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Abstract

Information theory is becoming more and more important for many
fields. This is true for engineering- and technology-based areas but
also for more theoretically oriented sciences such as probability and
statistics.

Aspects of this development is first discussed at the non-technical
level with emphasis on the role of information theoretical games. The
overall rationale is explained and central types of examples presented
where the game theoretical approach is useful.

The final section contains full proofs related to a subject of central
importance for statistics, the estimation or updating by a posterior
distribution which aims at minimizing divergence measured relative
to a given prior.

Keywords. Description length, entropy, divergence, description gain,
game theoretical equilibrium, maximum entropy, minimum information dis-
crimination, capacity, redundancy, I-projection, Pythagorean inequality.

1 Introduction, Background

Information Theory is of importance for a number of disciplines from the
very applied engineering oriented ones to more theoretical fields. One of
the strongest interfaces is to probability and statistics. One can see a line
in monographs such as Čencov [8], Kullback [35], Dembo and Zeituni [15]
and Cover and Thomas [9], and in recent and ongoing research of authors
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including Amari [1], Barron, Csiszár and Matúš [13], Harremoës [19] and
others, much of it in the publishing process. General purpose textbooks
which aim at making the new tools available are starting to appear, though
still not taking full advantage of recent improvements and extensions of the
techniques (cf. Jessop [29] and Applebaum [2]).

Information theory offers technical tools and a conceptual base which con-
tribute to an understanding of many of the fundamental concepts and meth-
ods of probability and statistics. This also leads to a better understanding
of the basic notion of probability. In this connection recall what de Finetti
wrote in the foreword to his monograph [14] after a life long study of these
fields: “Probabilities do not exist!” That there is something strange about
the concept of probability is nowadays realized by all workers in theoretical
probability and statistics and the last word on the concept of probability, on
randomness, has certainly not been said. Is it something inherent in the real
world or only something going on in our head, in our perception of the real
world?

The change of paradigm which is underway will to begin with stick to
probability theory with the set-up going back, basically, to Kolmogorov [34]
as the primary theoretical basis (another main contributor is Hausdorff).
However, more drastic changes may be underway, either based on inform-
ation theory proper or on the neighbouring and inter-related discipline of
complexity theory. In this connection we refer to Shafer and Vovk [42].

In order to understand what information theory has to offer which could
change, if not revolutionize, probabilistic and statistical thinking, we point
to three factors: The basic concepts have natural interpretations and as such
are “just the right ones” and, secondly, you can often use these concepts to
model conflict situations which are common in many areas, such as biology,
economics, physics and then also in probability and, more pronouncedly so,
statistics. As a last reason we point to the technical tools of information
theory, especially to the powerful inequalities.

As to the first feature pointed to, we owe to Shannon, cf. his pioneering
article [43] from 1948, the definition of “the right concepts” such as entropy,
conditional entropy, mutual information and so on. Especially important for
the interface to statistics is the introduction in 1951 by Kullback and Leibler
[36], of a further quantity, now mainly called (information) divergence, cf.
also Kullback [35].

The ability of information theory to model conflict situations can be said
to go back to Shannon himself. As an early source we also mention Kelly
[32]. However, we want to emphasize the comprehensive study of the Max-
imum Entropy Principle (MaxEnt) by Jaynes who from 1957 onwards has
worked to put this principle on a firm information theoretical basis and also
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discussed the qualitative and philosophical aspects at great length, cf. [26],
[27], [25] and [28]. MaxEnt dictates that if P is a model consisting of prob-
ability distributions, then the least biased one, and hence the one best suited
for predictions, is that distribution in the model – if such a unique distribu-
tion exists – which has maximal entropy. Jaynes further stresses the view –
which is at the same time a guiding principle – that one should not think of
the model as a set of distributions, one of which is the “true” distribution.
Rather, Jaynes maintains that P models our knowledge about the system
studied.

Some years ago the author pointed out that a principle of Game Theor-

etical Equilibrium (GTE) can be taken to be basic, cf. [50] and [46]. Thus,
from GTE, you are led to MaxEnt as well as to a principle going back to
Kullback, the Minimum Information Discrimination Principle, which dic-
tates that you select that distribution in the model which has the smallest
divergence to a given or suitably chosen prior distribution. As the term
“divergence” now appears to be more common than “discrimination” (or
“information distance” or “relative entropy” which are also terms in use),
we refer to Kullback’s principle as MinDiv, the minimum divergence prin-

ciple. The geometrically-flavoured structure involved in MinDiv was studied
by Csiszár [10], who introduced the concept of I-projection for the optimal
distribution of MinDiv. Further studies of Csiszár demonstrated the signi-
ficance of information theory for statistics, cf. [11].

The success of information theory at the service of other sciences depends
on the ability to derive key results based on information theoretical principles
in a way which is felt natural and technically convenient within the sciences
in question. The sources mentioned contain results in this direction for the
fields of probability and statistics. Some additional references include the
difficult paper by Linnik [37] regarding the Central Limit Theorem, Barron’s
follow-up paper [4] (with more underway, I understand), and we may also
mention Harremoës [22] and Topsøe [48]. The forthcoming paper [18] by
Grünwald and Dawid is very much in line with the approach adopted here.
The reader should also watch out for forthcoming work by Boyd and Chiang.

2 Game Theoretical Equilibrium, the idea

In this section we shall reveal the over all idea of GTE. In principle, this
is simple: GTE dictates that you use information theoretical concepts to
view a problem as a game, typically as a two-person zero-sum game. The
search for optimal strategies, i.e. the attempt to approach equilibrium in the
game theoretical sense, will then lead to useful, even completely satisfactory
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insight into the original problem. The power of GTE then depends on the
ability to make meaningful transformations of interesting problems to the
game theoretical setting. Below follow some qualitative, partly philosophical
remarks on this issue.

Information theory provides concepts and tools for expressing the role
of an “observer” or “decision maker” (the statistician, the physicist, the
investment planner or what the case may be). As a brief indication of this
aspect of information theory, we need only point to coding as a way to
represent or to describe data and, at the same time, as a means to identify

outcomes, hence to express strategies for making observations.
When we use information theory to model a part of “reality”, we should

acknowledge – based on a Platonic or neo-Platonic view – that all we can
do is to model our ignorance about reality or, put positively, to model our
knowledge about reality. In our modelling we should be open to any eventu-
ality. Possibly motivated by the experience that “what can go wrong does go
wrong”, this points to applying a safe (cowardice!) strategy of minimizing
maximal risk, hence this leads to by now classical “mini-max thinking” of
game theory. In its simplest form, we are thus led to consider two-person
zero-sum games. This modelling is possible in many specific situations via
the identification of an objective function (a cost or a pay-off, depending on
the sign).

Qualitatively, the above considerations are in consistency with basic Bayes-
ian thinking in statistics. And other sciences acknowledge similar ideas. In
physics we point to the Copenhagen interpretation of quantum physics and
the emphasis of Niels Bohr on the interplay, complementarity, between the
system under study and the observer looking at it through whatever glasses
are available. A system behaves not only in accordance with what is known
because of insight gained by previous observations. The behaviour depends
on all factors – including those we could have taken into account. Regarding
quantum physics it may well be that the Copenhagen interpretation is ripe
for replacement or thorough revision, largely because the notion of probab-
ility is not well explained or motivated and a change which would involve,
among other elements, Jaynes’ ideas which combine information theory and
the interpretation of probability concepts is desirable. For the field of bio-
logy, we point to Maynard Smith’s principle of evolutionary stability. For a
recent application of this principle, see Broom [7]. We may also point to the
social sciences, to economy, cf. von Neumann’s pioneering work in [51], or
more modern texts such as Aubin [3], and also, we can point to recent applic-
ations to finance where Delbaen et. al. [41] and Bellini and Frittelli [5] serve
as entrance points to the relevant literature where information theoretical
considerations come into play.
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3 Information theoretical concepts

3.1 The general idea

In order to stress the underlying rationale, thereby pointing to the wider
applicability of basic concepts from information theory, we introduce these
concepts in a context which is quite abstract and freed from any reference
to standard information theory. However, we do use terminology borrowed
from that theory.

The nature of the context does not really concern us here. Anyhow, it
may be helpful to think of it as some well defined part of “reality” which
may have been isolated by some process of preparation. As an indication of
what we have in mind, consider the case of an ideal gas submerged in a heat
bath. Through the preparation, a “system” or “context” suitable for study
emerges.

We shall characterize any specific context by three entities. Firstly a
set P, called the knowledge base. This set reflects the available knowledge.
Elements of P are referred to as consistent instances, i.e. as instances which
are consistent with the preparation of the system. In specific situations
when we know the nature of the elements of P, we may reflect that in our
terminology. For instance, in all of our examples, P will be a set of probability
distributions and we may then talk about consistent distributions.

Further, we assume that we have access to a set K of description strategies.
Various interpretations are possible. Either the strategies can be used for
making observations from the system or for representing consistent instances
or, in the terminology we shall prefer below, for describing such instances.

The third entity we have in mind is a function, the objective function,
which to κ ∈ K and P ∈ P associates a non-negative (possibly infinite)
number, denoted 〈κ, P 〉. This is the description length (with κ as description
strategy and P as the consistent instance).

In our set-up we have focused on three elements: Our knowledge, the
available tools for description and our objective. Further elements – such
as side information, conditioning, symmetry etc. – may be brought into
the picture but the chosen framework appears to constitute an adequate
playground for basic information theoretical considerations. Instead of the
neutral reference to a context, one could refer to the triple (P, K, 〈·, ·〉) as an
information space.

Sometimes (see Section 5), it is not possible to suggest in a meaningful
way an objective function which is non-negative. Often, one can then instead
work with an objective function which can also assume negative values. This
will, typically, correspond to situations where you find it natural to measure
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performance relative to some chosen reference. One may, therefore, work
with two notions, one of absolute information spaces as considered up to now
and one of relative information spaces. It is only the former which we have
in mind in this section.

Now then, let us demonstrate that the set-up as introduced allows the
introduction of key quantities for further study.

First define the entropy of a consistent instance P as the minimum de-
scription length:

H(P ) = min
κ∈K

〈κ, P 〉 . (1)

If there exists κ ∈ K with 〈κ, P 〉 = H(P ) we say that κ is adapted to P .
Often, such strategies are uniquely determined from P .

Then we can define redundancy D(P‖κ) as the unnecessary part of the de-
scription length when using κ ∈ K as strategy instead of an optimal strategy
adapted to P ∈ P, i.e.

D(P‖κ) = 〈κ, P 〉 − H(P ). (2)

This quantity may also be conceived as the saving in description length in-
herent in the information obtained if we are told what P is. For this inter-
pretation it is understood that the strategy κ is used for description of P

before we are told what P is and that we switch to a strategy best adapted
to P as soon as we are told what P is.

Note that (2) may not be adequate as a definition in all cases. Some-
times, as in the case of information theory proper, it is possible to suggest
a meaningful definition which also covers the indeterminate case when (2)
leads to the form D(P‖κ) = ∞−∞. Anyhow, the linking identity

〈κ, P 〉 = H(P ) + D(P‖κ). (3)

always holds (as we agree that the right hand side is +∞ when H(P ) = ∞).
A further quantity of interest is the description gain inherent in a change

of strategy from κ to ρ in the description of P . This quantity can even be
taken to be more fundamental than entropy as well as redundancy and it is
to be expected that it will play a significant role in future research (it already
does so but in a less dominant and more implicit way). A natural defining
relation would be

D(R‖κ ; ρ) = 〈κ, P 〉 − 〈ρ, P 〉.

However, this is very likely to lead to the indeterminate quantity ∞−∞
and it is better to exploit the linking identity (3) for 〈κ, P 〉 as well as for
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〈ρ, P 〉 and use the relation

D(P‖κ ; ρ〉 = D(P‖κ) − D(P‖ρ) (4)

as definition. Of course, this quantity may be negative or even −∞. Nor-
mally, situations with D(P‖κ ; ρ) ≥ 0, i.e. with a genuine gain, will have
our main interest and other cases can be ignored. From (4) we obtain the
relation

D(P‖κ) = D(P‖κ ; ρ) + D(P‖ρ) , (5)

which could be called the linking identity of the second kind (then (3) is of
the first kind). However – unlike (3) – (5) is not necessarily valid in all cases
but does hold, e.g. whenever D(P‖ρ) < ∞.

Further concepts may be introduced but this will, typically, require extra
structure, and we shall only look into that in the context of information
theory proper.

3.2 Proper information theoretical concepts

Information theory provides the key example where the above definitions
apply and have natural interpretations as suggested by the terminology used.
Let us briefly go through this. In so doing we shall here restrict the scope
and only have the discrete case in mind. In the more technical final section
we extend the scope to encompass also the continuous case.

As starting point we shall then take a discrete set A, i.e. a finite or
countably infinite set. This is the alphabet. As P we take a set of probability
distributions on A and as K the set of codes or, more precisely, idealized code

length functions. The way we think about κ ∈ K is as an allocation of code
words to elements in A, however only paying attention to the lengths of the
code words. More precisely, κ ∈ K is a map which to each i ∈ A associates
a number κ(i) ∈ [0,∞] in such a way that Krafts equality in idealized form,
i.e.

∑

exp(−κ(i)) = 1, holds (the idealization refers to the acceptance of
arbitrary real numbers as values of κ, and to the choice of the natural base
rather than the base 2 for the exponentiation). The interpretations related
to this definition are well known, see e.g. [48].

There is an important natural 1 − 1 correspondance, written κ ↔ Q,
between codes and distributions for which P (i) = exp(−κ(i)) , κ(i) = − log P (i)
(we use “log” to denote natural logarithms).

In order for the definitions of Section 3.1 to apply we also have to specify
the objective function (κ, P ) y 〈κ, P 〉. For this we take expected code
length, i.e. we put

〈κ, P 〉 =
∑

κ(i)P (i).
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The definitions of entropy, redundancy and description gain then make
good sense. As is classical, H(P ) = 〈κ, P 〉 with κ ↔ P .

We use the correspondance between codes and distributions to define
divergence (from P to Q) by

D(P‖Q) = D(P‖κ) (6)

with κ ↔ Q and also to define the following quantity:

D(P‖Q ; R) = D(P‖κ ; ρ) (7)

with κ ↔ Q and ρ ↔ R. Note that D(P‖Q) = D(P‖Q ; P ). We can
think of D(P‖Q ; R) as reflecting an estimation- or prediction- or updating
situation with Q as prior and R as posterior distribution. We may, therefore,
call D(P‖Q ; R) the estimation gain or the updating gain associated with
this situation.

Much clarity results by realizing that redundancy (related to description
via coding) conceptually preceedes divergence (related to distributions).

It is well known that whereas entropy can only be finite for essentially
discrete distributions, redundancy and divergence has a much wider scope of
applicability which matches the requirement in probability and statistics to
encompass basic continuous distributions. Indeed, in the case of divergence,
one is led to the well known formula

D(P‖Q) =

∫

log
dP

dQ
dP (8)

(when P � Q), which may be used as a definition which then covers all
eventualities (with D(P‖Q) = ∞ in case P 6� Q). Technical details can be
found, e.g. in [47] where you will also find important extensions of concepts
introduced, especially involving conditioning and datareduction.

4 Instances of GTE

The conceptual base developed in the previous section gives rise to a num-
ber of specific two-person zero-sum games of which we mention three. The
results of the first two subsections are of particular relevance for applications
to probability and statistics. Possible applications lead to interesting char-
acterizations of key distributions, often accompanied by appropriate limit
theorems. Many such results can be conceived as instances of the GTE prin-
ciple as discussed here. Kapur [30] contains a great number of such results.
We may also mention Haussler [23], Kazakos [31], Harremoës [22] and Topsøe
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[48] which are based on the game theoretical approach. The first papers us-
ing this approach are Pfaffelhuber [39] and Topsøe [50]. ∗ For further work
in this direction see Harremoës and Topsøe [20] as well as forthcoming work
by several authors, including Grünwald and Dawid [18].

4.1 The Hmax-game

The first game is the maximum entropy game, the Hmax-game, which is re-
lated to entropy and code length in the discrete case and refers to a given set
P of distributions over the alphabet A. One may also refer to this game as
the code length game. For the Hmax-game, Player I (“the system”) chooses
a consistent distribution P ∈ P and Player II (the statistician, say) chooses
a code κ ∈ K. Description length 〈κ, P 〉 is taken as the cost, seen from the
point of view of Player II.

We define Hmax = Hmax(P), the maximum entropy value as

Hmax = sup
P∈P

H(P ).

For κ ∈ K, we define R(κ) = R(κ|P), the risk associated with κ, to be

R(κ) = sup
P∈P

〈κ, P 〉

and we put
Rmin = inf

κ∈K
R(κ).

Then Hmax ≤ Rmin and if P is convex and Hmax < ∞, it can be shown
that the game is in equilibrium, i.e. Hmax = Rmin. Therefore, maximum

entropy equals minimum risk. As the risk was defined via description length,
we may also say that maximum entropy equals minimum description length.

A technically simple result which is very powerful for the applications
is that if there exists a Nash equilibrium code adapted to P, i.e. – copying
concepts from game theory – a code κ∗ such that R(κ∗) ≤ H(P ∗) < ∞ with
κ∗ ↔ P ∗ and P ∗ ∈ P, then κ∗ and P ∗ are unique optimal strategies for the
players. In particular, P ∗ is the unique maximum entropy distribution. For
a quick introduction to these results, see Topsøe [48]. More details are in
Harremoës and Topsøe [21].

∗The paper [39] was only discovered by the author shortly before submission of the
final manuscript. Apparently the research of Pfaffelhuber was carried out in 1975 whereas
the main work of the author stems from 1976 with the first formal publication in Danish
in 1978. In any case the author has to share the introduction of the game theoretical
approach with Pfaffelhuber.
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4.2 The Dmin-game

The second game we shall study is the Dmin-game which we here describe in
rather qualitative and motivating terms and again only having the discrete
case in mind. We do, however, follow-up in Section 5 with concrete technical
details which apply to a more general situation, covering also the continuous
case.

The setting is as in Section 4.1, except that now we have also given a
reference code κ0 or, equivalently, a prior distribution P0 (κ0 ↔ P0). Again,
Player I chooses a P ∈ P and Player II chooses a code κ ∈ K or, equival-
ently, a posterior distribution R (with κ ↔ R). But now, description gain,
D(P‖κ0 ; κ) or, equivalently, estimation or updating gain, D(P‖P0 ; R),
is taken as pay-off seen from the point of view of Player II. According to the
zero-sum character which we insist on, D(P‖κ0 ; κ) is considered as a cost
to Player I.

If Player I chooses P ∈ P one readily sees that fixing this distribution, the
largest cost which Player I risks is D(P‖κ0). Therefore, an optimal strategy
for Player I is a P ∗ ∈ P for which D(P ∗‖κ0) = Dmin with the latter quantity
defined by

Dmin = inf
P∈P

D(P‖P0).

The game thus leads to the MinDiv-principle.
In the theoretical discussion of this game, it is advantegeous to consider

also the other side of the game. A main result states that under mild regu-
larity conditions (P convex, Dmin < ∞), there exists κ∗ such that

D(P‖κ0 ; κ∗) ≥ Dmin (9)

for every P ∈ P.
In fact, with κ0 ↔ P0 and κ∗ ↔ P ∗, the inequality (9) is equivalent to

the celebrated Pythagorean inequality of Csiszàr:

D(P‖P0) ≥ D(P‖P ∗) + Dmin (10)

for all P ∈ P. In Csiszàr’s terminology, P ∗ is the (generalized) I-projection
of P0 on P. With an interpretation as indicated above, P ∗ is the optimal

estimator or the optimal updating strategy based on the prior P0. In the
coding terminology, κ∗ is the optimal adjustment of κ0. Note that if (Pn)n≥1 ⊆
P satisfies D(Pn‖P0) → Dmin, then D(Pn‖P ∗) → 0. This is a rather strong
type of limit theorem, in particular stronger than setwise convergence of Pn

to P ∗.
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4.3 The Imax-game

The third instance we shall mention where GTE applies is of main interest
for information theory proper and is called the capacity–redundancy game or,
for reasons explained below, the maximum information transmission game,
the Imax-game. Again, it involves a set P of probability distributions but
now no prior code or distribution is given. If Player II (“the receiver”) can
choose a code and redundancy D(P‖κ) is taken as cost, we are led to consider
minimal redundancy defined as

Rmin = inf
κ

sup
P∈P

D(P‖κ) . (11)

Clearly, if the other side of the game is taken to involve only P ∈ P as
permissable strategies for Player I, the game will normally not be interesting
as

sup
P∈P

inf
κ

D(P‖κ) = 0 . (12)

However, if we – “à la von Neumann” – consider mixed strategies (i.e. ran-
domization corresponding to convex combinations

∑

ανPν of members of P)
and choose the associated average redundancy,

∑

ανD(Pν‖κ), as the quant-
ity the players should worry about (the objective function), an interesting
game is obtained. It is the simplest to consider the case when P consistes of a
finite or countably infinite set of distributions Pν (1 ≤ ν ≤ n or 1 ≤ ν < ∞).
This game may be interpreted as one involving a channel with α = (αν) as
input distribution and then the quantity replacing (12) is

sup
(αν)

inf
κ

∑

ανD(Pν‖κ) (13)

which is the capacity of the channel (see below). The quantity (11) is not af-
fected as divergence has strong convexity properties, in particular, it is convex
in the first argument. By applying the principle of GTE one then proves an
important result of information theory, the Gallager–Ryabko theorem which
equates capacity with minimum redundancy, cf. Ryabko [40].

Let us go a little more into the details. First we point out the following
identity, the compensation identity, cf. Theorems 6.1 and 9.1 of [47]. With
notation as above, it states that

∑

ανD(Pν‖κ) =
∑

ανD(Pν‖κ0) + D(P0‖κ) (14)

where P0 =
∑

ανPν and κ0 ↔ P0. This shows that the infimum in (13) can
be identified as

I(α) =
∑

ανD(Pν‖κ0) . (15)
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This quantity is the information transmission rate associated with the input
distribution α. The maximum information transmission rate, the Imax-value,
is the capacity of the channel and this then is the quantity appearing in (13).
The intuitive content of (15) is perhaps best understood if the code κ0 is
replaced by the matching distribution P0: With probability αν a “letter”
is sent through the channel and this changes the distribution at the output
side from the á priori distribution P0 to Pν. The redundancy removed, hence
the information received by this change is D(Pν‖P0). Thus, the information
transmission rate is defined as average information obtained at the output
side. By (15) we may write (14) in the form

∑

ανD(Pν‖κ) = I(α) + D(P0‖κ) (16)

which is a linking identity, now of the third kind. †

Intuitively it is to be expected that optimal usage of the channel must be
achieved for an input distribution α for which the Kuhn–Tucker conditions

D(Pν‖P0) = C for all ν with αν > 0 (17)

D(P‖P0) ≤ C for all P ∈ P (18)

are fulfilled with C some constant. In fact it is nothing but a simple exercise
to use the compensation identity to realize that (17) and (18) are sufficient
conditions for optimality. The wide applicability of this result has been es-
tablished in collaboration with Peter Harremoës (unpublished). For a simple
proof with P a finite set of distributions, see Topsøe [45].

When (17) and (18) hold, it follows directly from the compensation iden-
tity (14) and from the definitions involved that I(α) = Rmin = C, hence
proving the Gallager–Ryabko theorem.

The analysis of the Imax-game applies in many settings with D(P‖Q)
replaced by other measures of “divergence”. The reason for this is that the
crucial compensation identity (14) holds in a variety of cases.

Firstly, (14) holds for squared Euclidean distance. In that case, the prob-
lem suggested by (11) belongs to location theory, cf. [17]. The specific prob-
lem goes back to Sylvester [44] who wrote “It is required to find the least
circle which shall contain a given system of points in a plane” – in fact, this
is the full text of [44]!

The compensation identity also holds for Bregman divergences, (regarding
these, see Bregman [6] and Csiszàr [12]). ‡

†Note that in all cases, a linking identity is an identity revealing a basic structural
relation which involves an objective function for one of the games considered.

‡This remark is due to Csiszàr, oral communication at the conference “Information
Theory, Cryptography and Statistics”, Balatonlelle, October 2000.

12



GTE Player I Player II
Hmax-game Max Ent Min Length
Dmin-game Min Div Max Saving
Imax-game Max Inf Min Redundancy

Table 1: Instances of the principle of GTE

As a final example of the wide applicability of the Kuhn-Tucker criterion
for variants of the Imax-game, we mention the analogue of this game in the
setting of quantum information theory with Trace P (log P − log Q) as re-
placement of classical divergence (here, P and Q are density operators, cf.
Holevo [24] or Ohya and Petz [38]). § In the setting of quantum information
theory, the compensation identity is often referred to as Donalds identity,
cf. Donalds [16]. In the classical case, the identity possibly first appeared in
[49].

In Table 1 we summarize the three games discussed in this section together
with an indiction of the principles this leads to when seen from the point of
view of each of the two players in the game.

5 Technical discussion of the Dmin-game

Let (X, B) be a Borel space, i.e. a set provided with a σ-algebra and denote by
M1

+(X, B) the set of probability distributions on (X, B). Let P j M 1
+(X, B)

and P0 ∈ M1
+(X, B) be given.

Consider the Dmin-game with P as the strategy set for Player I, with P0 as
prior distribution and with the set of all probability distributions on (X, B)
as the strategy set for Player II. Thus we choose to consider estimators or
posterior distributions rather than codes as the available strategies for Player
II. This will give the results a more conventional flavour which is more likely
to appeal to the reader interested mainly in applications to statistics. And of
course, the concept of codes really only applies meaningfully to the discrete
case. Thus, focusing on distributions enables us to present a completely
general version of the Dmin-game.

We realize that the setting fits into the framework outlined in Section
3.1 of an information space. The knowledge base is P, the set K of descrip-
tion strategies is M 1

+(X, B) and the objective function is the map (P, R) y

§This observation is joint work (unpublished) with Peter Harremoës, made during the
MaPsySto workshop, October, 1999, University of Aarhus.
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D(P‖P0 ; R). As this function may assume negative values, the proper
setting is that of a relative information space.

The defining relations (8) (for divergence) and (7) combined with (4) (for
estimation gain) are now taken as the basic definitions. Written explicitly,
the definition we use for estimation gain is as follows:

D(P‖Q ; R) = D(P‖Q) − D(P‖R). (19)

As there are some subtleties connected with (19) (the ∞−∞ problem),
it is not entirely clear if all aspects of the Dmin-game make sense. However,
with appropriate conventions this can in fact be achieved. We simply agree
that if a suppremum is considered involving indeterminate numbers we in-
terpret the result in the “least favourable way” as +∞ and, likewise, if an
infimum involves an indeterminate number, we interpret the result as giv-
ing the quantity −∞. With these conventions it is clear that each of the
players can assign a performance index to any specific strategy available to
the player. And for Player I we can easily identify the performance index.
Indeed, if Player I chooses the strategy P ∈ P, the associated performance
index is nothing but the divergence D(P‖P0) as

sup
R

D(P‖P0 ; R) = D(P‖P0)

(here, it is understood that R ranges over all strategies available to Player
II, i.e. over all probability distributions on (X, B), and that the conventions
just introduced are in force). Player I is then led to consider the quantity

Dmin = inf
P∈P

D(P ||P0)

and the notion of an optimal strategy for Player I makes good sense as a
distribution P ∈ P with D(P‖P0) = Dmin.

As for Player II, the performance index associated with the strategy R is
given by

Π(R) = inf
P∈P

D(P‖P0 ; R).

This is the pay-off or, more specifically, the estimation gain associated with
the strategy. Player II is then led to consider the maximal pay-off given by

Πmax = sup
R

Π(R)

and the notion of an optimal strategy for Player II then makes good sense as
a distribution R with Π(R) = Πmax. Clearly, Πmax ≤ Dmin. If equality holds,
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the common value is the value of the game and the game is then said to be
in equilibrium.

The first result, really Theorem 8 of [50], can be formulated in a very
standard way without reference to the Dmin-game at all. For the proof we
need Pinsker’s inequality which states that for any two distributions P and
Q,

D(P ||Q) ≥
1

2
V (P, Q)2

with V denoting total variation. We also need to know that (P, Q) y

D(P ||Q) is jointly lower semi-continuous, even with respect to the relatively
weak topology of setwise convergence. For these facts, see [47].

Theorem 1. Assume that P is convex and that Dmin < ∞. Then there

exists a unique distribution P ∗ such that, for every P ∈ P, the Pythagorean

inequality holds, i.e.

D(P ||P0) ≥ D(P ||P ∗) + Dmin. (20)

Proof. Let (Pn)n≥1 be a sequence of distributions in P such that the
convergence D(Pn||P0) → Dmin holds. Then, by the compensation identity,
we find that for every n ≥ 1, m ≥ 1, and with Pn,m denoting the distribution
1
2
Pn + 1

2
Pm,

Dmin +
1

2
D(Pn‖Pn,m) +

1

2
D(Pm‖Pn,m)

≤ D(Pn,m||P0) +
1

2
D(Pn||Pn,m) +

1

2
D(Pm||Pn,m)

=
1

2
D(Pn||P0) +

1

2
D(Pm||P0).

As this last quantity converges to Dmin, we conclude by Pinskers inequal-
ity – which shows that both D(Pn||Pn,m) and D(Pm||Pn,m) are lower bounded
by 1

8
V (Pn, Pm) – that (Pn)n≥1 is a Cauchy-sequence w.r.t. total variation.

By completeness of total variation, there exists a probability distribution P ∗

such that Pn → P ∗ in total variation, i.e. V (Pn, P ∗) → 0. By a stand-
ard argument involving the mixing of two sequences, we realize that P ∗ is
independent of the particular sequence (Pn)n≥1 ⊆ P with D(Pn||P0) → Dmin.

Now choose a sequence (Pn)n≥1 ⊆ P which “converges fast” in the sense
that

n(D(Pn||P0) − Dmin) → 0.

We shall use this auxiliary sequence to establish (20). To do so, fix P ∈ P
and consider the distributions Qn, n ≥ 1 given by

Qn = (1 − 1
n
)Pn + 1

n
P.
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Clearly, D(Qn||P0) ≥ Dmin. Again appealing to the compensation iden-
tity, we find that

Dmin +
1

n
D(P‖Qn) ≤ D(Qn||P0) + (1 −

1

n
)D(Pn||Qn) +

1

n
D(P ||Qn)

= (1 −
1

n
)D(Pn||P0) +

1

n
D(P ||P0)

and therefore,

D(P ||P0) + n(D(Pn||P0) − Dmin) ≥ D(P ||Qn) + D(Pn||P0) .

Now then, (20) follows from the “fast convergence” of (Pn) and from the
lower semi-continuity of Q y D(P ||Q) (as Qn converges setwise, even in
total variation, to P ∗).

To finish the proof we note that the Pythagorean inequality uniquely
characterizes P ∗. Indeed, if (Pn)n≥1 ⊆ P satisfies D(Pn||P0) → Dmin, then
D(Pn||P ∗) → 0, i.e. Pn converges in divergence to P ∗. In particular, Pn

converges in total variation to P ∗. 2

Note the somewhat peculiar aspect of the above proof: First one estab-
lishes as an auxiliary result a not-so-strong form for convergence of Pn with
(Pn) ⊆ P and D(Pn||P0) → Dmin and then, this is strengthened in the last
part of the proof to a much stronger, and information theoretically more ap-
propriate form of convergence. The fact that convergence in divergence (for
ordinary sequences as here considered) is a topological notion of convergence
follows from a well known fact of general topology (Kisynski’s theorem, cf.
[33]) but a more direct and intrinsicly information theoretical analysis of this
important observation is possible as demonstrated in Harremoës [19].

Following Csiszàr [11], we say that P ∗ of Theorem 1 is the generalized

I-projection of P0 on P (previous terminology of the author spoke about P ∗

as the relative centre of attraction, cf. [50]).
In many cases we can write the Pythagorean inequality in the form

D(P ||P0 ; P ∗) ≥ Dmin. For instance, if D(P ||P0) < ∞, this is so and
by standard considerations involving Radon Nikodym derivatives it follows
that then

D(P ||P0 ; P ∗) =

∫

log
dP ∗

dP0
dP. (21)

We shall now strengthen the assumptions Dmin < ∞ and use Theorem 1
to derive a key property of the Dmin-game. The main part of the result was
proved as Theorem 9 of [50].

Theorem 2. Assume that P is convex and that D(P ||P0) < ∞ for every P ∈
P. Then the Dmin-game is in equilibrium and P ∗, defined as the generalized
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I-projection of P0 on P, can also be characterized as the unique optimal

estimator for Player II. Furthermore, for every distribution R the inequality

Π(R) + D(P ∗||R) ≤ Πmax (22)

holds when properly interpreted ¶ . Finally, if R ∈ P, then

V (P ∗, R) ≤
√

D(R||P0) − Π(R) . (23)

Proof. By (20), Π(P ∗) ≥ Dmin, and as the reverse inequality is trivial,
the game is in equilibrium, and P ∗ is an optimal estimator. Let (Pn)n≥1 ⊆ P
be an auxiliary sequence chosen such that D(Pn||P0) → Dmin. Consider a
distribution R with and assume that Π(R) > −∞ (otherwise, (22) is trivial).
Then,

Π(R) ≤ lim sup
n→∞

D(Pn||P0 ; R)

= lim sup
n→∞

(D(Pn||P0) − D(Pn||R))

= Dmin − lim inf
n→∞

D(Pn||R)

≤ Dmin − D(P ∗||R)

by lower semi-continuity. As Π(R) > −∞ by assumption, (22) follows.
The uniqueness of P ∗ viewed as an optimal estimator follows from (22).
Combining (20) and (22) and using Pinsker’s inequality, both for D(R||P ∗)

and for D(P ∗||R), (23) follows. 2

We end by discussing some special situations. Quite often, e.g. for in-
formation spaces specified by moment constraints, the optimal estimator P ∗

is very robust in the sense that the estimation gain D(P ||P0 ; P ∗) is inde-
pendent of which distribution P ∈ P is chosen by Player I. In this connection
we define some more specialized concepts. The distribution P ∗ is pay-off

stable if D(P ||P0 ; P ∗) is well defined and finite for all P ∈ P and, further-
more, independent of P ∈ P. So we demand that D(P ||P0) and D(P ||P ∗)
are finite for all P ∈ P and that, for some constant π, D(P ||P0 ; P ∗) = π

for all P ∈ P. Expressed briefly, the requirement is that

∫

log
dP ∗

dP0
dP = π for all P ∈ P .

There may be many pay-off stable distributions. They constitute the
exponential family associated with (P, P0). This definition of exponential

¶By this we mean that either Π(R) = −∞ or else Π(R) ∈ R and (22) holds. Thus the
inequality implies that if Π(R) > −∞, then Π(R) and D(P ∗||R) are both finite.
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families leads to well known families for classical models specified by moment
constraints.

The first important concept we wish to introduce is that of a consistent

pay-off stable distribution. Sometimes a weaker concept, here only defined
for consistent distributions, is useful: A consistent distribution P ∗ is a Nash

equilibrium estimator if Π(P ∗) ≥ D(P ∗‖P0) and Dmin < ∞. The main
condition amounts to the inequality

D(P ||P0 ; P ∗) ≥ D(P ∗||P0) for all P ∈ P. (24)

Implicit in (24) is the requirement that D(P ||P ∗) is finite for all P ∈
P. To see that the last concept introduced is more general than the first,
assume that P ∗ is consistent and pay-off stable, say D(P ||P0 ; P ∗) = π

for P ∈ P. Then D(P ∗||P0) = π as P ∗ is consistent and (24) even holds
with equality. Thus, a consistent pay-off stable estimator is indeed a Nash
equilibrium estimator.

We now give a direct proof – independent of the proofs of Theorems 1
and 2 – which shows that all the conclusions of these therems hold if only
P ∗ is known to be a Nash equlibrium estimator. And we obtain an extra
desirable property. In the situation covered by Theorems 1 and 2 there is a
risk that D(P ∗||P0) ≤ Dmin holds with strict inequality. This cannot happen
if P ∗ has the Nash equilibrium property.

Theorem 3. Let P be any set of distributions and P0 any prior distribution.

Assume that P ∗ is a consistent Nash equilibrium estimator. Then the Dmin-

game for (P, P0) is in equilibrium and P ∗ is the unique optimal strategy

for Player I as well as the unique optimal strategy for Player II. In other

words, P ∗ has minimum divergence to P0 among all consistent distributions

and, considered as an estimator, P ∗ achieves the maximal estimation gain.

Furthermore, the inequalities of Theorems 1 and 2 hold and, in case P ∗ is

pay-off stable, the Pythagorean inequality (20) holds with equality for every

consistent distribution P .

Before the proof we point out that P is not assumed to be convex for this
result.

Proof. As Π(P ∗) ≤ D(P ∗‖P0) holds generally, we conclude from the
inequality Π(P ∗) ≥ D(P ∗‖P0) that Π(P ∗) = D(P ∗‖P0) = Πmax = Dmin.
The inequality (20) follows as Π(P ∗) ≥ Dmin.

And (22) follows as, for any estimator R with D(P ∗‖R) < ∞,

Π(R) + D(P ∗‖R) ≤ D(P ∗‖P0 ; R) + D(P ∗‖R) = D(P ∗‖P0) = Dmin.

(Note that for the first equality sign we need the assumption D(P ∗‖R) < ∞).
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The uniqueness assertions are now trivial and the case of equality in (20)
when P ∗ is pay-off stable is also easily derived. 2

As an important trivial example, indicative of the scope of GTE for the
Dmin-game, Harremoës [19] points out that if P0 and A with P0(A) > 0 are
given, then the conditional distribution P ∗ = P0(·|A) is the I-projection of P0

on the family of distributions supported by A. This follows as P0(·|A) ∈ P is
pay-off stable. Thus we should think of information projections as a natual
and far reaching generalization and companion of normal conditioning in
probability theory.

Recent research, cf. Harremoës [19], has pointed to the possibility and
also the need for a more thorough analysis and the present exposition should
therefore be considered as a quick introduction to the basic results. What
is required is a more subtle definition of estimation gain, aiming more at
(21) than relying on the simpler equation (19). Furthermore, one should
extend the notion of consistent distributions and work more with essentially

consistent distributions, distributions P ∗ for which there exists a sequence
(Pn)n≥1 of consistent distributions which converges in divergence to P ∗.
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