## Cognition and inference

Flemming Topsøe, topsoe@math.ku.dk Department of Mathematical Sciences, University of Copenhagen


## the menu

First a little bit about the chef ...
... and then to the menu, main ingredients:

- Philosophy, emphasis on interpretations, especialy pursuing the theme "Nature versus Observer" (Nature holds the truth, Observer seeks the truth but is confined to belief and may with time acquire knowledge ...).
- Abstraction, no reference to probability.

Ingarden \& Urbanik 1962: "... information seems intuitively a much simpler and more elementary notion than that of probability ... [it] represents a more primary step of knowledge than that of cognition of probability ..."
Kolmogorov $\approx 1970$ : "Information theory must preceed probability theory and not be based on it"

## two examples to have in mind

All our models are based on a function $\Phi=\Phi(x, y)$ of two variables, description effort; $x$ represents truth, $y$ belief.
Shannon model, discrete case $\Phi(x, y)=\sum_{i \in \mathbb{A}} x_{i} \ln \frac{1}{y_{i}}$ where $x=\left(x_{i}\right)_{i \in \mathbb{A}}$ and $y=\left(y_{i}\right)_{i \in \mathbb{A}}$ are probability distributions over an alphabet $\mathbb{A}$.

A Hilbert-space model Fix $y_{0}$ and take $\Phi=\Phi_{\mid y_{0}}$ to be $\Phi(x, y)=\|x-y\|^{2}-\left\|x-y_{0}\right\|^{2}$. (Note: $\geq \Phi(x, x)$ ).

Updating, general idea: Construct a new model from an old one, $\Phi$, by defining updating gain from a prior $y_{0}$ to a posterior $y$ to be $\Phi\left(x, y_{0}\right)-\Phi(x, y)$. This function taken with the opposite sign can be used as a new description effort: $\Phi_{\mid y_{0}}(x, y)=\Phi(x, y)-\Phi\left(x, y_{0}\right)$.

## Elements of the meal

Sets: $X$ State space (truth!), $Y \supseteq X$ Belief Reservoir.
Special subsets: $Y_{\text {det }}$ to express certain belief. And then various non-empty subsets of $X$, preparations (more later).

Relations and functions: $X \otimes Y \subseteq X \times Y$ : Domination. Write $y \succ x$ for $(x, y) \in X \otimes Y$ and assume $x \succ x$ for all $x$. A situation $(x, y) \in X \otimes Y$ is a perfect match if $y=x$ and a certain belief if $y \in Y_{\text {det }}$.
$\Phi: X \otimes Y \rightarrow]-\infty, \infty]$ : description effort or description. $\Phi$ must be calibrated: $\Phi(x, y)=0$ for certain beliefs. Observer should adapt $\Phi$ to the world! But how?

Key principle $\Phi$ satisfies the perfect match principle, PMP, (or is proper) if, for fixed $x, \Phi$ is minimized under a perfect match and not otherwise (unless $\Phi(x, x)=\infty$ ).

## Elements of information (for a given proper $\Phi$ )

 Information is information about truth, e.g. full information " $x$ " or partial information " $x \in \mathcal{P}$ ".
## Quantitatively, information is saved effort

Thus, $\Phi(x, y)=$ value to Observer of information " $x$ " in a situation with belief $y$. The unit of description effort is then also a unit of information. (Information is physical!)

## Introduce:

Entropy $\mathrm{H}(x)=$ minimal effort required ;
Divergence $\mathrm{D}(x, y)=$ excess description effort.
Then: $\mathrm{H}(x)=\Phi(x, x), \mathrm{D}(x, y)=\Phi(x, y)-\mathrm{H}(x)$.
( $\Phi, H, \mathrm{D}$ ) is an information triple. Basic axioms:
$\Phi(x, y)=\mathrm{H}(x)+\mathrm{D}(x, y)$ (linking identity),
$\mathrm{D} \geq 0$ with equality iff there is a perfect match (fundamental inequality of information theory, FI ).

## A good meal needs ... preparations

They tell us what can be known, and thus provide limits to knowledge. They are closely related to exponential families.

Basic preparations (preparations of genus 1 ) are preparations of the form $\mathcal{P}^{y}(h)=\{x \mid \Phi(x, y)=h\}$. They are of strict type. The corresponding slack type preparations are: $\mathcal{P}^{y}\left(h^{\leq}\right)=\{x \mid \Phi(x, y) \leq h\}$.
With $\mathbf{b}=\left(b_{1}, \cdots, b_{n}\right)$ and $\mathbf{h}=\left(h_{1}, \cdots, h_{n}\right)$, we put
$\mathcal{P}^{\mathbf{b}}(\mathbf{h})=\bigcap_{\nu \leq n} \mathcal{P}^{b_{\nu}}\left(h_{\nu}\right)$ (if non-empty).
Given $\mathbf{b}$, we denote by $\mathbb{P}^{\mathbf{b}}$ the preparation family of all preparations of the form $\mathcal{P}^{\mathbf{b}}(\mathbf{h})$ for some level values $\mathbf{h}=\left(h_{1}, \cdots, h_{n}\right)$.

Instructive to look at this for updating in Hilbert space...

## ... and more preparations

$y \in X$ is robust for a preparation $\mathcal{P}$ if $\Phi(x, y)$ is constant over $\mathcal{P}$, i.e. if, for some $h$, the level of robustness, $\mathcal{P} \subseteq \mathcal{P}^{y}(h)$.
The set of $y$ which are robust for $\mathcal{P}$ is the core of $\mathcal{P}$ : $\operatorname{core}(\mathcal{P})=\left\{y \in X \mid \exists h: \mathcal{P} \subseteq \mathcal{P}^{y}(h)\right\}$.

If $\mathbb{P}$ is a preparation family, we define the core of $\mathbb{P}$ by

$$
\operatorname{core}(\mathbb{P})=\bigcap_{\mathcal{P} \in \mathbb{P}} \operatorname{core}(\mathcal{P}) \quad \text { or } \quad \operatorname{core}(\mathbb{P})=\left\{y \in X \mid \mathbb{P} \prec \mathbb{P}^{y}\right\}
$$

If $\mathbb{P}$ is the family of all preparations, then core $(\mathbb{P})=\operatorname{core}(X)$ and this set is either empty or a singleton. In the latter case, say $\operatorname{core}(X)=\{u\}, u$ is the uniform state over $X$.

## the scene is set for fight: Nature $\leftrightarrow$ Observer

The game $\gamma(\mathcal{P})=\gamma(\Phi, \mathcal{P}): \Phi$ is the objective function, Nature maximizer, Observer minimizer. Nature strategies: $x$ 's in $\mathcal{P}$. Observer strategies: beliefs $y \succ \mathcal{P}(\forall x \in \mathcal{P}: y \succ x)$.

MaxEnt is value for Nature, MinRisk value for Observer:
$H_{\text {max }}(\mathcal{P})=\sup _{x \in \mathcal{P}} \mathrm{H}(x)=\sup _{x \in \mathcal{P}} \inf _{y \succ x} \Phi(x, y)$.
$\operatorname{Ri}_{\text {min }}(\mathcal{P})=\inf _{y \succ \mathcal{P}} \operatorname{Ri}(y)=\inf _{y \succ \mathcal{P}} \sup _{x \in \mathcal{P}} \Phi(x, y)$.
Note: $\operatorname{Ri}(y)=\operatorname{Ri}(y \mid \mathcal{P})$.
$x^{*} \in \mathcal{P}$ optimal strategy for Nature $\therefore \mathrm{H}\left(x^{*}\right)=\mathrm{H}_{\max }(\mathcal{P})$.
$y^{*} \succ \mathcal{P}$ optimal strategy for Observer $\therefore \operatorname{Ri}\left(y^{*}\right)=\operatorname{Ri}_{\text {min }}(\mathcal{P})$.
If $\mathrm{H}_{\max }(\mathcal{P})=\mathrm{Ri}_{\text {min }}(\mathcal{P})$ is finite, $\gamma(\mathcal{P})$ is in equilibrium.
The best we can hope for: To deal with a game in equilibrium which has a bioptimal strategy $x^{*}$ which we can easily identify (thus $x^{*}$ optimal for both players is sought).

## first main course: Pythagoras!

The Pythagorean theorem, direct and dual form. Assume that $x^{*} \in \mathcal{P} \subseteq \mathcal{P}^{x^{*}}(h \leq)$ with $h=\mathrm{H}\left(x^{*}\right)$ finite.
Then $\gamma(\mathcal{P})$ is in equilibrium with $\operatorname{H}_{\max }(\mathcal{P})=\operatorname{Ri}_{\text {min }}(\mathcal{P})=h$, and $x^{*}$ is the unique bioptimal strategy. Furthermore,
$\forall x \in \mathcal{P}: \mathrm{H}(x)+\mathrm{D}\left(x, x^{*}\right) \leq \mathrm{H}_{\max }(\mathcal{P})$ (Pythagorean inequality),
$\forall y: \mathrm{Ri}_{\text {min }}(\mathcal{P})+\mathrm{D}\left(x^{*}, y\right) \leq \operatorname{Ri}(y \mid \mathcal{P})$ (dual inequality).
If $\mathcal{P} \subseteq \mathcal{P}^{x^{*}}(h)$, equality holds in the Pythagorean inequality.
Corollary Let $\mathbf{b}=\left(b_{1}, \cdots, b_{n}\right)$ and consider the family $\mathbb{P}^{\mathbf{b}}$. If $x^{*} \in \operatorname{core}(\mathbf{b})$, then there is a preparation $\mathcal{P}$ in the family for which $\gamma(\mathcal{P})$ is in equilibrium with $x^{*}$ as bioptimal strategy. In fact, with $h_{\nu}=\Phi\left(x^{*}, b_{\nu}\right)$ for $\nu \leq n, \mathcal{P}=\mathcal{P}^{\mathbf{b}}(\mathbf{h})$ is the one.

## more delicate probabilistic models

We now allow $\Phi$ of the form: $\Phi(x, y)=\sum_{i \in \mathbb{A}} \pi\left(x_{i}, y_{i}\right) \kappa\left(y_{i}\right)$. Instead of $x_{i}$ you find $\pi\left(x_{i}, y_{i}\right)$, the interactor $\pi$ operating on pairs of probabilities, one true, the other believed. We assume that $\pi$ is sound, i.e. $\pi(s, t)=s$ for a perfect match $(t=s)$.
Interpretation: $\pi(s, t)$ is the force you perceive as attached to an event with true probability $s$ and believed probability $t$, e.g.: $\pi_{q}(s, t)=q s+(1-q) t$. Determines the world $\mathcal{W}_{q}$. $\mathcal{W}_{1}$ : the classical or Shannon world. $\mathcal{W}_{0}$ : a black hole.
... and instead of $\ln \frac{1}{y_{i}}$ you find the descriptor $\kappa$ operating on a believed probability.

Interpretation: $\kappa$ determines the cost of information. It must satisfy $\kappa(1)=0, \kappa^{\prime}(1)=-1$ (normalization).

Problem: Given $\pi$, choose $\kappa$ such that $\Phi$ determined by $\pi$ and $\kappa$ is proper. In other words: adapt $\kappa$ to the world!

## Tsallis entropy in special dressing, 2.nd main dish

Theorem. Recall required form: $\Phi(x, y)=\sum_{i \in \mathbb{A}} \pi\left(x_{i}, y_{i}\right) \kappa\left(y_{i}\right)$.

- Given $\pi$, at most one descriptor $\kappa$ is proper;
- No descriptor is proper for $\mathcal{W}_{q}$ if $q \leq 0$; however, $q=0$ is a singular case (with $\mathrm{H}=$ degr.freedom, $\mathrm{D} \equiv 0, \kappa(t)=t^{-1}-1$ );
- For $q>0$, the ideal descriptor $\kappa_{q}$ exists. It is in the power hierarchy and given by $\kappa_{q}(t)=\ln _{q} \frac{1}{t}$, the $q$-logarithm of $\frac{1}{t}$ $\left(=\frac{1}{1-q}\left(t^{q-1}-1\right)\right)$. The associated entropy function is Havrda\&Charvát-Lindhard\&Nielsen-Tsallis. . . entropy;
- Again for $q>0$, other mean values (e.g. geometric and harmonic) determine the same ideal descriptor;
- To prove FI, simply prove PFI, the pointwise fundamental inequality, $\delta \geq 0$, where the divergence generator $\delta$ is defined by $\delta(s, t)=(\pi(s, t) \kappa(t)+t)-(s \kappa(s)+s)$ (so that $\mathrm{D}(x, y)=\sum \delta\left(x_{i}, y_{i}\right)$ ).


## Controls for $\Phi(x, y)=\sum_{i \in \mathbb{A}} \pi\left(x_{i}, y_{i}\right) \kappa\left(y_{i}\right)$

Rewrite $\Phi$ as $\Phi(x, y)=\sum_{i \in \mathbb{A}} \pi\left(x_{i}, y_{i}\right) w_{i}$ with $w_{i}=\kappa\left(y_{i}\right)$. Then $w$, the control adapted to $y$ points more directly than $y$ to action by Observer (design of experiments...).
Recall: Good, 1952: belief is a tendency to act!
The inverse function to $\kappa$ is denoted $\rho$ and termed the probability checker: $\rho(a)$ tells you how rare an event you can control or describe with $\kappa$ if you have a units (nats) at your disposal (one defines $\rho(a)=0$ if $\kappa(0) \leq a$ ). Krafts inequality checks if, given $\left(w_{i}\right)_{i \in \mathbb{A}}$, you can hope to use these numbers as efforts (allocated nats, classically corresponding to code lengths). It states: $\sum_{i \in \mathbb{A}} \rho\left(w_{i}\right) \leq 1$.

By the one-to-one correspondance $y \leftrightarrow w$ we can choose to express findings in terms of beliefs or controls (or a mixture!).

## the desert: crème de la crème

Given: Model $\mathcal{P}$ from a family $\mathbb{P}^{\mathbf{b}}$.
Wanted: 1) MaxEnt distribution 2) I-projection of prior $y_{0}$ on $\mathcal{P}$ or, equivalently, argmin ${ }_{x \in \mathcal{P}} \mathrm{D}\left(x, y_{0}\right)$.
Observation: 2) is reduced to 1 ) by switching to $\Phi_{\mid y_{0}}$.
Strategy for 1): Determine core $\left(\mathbb{P}^{\mathbf{b}}\right)$, choose
$y \in \operatorname{core}\left(\mathbb{P}^{\mathbf{b}}\right) \cap \mathcal{P}$ - and you are done!
Limitation: We only consider the worlds $\mathcal{W}_{q}$.
Special for these worlds: With $y \leftrightarrow w$, sets of the form $\{\Phi(x, y)=$ const. $\}$ are of the form $\left\{\sum_{i \in \mathbb{A}} x_{i} w_{i}=\right.$ const. $\}$.
Analysis: Let $\mathcal{P}=\bigcap_{1}^{n} \mathcal{P}^{\boldsymbol{b}_{\nu}}\left(h_{\nu}\right) \in \mathbb{P}^{\mathbf{b}}$ be of genus n . Then $\mathcal{P}=\bigcap_{1}^{n}\left\{\sum_{i \in \mathbb{A}} x_{i} w_{\nu, i}=h_{\nu}^{\prime}\right\}$ which is $\subseteq$ some $\left\{\mathcal{P}^{y}(h)\right\}$ if (with $y \leftrightarrow w) \subseteq$ some set $\left\{\sum x_{i} w_{i}=h^{\prime}\right\}$ and this is OK if $\exists \alpha, \beta=\left(\beta_{1}, \cdots, \beta_{n}\right)$ s.t. $w=\alpha+\left(\beta_{1} w_{1}+\cdots+\beta_{n} w_{n}\right)$.
Theorem ...and only then!

## ...more of the desert

So the sought $y \leftrightarrow w$ must satisfy $w=\alpha+\sum_{1}^{n} \beta_{\nu} w_{\nu}$ for suitably chosen $\alpha$ and $\beta=\left(\beta_{1}, \cdots, \beta_{n}\right)$. Requirements to these constants: $\sum_{i \in \mathbb{A}} \rho_{q}\left(\alpha+\sum_{1}^{n} \beta_{\nu} w_{\nu, i}\right)=1$ (Kraft's (in)equality!); this determines $\alpha$.
And then the $\beta$ 's are determined from the requirement $y \in \mathcal{P}$.

Classically $(q=1)$ : Then $\rho_{1}: a \mapsto \exp (-a)$ and one obtains $\alpha=\ln Z(\beta)$ with $Z$ the partition function:
$Z(\beta)=\sum_{i \in \mathbb{A}} \exp \sum_{1}^{n}-\beta_{\nu} w_{\nu, i}$.
Thus the possible $y$ are from the exponential family associated with the problem, i.e. distributions of the form
$y_{i}=\exp \left(-\alpha-\sum_{1}^{n} \beta_{\nu} w_{\nu, i}\right)$ with $\alpha=\ln Z(\beta)$.
Thus the core coincides with the exponential family.
The analysis for 2) leads to the exponential family given by $y_{i}=y_{0, i} \exp \left(-\alpha-\sum_{1}^{n} \beta_{\nu} w_{\nu, i}\right)$.

A theory of information freed from a tie to probability is possible - and useful. Probabilistic models appear as important examples.

Velbekom'!

