 2

Put
∑

x αxx = x = b(α), the barycentre of α and define
information (transmission) rate as I(α) =

∑
x αx D(x , x).

Theorem α’s ∈ MOL(X ), β ∈ MOL(MOL(X )).
(1) H

( ∑
x αxx

)
=

∑
x αx H(x) + I(α) .

(2)
∑

x αx D(x , y) = D(
∑

x αxx , y) + I(α)

(3) I
( ∑

α βαα
)

=
∑

α βα I(α) + J(β) where

J(β) =
∑

α βα D
(
b(α), b(α0)̂

)
, α0 = b

( ∑
α βαα

)
.

Note: (1) OK. re (2): valid for all y if only H(x) < ∞.
re (3): OK if βα > 0 ⇒ H(b(α)) < ∞.

Proof (1): Look at rhs, use linking, then affinity.
(2): Add

∑
x αx D(x , y) to both sides of (1), apply linking

and affinity to rhs, subtract H(x) from both sides.
(3): Special case of (1) applied to new information triple. 2
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... continued
Note that standard concavity- and convexity results follow
directly from (1), (2) and (3).

Also note that, for the classical probabilistic setting, the
quantity I(α) for α of the form 1

2δx1 + 1
2δx2 is the nowadays

quite important Jensen-Shannon divergence. It is the square
of a metric – a central property of a type studied by
Österreicher and I. Vajda and others. First proof is by Endres
and Schindelin 2003.

The identity (2), perhaps best written:∑
x αx D(x , y) = D(x , y) +

∑
x αx D(x , x)

with x = b(α) =
∑

x αxx . This is the compensation identity
(authors terminology). It also holds for density matrices and is
then called Donalds identity. It appears in some proofs, in
particular of the result we now turn to.
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a game between Nature and Observer
For a preparation X0 ⊆ X , γ(X0) is the two-person zero-sum
game with Φ as objective function, X0 and Y as strategy
sets for Nature (maximizer) and Observer (minimizer).

The value for Nature is the maximum entropy value :

sup
x∈X0

inf
y∈Y

Φ(x , y) = sup
x∈X0

H(x) = Hmax(X0) = Hmax .

The value for Observer, is the minimum risk value :

inf
y∈Y

sup
x∈X0

Φ(x , y) = inf
y∈Y

R(y) = Rmin(X0) = Rmin .

γ(X0) is in equilibrium if Hmax = Rmin < ∞.
Optimal strategies: For Nature: x ∈ X0 with H(x) = Hmax;
for Observer: y ∈ Y with R(y) = Rmin(X0).
And x ∈ X is an Hmax-attractor if xn � x for every sequence
(xn) of elements in X0 with H(xn) → Hmax.
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an existence theorem
Theorem (MaxEnt) If X0 is convex and Hmax(X0) < ∞,
γ(X0) is in equilibrium and Observer has a unique optimal stra-
tegy y∗. An Hmax-attractor x∗ exists and y∗ = x̂∗. All Hmax-
attractors are equivalent. For x ∈ X0 and for y ∈ Y ,

H(x) + D(x , y∗) ≤ Hmax(X0) (Pythagorean inequality)

Rmin(X0) + D(x∗, y) ≤ R(y) (dual Pythagorean inequality).

Corollary (updating) Assume X = Y ,∀x : x̂ = x . Let X0 be
convex closed, let y0 ∈ X be a prior with D(x , y0) < ∞∀x ∈ X .
Then the I-projection of y0 on X0 , x∗ = argminx∈X0 D(x , y0),
exists and is characterized by:
∀x ∈ X0 : D(x , y0) ≥ D(x , x∗)+D(x∗, y0) (P.I., classical form).

Proof: With Φ|y0 = −updating gain , i.e. Φ|y0(x , y) =

D(x , y)−D(x , y0), note that
(
Φ|y0(x , y),−D(x , y0), D(x , y)

)
defines an information triple. Apply theorem above! 2
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a geometric formulation

Using special sets: divergence balls , sets of the form
{Dy ≤ r}, and half-spaces , sets of the form {Φy ≤ h}, the
game-theoretical notions can be expressed in “geometrical”
terms. As an example, even without convexity, the condition

x ∈ X0 ⊆ {Φx̂ ≤ H(x)}

expresses equilibrium of γ(X0) in conjunction with optimality
of the strategies x and x̂ .

Very illuminating is the consideration of the triple in Hilbert
space with description of the form ‖x − y0‖2 − ‖x − y0‖2 for
some prior y0 and X0 some subset of a hyperspace. This will
illustrate what can happen if X0 in previous theorem is not
convex (best done on the blackboard! – I mean whiteboard).
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methods for the generation of information triples
We sketch some possibilities and avoid technicalities (e.g.
regarding possible indefinite values of functions). Further, we
mainly have axioms 1 and 2 in mind with X = Y and with
response equal to the identity map.
Possibilities:

• constructions from either Φ, H or D
• restriction
• expansion
• atomic triples
• construction by integration
• equivalence
• relativization
• randomization

Prospect: use possibilities (especially atomic triples,
integration and restriction) to develop representation theorem!
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atomic triples: triples over real intervals

Take X = Y = I = [0,∞[, say. An atomic triple over I is a
triple (φ, h, d) such that, in order to satisfy Axiom 1:
φ(s, t) = h(s) + d(s, t); d(s, t) ≥ 0; d(s, t) = 0 ⇔ t = s.

Axium 2 requires φ of the form φ(s, t) = xκ(t) + ξ(t) .

Example (I = R): With prior t0, take
φ(s, t) = (s − t)2 − (s − t0)2 , h(s) = −(s − t0)2 ,
d(s, t) = (s − t)2 . 2

Related to construction of Bregman: Let h, the Bregman
generator be strictly concave and define triple (φ, h, d) by:
φ(s, t) = h(t) + (s − t)h′(t),
d(s, t) = h(t)− h(s) + (s − t)h′(t) .

Examples: 1) h(s) = x ln 1
x on [0,∞[, Shannon generator.

2) h(s) = −(s − t0)2 on R generates previous example. (tbc)
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more examples, power generators

For q > 0 take hq(s) = 1
1−q

(
sq − s

)
, the power generators .

Note that they are normalized , i.e. hq(1) = 0, h′q(1) = −1.
With h1(s) = s ln 1

s , limq→1 hq = h1. We find

φq(s, t) =
(

q
1−q stq−1 + tq − 1

1−q s
)
,

dq(s, t) =
(

q
1−q stq−1 + tq − 1

1−q sq
)
.

By integration and restriction to pairs (P, Q) of probabilities
and imcomplete probabilities (

∑
i qi ≤ 1, qi ’s ≥ 0) we find

Φq(P, Q) =
∑

i

(
q

1−qpiq
q−1
i + qq

i −
1

1−qpi

)
,

Hq = 1
1−q

∑
i (p

q
i − pi ),

Dq(P, Q) =
∑

i

(
q

1−qpiq
q−1
i + qq

i −
1

1−qpq
i

)
.

Hq suggested by Havrda and Charvát , rediscovered by others,
including Lindhard and Nielsen, as well as Tsallis for
statistical physics, where they generated immense interest.
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equivalence, relativization, triples via divergence
If (Φ, H, D) satisfies the axioms, so does (Φ + f , H +f , D)
when f is affine on X . We talk about equivalent triples. As f
we can use all y -sections Φy : x 7→ Φ(x , y) and linear
combinations of these. Related to previous discussion consider
relativization with y0 as prior arises with f = −Φy0 (assumed
finite). Quantities in the new relativized triple only depend on
the original divergence D. Therefore, we ask: What is needed
for some function D to generate information triples as above?

Theorem Given D : X × Y → [0,∞[ with D(x , y) =
0 ⇔ y = x̂ . Then, a necessary and sufficient condi-
tion that the triples

(
Φ|y0 ,−Dy0 , D

)
with Φ|y0(x , y) =

D(x , y) − D(x , y0) define valid information triples for e-
very choice of prior y0 ∈ Y is that D satisfies the com-
pensation identity – or, equivalently, that

∑
αx D(x , y)−

D(
∑

αxx , y) is independent of y for α ∈ MOL(X ).
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a problem of Sylvester treated by randomization
Sylvester: “To determine the point in the plane with the
smallest maximal distance to a given set of points”.

Let ∆ ⊆ Rn be finite, take X = MOL(∆), Y = co(∆) and
“barycenter of” as response. Define an information triple by:

Φ(α, y) =
∑

x∈∆ αx‖x − y‖2
H(α) =

∑
x∈∆ αx‖x − b(α)‖2

D(α, y) = ‖b(α)− y‖2.
You can then derive a “Kuhn-Tucker type theorem”:

Theorem If α∗ ∈ MOL(∆) and y∗ = b(α∗) are such
that, for some constant r , ‖x−y∗‖ ≤ r for all x ∈ ∆ with
equality for x ’s with α∗x > 0, then y∗ is the solution to
Sylvester’s problem and r is the minimax distance sought.

The proof is modelled after a proof of the Gallager-Ryabko
theorem (or the capacity-redundancy theorem) and can be
formulated in a more abstract version containing both results.
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thank you, this is all – or is it?
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