Interaction between Truth and Belief

as the key to non-extensive statistical physics

Flemming Topsøe
University of Copenhagen, Department of Mathematical Sciences
Universitetsparken 5, 2100 Copenhagen, Denmark Presentation at SigmaPhi2008

Claim : For the first time (?) the major part of a reasonable interpretation of the class of Tsallis entropies is provided which can explain their significance. This rests on the primary assumption that truth and belief interact and on a natural variational principle.

Our approach

- is philosophical: Put yourself in the shoes of the physicist who is planning observations and see if you can accept the considerations below (numbered 1 -8).

> 1 Events have truth-assignments and belief-assignments, respectively x and y. These are numbers in $[0,1]$, hence may be conceived as probabilities.

2 Any event I may observe entails a certain effort on my part. Before embarking on observations, I will determine the effort which I am willing to or have to devote to any event I may be faced with. This effort must only depend on my belief, y, and is denoted by $\kappa(y)$. The function κ, is the coder. As 1 represents certainty, $\kappa(1)=0$.

> 3 To determine the coder, I must know the basic characteristics of the world I operate in. I will focus primarily on interaction between truth and belief.

4 I will model the interaction by a function π, the interaction, defined on $[0,1] \times[0,1]$. My idea is that $\pi(x, y)$ represents the weight with which the world will present an event to me in case the truthassignment is x and my belief in the event is y.

4 I will model the interaction by a function π, the interaction, defined on $[0,1] \times[0,1]$. My idea is that $\pi(x, y)$ represents the weight with which the world will present an event to me in case the truthassignment is x and my belief in the event is y.

Schematically, with $\pi_{i}=\pi\left(x_{i}, y_{i}\right)$:

\mathbb{A}	Truth	Belief	Interaction
\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot
i	x_{i}	y_{i}	π_{i}
\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot

Example: The classical world is a world of "no interaction", hence the interaction is $\pi(x, y)=x$.

5 I believe that my world is consistent in the sense that $\sum_{i \in \mathbb{A}} \pi_{i}=1$ whenever $\left(x_{i}\right)_{i \in \mathbb{A}}$ and $\left(y_{i}\right)_{i \in \mathbb{A}}$ are probability assignments and $\pi_{i}=\pi\left(x_{i}, y_{i}\right)$.

Note: Then interaction must be sound ,
i.e. $\pi(x, x)=x$ for all $x \in[0,1]$.

6 To enable observations I must configure available observation- and measuring devices.
The resulting configuration will enable me to perform experiments, i.e. to study particular situations (physical systems) from the world which have my interest.

7 Separability applies: My total effort related to observations from the configured situation is the sum of individual contributions. Weights must be assigned to each contribution according to the weight with which I will experience the various events. The total effort I also refer to as the complexity , Φ. Thus:

$$
\Phi(x, y)=\sum_{i \in \mathbb{A}} \pi\left(x_{i}, y_{i}\right) \kappa\left(y_{i}\right)
$$

with $x=\left(x_{i}\right)_{i \in \mathbb{A}}$ the truth- and $y=\left(y_{i}\right)_{i \in \mathbb{A}}$ the belief-assignments associated with the events.

8 I will attempt to minimize complexity and shall appeal to the principle that complexity is the smallest when belief matches truth, $\left(\left(y_{i}\right)_{i \in \mathbb{A}}=\left(x_{i}\right)_{i \in \mathbb{A}}\right)$. As

$$
\sum_{i \in \mathbb{A}} \pi\left(x_{i}, y_{i}\right) \kappa\left(y_{i}\right)-\sum_{i \in \mathbb{A}} x_{i} \kappa\left(x_{i}\right)
$$

represents my frustration, the principle says that frustration is the least, in fact disappears, when

$$
\left(y_{i}\right)_{i \in \mathbb{A}}=\left(x_{i}\right)_{i \in \mathbb{A}} .
$$

Note: Given $x=\left(x_{i}\right)_{i \in \mathbb{A}}$, minimal complexity is what I am aiming at. It is an important quantity. I will call it entropy:

$$
\mathrm{S}(x)=\inf _{y=\left(y_{i}\right)_{i \in \mathbb{A}}} \Phi(x, y)=\sum_{i \in \mathbb{A}} x_{i} k\left(x_{i}\right) .
$$

Frustration too looks important. Perhaps I better call it divergence:

$$
\mathrm{D}(x, y)=\Phi(x, y)-\mathrm{S}(x)
$$

To summarize:

1: Events have Truth- and Belief- assignments
(x and y).
2: Events emply effort on my part, $\kappa(y)$ (κ is the coder).
3: Characteristic of my world:
Interaction btw. Truth and Belief.
4: Interaction $\pi(x, y)$ gives weight with which I will see a Truth- x, Belief- y event.
5: World is consistent: $\sum \pi\left(x_{i}, y_{i}\right)=1$ when ...
6: I must configure devices to enable observation.
7: Total effort, complexity, is $\sum \pi\left(x_{i}, y_{i}\right) \kappa\left(y_{i}\right)$.
8: Frustration $\sum \pi\left(x_{i}, y_{i}\right) \kappa\left(y_{i}\right)-\sum x_{i} \kappa\left(x_{i}\right)$ disappears when Belief matches Truth (and not otherwise).

Can you accept all this? If so, you can conclude:

Theorem: Modulo regularity conditions and a condition of normalization, $q=\pi(1,0)$ must be nonnegative and π and κ uniquely determined from q by:

$$
\begin{align*}
\pi(x, y) & =q x+(1-q) y, \tag{1}\\
\kappa(y) & =\ln _{q} \frac{1}{y} \tag{2}
\end{align*}
$$

where the q-logarithm is given by

$$
\ln _{q} x=\left\{\begin{array}{l}
\ln x \text { if } q=1, \\
\frac{x^{1-q}-1}{1-q} \text { if } q \neq 1 .
\end{array}\right.
$$

Hence entropy is given by

$$
\mathrm{S}(x)=\sum_{i \in \mathbb{A}} x_{i} \ln \operatorname{n}_{q} \frac{1}{x_{i}}
$$

This is the essence of my contribution. Can you, physicists in particular, contribute to illuminate key outstanding issues (or point to already existing relevant results):

Challenges:

- explain interaction on physical grounds,
- suggest possibilities for an accompanying process of real coding,
- illuminate the good sense (if any :-)) of the views put forward in well studied concrete cases (possibly distinguishing between the cases $0<q<1$, $1<q \leq 2$ and $q>2$).

If time permits, let us look into the following:

- proof of theorem
- connection with Bregman generation
- relaxing the condition of consistency.

Indication of proof of main result

Functions π and κ are assumed continuous on their domains and continuously differentiable and finite valued on the interiors of their domains. Normalization of κ means that $\kappa(1)=0$ and that $\kappa^{\prime}(1)=-1$.

You can exploit the consistency condition to show that, for all $(x, y) \in[0,1]^{2}$,

$$
\pi(x, y)=q x+(1-q) y
$$

with $q=\pi(1,0)$.

Consider a fixed finite probability vector $\left(x_{i}\right)_{i \in \mathbb{A}}$ with all x_{i} positive. Varying $\left(y_{i}\right)_{i \in \mathbb{A}}$ we find, via the introduction of a Lagrange multiplier, that f given by

$$
f(x)=\frac{\partial \pi}{\partial y}(x, x) \kappa(x)+\pi(x, x) \kappa^{\prime}(x)
$$

is constant on $\left\{x_{i} \mid i \in \mathbb{A}\right\}$. Exploiting this for threeelement alphabets \mathbb{A} shows that $f \equiv-1$. Then the formula for κ is readily derived.

Bregman generation: Look at concave generator h_{q} and associated "Bregman quantities":

$$
\left\{\begin{array}{l}
h_{q}(x)=x \ln _{q} \frac{1}{x}, \\
\phi_{q}(x, y)=h_{q}(y)+(x-y) h_{q}^{\prime}(y), \\
d_{q}(x, y)=h_{q}(y)-h_{q}(x)+(x-y) h_{q}^{\prime}(y), \\
\Phi_{q}(P, Q)=\sum_{i \in \mathbb{A}} \phi_{q}\left(p_{i}, q_{i}\right), \\
\mathrm{S}_{q}(P)=\sum_{i \in \mathbb{A}} h_{q}\left(p_{i}\right), \\
\mathrm{D}_{q}(P, Q)=\sum_{i \in \mathbb{A}} d_{q}\left(p_{i}, q_{i}\right) .
\end{array}\right.
$$

-compare with "interaction quantities":

$$
\left\{\begin{array}{l}
\pi_{q}(x, y)=q x+(1-q) y \text { (interaction) }, \\
\kappa_{q}(x)=\ln _{q} \frac{1}{x} \text { (coder), } \\
\xi(x, y)=y-x, \text { (corrector) }, \\
\Phi_{q}(P, Q)=\sum_{i \in \mathbb{A}} \pi_{q}\left(p_{i}, q_{i}\right) \kappa_{q}\left(q_{i}\right) \\
\quad=\sum_{i \in \mathbb{A}}\left(\pi_{q}\left(p_{i}, q_{i}\right) \kappa_{q}\left(q_{i}\right)+\xi\left(p_{i}, q_{i}\right)\right), \\
\mathrm{S}_{q}(P)=\sum_{i \in \mathbb{A}} p_{i} \kappa_{q}\left(p_{i}\right), \\
\mathrm{D}_{q}(P, Q)=\sum_{i \in \mathbb{A}}\left(\pi_{q}\left(p_{i}, q_{i}\right) \kappa_{q}\left(q_{i}\right)-p_{i} \kappa_{q}\left(p_{i}\right)\right) \\
\quad=\sum_{i \in \mathbb{A}}\left(\pi_{q}\left(p_{i}, q_{i}\right) \kappa_{q}\left(q_{i}\right)-p_{i} \kappa_{q}\left(p_{i}\right)+\xi\left(p_{i}, q_{i}\right)\right) .
\end{array}\right.
$$

Here, ξ is the corrector introduced so that the Bregmanand interaction- quantities are synchronized. Indeed, then the individual quantities coincide, in particular,

$$
\pi_{q}\left(p_{i}, q_{i}\right) \kappa_{q}\left(q_{i}\right)+\xi\left(p_{i}, q_{i}\right)=\sum_{i \in \mathbb{A}} \phi_{q}\left(p_{i}, q_{i}\right) .
$$

Note that the corrector is independent of q. When seeking further physically founded explanations for the whole set-up it may well be important to take the corrector into account.

Quantities written out:

$$
\begin{aligned}
\Phi(P, Q) & =\frac{1}{1-q}\left(-1+\sum_{i \in \mathbb{A}}\left(q p_{i} q_{i}^{q-1}+(1-q) q_{i}^{q}\right)\right) \\
\mathrm{S}(P) & =\frac{1}{1-q}\left(-1+\sum_{i \in \mathbb{A}} p_{i}^{q}\right) \\
\mathrm{D}(P, Q) & =\frac{1}{1-q} \sum_{i \in \mathbb{A}}\left(q p_{i} q_{i}^{q-1}-p_{i}^{q}+(1-q) q_{i}^{q}\right)
\end{aligned}
$$

Relaxing the condition of consistence: If we only assume that π is sound, i.e. that $\pi(x, x)=x$ for $0 \leq x \leq 1$, then other forms of interaction may leed to Tsallis-entropy as well. This happens with

$$
\pi(x, y)=x^{q} y^{1-q} .
$$

Thus, many quite different forms of interaction may give the same entropy function. But of course, the complexity- and divergence-functions will be different.

References in brief:

- Havrda and Charvát (1967): first appearence in the mathematical literature
- Lindhard and Nielsen (1971) and Lindhard (1974): first appearence in the physical literature
- Tsallis (1988): well known (:-)) take-off point which triggered much research and debate.

As recent contributions relevant for the present research, I mention Naudts (2008) and my own contribution from (2007).

