
On asymptotically optimal methods of prediction and adaptive
coding for Markov sources

Boris Ya. Ryabko
Information Technology University, Copenhagen, Denmark

Flemming Topsøe
Department of Mathematics, University of Copenhagen, Denmark∗

Summary. The problem of predicting a se-
quence x1, x2, · · · generated by a discrete source
with unknown statistics is considered. Each let-
ter xt+1 is predicted using information on the word
x1x2 · · ·xt only. In fact, this problem is a clas-
sical problem which has received much attention.
Its history can be traced back to Laplace. To esti-
mate the efficiency of a method of prediction, three
quantities are considered: the precision as given by
the Kullback-Leibler divergence, the memory size of
the program needed to implement the method on a
computer and the time required, measured by the
number of binary operations needed at each time
instant.

A method is presented for which the memory size
and the average time is close to the minimum. The
results can readily be translated to results about
adaptive coding.

Keywords. Prediction, adaptive coding, univer-
sal coding, ε-capacity, ε-net, imaginary sliding win-
dow.

1 Introduction

The problem of prediction and the closely related
problem of adaptive coding of time series is well
known in information theory, probability theory
and statistics. The problem can be traced back to
Laplace (cf. Feller [8] where the problem is referred
to as the problem of succession).

Presently, the problem of prediction is investi-
gated by many researches because of its practical
applications and importance for probability the-
ory, statistics, pattern recognition, cybernetics and
other theoretical sciences. An extensive review and
list of references can be found in Algoet, [2].

0Research of both authors supported in part by the Carls-
berg Foundation.

We shall investigate the relation between com-
plexity and precision of prediction methods. This
problem is interesting from a practical point of view.
To realize this, imagine you want to predict xt+1

knowing the sequence x1x2 · · ·xt. Then you have
to deal with a growing amount of data as t in-
creases. This results in an increase of the time of
calculation and of the amount of memory space re-
quired. Though practical methods have been de-
vised and studied empirically, there is a lack of
studies where the relation between complexity and
precision of prediction methods is investigated the-
oretically. Such theoretical results will be useful,
e.g. when judging the efficiency of concrete predic-
tion methods in experiments based on real sources.

Here, the apparently simplest classes of problems
are considered as a first step towards an under-
standing of the connection between complexity and
precision. Namely, we consider a source with un-
known statistics which generates sequences x1x2 · · ·
of letters from a finite alphabet A = {a1, · · · , an}
and the models we consider are either Bernoulli or
Markov models (of fixed connectivity). The un-
derlying true distribution, which is unknown ex-
cept for the restriction given by the model as-
sumption, is indicated by the letter p. We imag-
ine that we have a computer at our disposal for
solving the prediction problem. Now, let us have
a specific method of prediction in mind. As in-
put we consider any finite string x1x2 · · ·xt of let-
ters from A and as output we require that at
each time instant t we receive non-negative num-
bers p∗(a1|x1 · · ·xt), · · · , p∗(an|x1 · · ·xt) which are
estimates of the unknown conditional probabilities
p(a1|x1 · · ·xt), · · · , p(an|x1 · · ·xt), i.e. of the proba-
bilities p(xt+1 = ai|x1 · · ·xt); i = 1, · · · , n. The set
p∗(ai|x1 · · ·xt); i ≤ n is the prediction.

The precision of a prediction method is measured
by the divergence between p and p∗, and the com-
plexity of a method is characterized by two num-
bers: The time of calculation at each time instant

1

in bit operations and the memory size in bits of the
computer which is necessary in order to execute the
program defining the method. This approach is nat-
ural from a practical point of view and well known
in Computer Science, see, for example, [1]. It is in
conformity with methods used for prediction and for
similar problems of learning and statistics which are
based on the theory of finite state machines (cf. [7]
and [3]).

The problem which Laplace considered (cf. also
the recent contribution by Krichevskii, [13]) was to
estimate the probability that the sun will rise to-
morrow, given that it has risen every day since the
creation. Using our terminology, we can say that
Laplace estimated p(r|rr · · · r) and p(r̄|rr · · · r),
where {r, r̄} is the alphabet (“sun rises”, “sun does
not rise”) and the length of rr · · · r is the number
of days since the creation.

Instead of viewing the prediction p∗(a|x1 · · ·xt)
as probabilities, one may view p∗(a|x1 · · ·xt) as a
stake on the letter a ∈ A. This more game theoret-
ical view also goes back to Laplace. Further consid-
erations of a game theoretical nature were suggested
by many authors (Kelly [10], Topsøe [20], Ryabko
[16], Feder,Merhav and Gutman [7] and Rissanen
[15]).

The problem of adaptive (and universal) coding
is closely related to the prediction problem and was
investigated in Krichevskii [12] and Ryabko [17].
From a mathematical point of view the problems
are identical and can, therefore, be investigated to-
gether (cf. also further explanatory remarks in the
next section).

We shall suggest two prediction methods for
Markov sources, which are, respectively, asymp-
totically optimal (or near optimal) in average and
asymptotically optimal with probability one. The
one method is deterministic, whereas the other uses
randomization. 1

1Regarding randomization (cf. also [14]), it is important
to realize that this device is considered as an external device,
an oracle, which can be consulted from time to time. There-
fore, the use of randomization does not in itself pose extra
demands on the memory of the main computer. In order
to implement the randomizing mechanism, a pseudorandom
number generator will always be used and this demands sep-
arate devices (memory etc.). As stated, these demands are
not considered to interfere with memory management etc.
related to the main computer. Certain theoretical consider-
ations demonstrate the possibility to generate efficient ran-
domizing agents with low complexity, and this justifies the
view taken. We acknowledge that in practice the exterior
device and the methods in question are built together using
the same computer.

2 Definitions

Consider an alphabet A = {a1, · · · , an} with n ≥ 2
letters and denote by At the set of words x1 · · ·xt of
length t from A. Let p be a source which generates
letters from A. Formally, p is a probability distribu-
tion on the set of words of infinite length or, more
simply, p = (pt)t≥1 is a consistent set of probabili-
ties over the sets At ; t ≥ 1. By M0(A) we denote
the set of Bernoulli sources over A, and by Mk(A)
the set of Markov sources over A of connectivity
(memory) k ; k ≥ 1.

We use M to denote the model under consid-
eration. Formally, M could be any set of sources
but for this paper we only consider the cases M =
M0(A) and M = Mk(A) with k a fixed natural
number. In fact, we shall mainly focus on the case
M = M0(A) as results for the general Markovian
case can be deduced from results for the Bernoulli
case.

Denote by D(·‖·) the Kullback-Leibler divergence
and consider the source p and a method γ of pre-
diction. For a deterministic method of prediction,
the precision is characterized by the divergence

rγ,p(x1 · · ·xt) = D
(
p(·|x1 · · ·xt)‖p∗γ(·|x1 · · ·xt)

)
=
∑
a∈A

p(a|x1 · · ·xt) log
p(a|x1 · · ·xt)
p∗γ(a|x1 · · ·xt)

.

Here, and in the sequel, log denotes natural loga-
rithms (we also need logarithms to the base 2 which
are denoted by log2).

As usual, high precision means divergence close
to zero.

We will also consider methods of prediction which
allow randomization. Then, we emphasize that
p∗γ(a|x1 . . . xt); a ∈ A is a random distribution (even
for fixed x1 · · ·xt).

Thus, for these methods we define the precision
as follows

rγ,p(x1 . . . xt) =
Eγ(D(p(·|x1 . . . xt)‖p∗γ(·|x1 . . . xt)) =∑
a∈A p(a|x1 . . . xt)Eγ

(
log p(a|x1...xt)

p∗γ(a|x1...xt)

)
,

(1)

where Eγ denotes mean value.
Note that rγ,p may also be considered as the

redundancy when the prediction is used for cod-
ing. Let us comment on the relation to cod-
ing in more detail. We use p to stand for the
true conditional distribution p(·|x1 · · ·xt) and p∗

to stand for the corresponding prediction (possibly
chosen after invoking randomization). An observer
can construct a (prefix-free) code with codelength

2

κ∗(a|x1 · · ·xt) ≈ − log2 p
∗(a|x1 · · ·xn) for any let-

ter a ∈ A (since Shannon’s original research, it has
been well known, cf. e.g. Gallager [9] or Cover and
Thomas [4], that, using block codes with large block
length or more modern methods of arithmetic cod-
ing, the approximation may be as accurate as you
like). An ideal observer would base coding on the
true distribution p and not on the prediction p∗.
The difference in performance measured by average
code length is given by

∑
a∈A

p(a|x1 · · ·xt)(− log2 p
∗(a|x1 · · ·xt))

−
∑
a∈A

p(a|x1 · · ·xt)(− log2 p(a|x1 · · ·xt))

=
∑
a∈A

p(a|x1 · · ·xt) log2

p(a|x1 · · ·xt)
p∗(a|x1 · · ·xt)

.

Thus this excess, the redundancy, is – apart from
the unit in bits rather than in natural units – ex-
actly the precision defined above. We shall in fact
mostly refer to redundancy rather than divergence
or precision in what follows.

In the final section with concluding remarks we
shall return to coding aspects and include a discus-
sion of adaptive coding.

For fixed t, rγ,p is a random variable. This has
nothing to do with the use of randomization and
only reflects that x1, x2, · · · , xt are random vari-
ables.

We define the average divergence (at time t) by

Dt(p‖γ) = Ept (rγ,p(·)) =∑
x1···xt∈At

p(x1 · · ·xt)rγ,p(x1 · · ·xt) (2)

Related to this quantity we define the maximum
average divergence (at time t) by

Dt(M‖γ) = sup
p∈M

Dt(p‖γ) (3)

and the limiting maximum average divergence by

D∞(M‖γ) = lim sup
t→∞

Dt(M‖γ). (4)

We also refer to D∞(M‖γ) simply as limiting re-
dundancy. The dependence on the method and on
the model can be emphasized by speaking of lim-
iting redundancy of the method γ under the model
M .

It is important to develop methods which, in prin-
ciple, can be realized on any computer. Therefore, a
method γ will also depend on a parameter relating

to the computer available. This parameter could
be the memory size. For the methods we shall dis-
cuss it is more convenient to use a parameter w ex-
pressing the size of a window xt−w+1 · · ·xt which is
used for the prediction. The asymptotic properties
which we shall study investigates the performance
of a method as given by limiting redundancy when
the method is realized on more and more powerful
computers. Equivalently, and this will be our pre-
ferred view, one may study the necessary require-
ments on memory space and time in order to achieve
a lower and lower limiting redundancy.

3 A method which is asymp-
totically optimal on the av-
erage for Bernoulli sources

We shall describe a method α0 which is based on
results from universal coding theory, cf.[12].

The method is based on the frequencies of the
letters in A in a window x1 · · ·xw of size w.
By νa(x1 · · ·xw) we denote the frequency of a in
x1 · · ·xw, i.e. the number of i ≤ w with xi = a.
For the method α0, x1 · · ·xw is used to obtain the
frequencies νa(x1 · · ·xw) and these will then be the
basis for prediction of xw+1, xw+2, · · · according to
the formula

p∗α0
(a|x1 · · ·xt) =

νa(x1 · · ·xw) + 1
w + n

;

t ≥ w. (5)

As we are only interested in limiting behaviour,
it is not important how x1, · · · , xw are predicted.

In order to store the numbers νa(x1 · · ·xw); a ∈ A
we could require Sw = ndlog2(w + 1)e or just
(n−1)dlog2(w+1)e bits. In principle, we could have
been less demanding and only required a memory

of dlog2

(w + n− 1
n− 1

)
e bits. However, this might

increase computing time since the actual frequen-
cies νa(x1, · · · , xw) may then not be so easy to ac-
cess. We also point out that we consider n as fixed
whereas larger and larger w will be involved. There-
fore, the quantities suggested basically only differ
by an additive constant. Furthermore, we are not
interested in the fine details regarding actual imple-
mentations on a computer. Taking the above con-
siderations into account, we simplify the discussion
by taking

S(w) = (n− 1) log2 w (6)

as the required memory size.

3

When the computer presents the results (5) of
the prediction at a given time instant, we assume
that the probabilities involved are represented (i.e.
printed) as fractions. The time needed for this is
c · n · dlog2(w+ 1)e counted in bit operations. Here
c is a constant which is characteristic of the actual
computer used. We again simplify and take

T (w) = O(logw) (7)

to be the time requirement.
We need some lemmas.
Lemma 1. For the method α0, the limiting re-

dundancy for the Bernoulli model M0(A) can be
upper bounded as follows:

D∞(M0(A)‖α0) ≤ (n− 1)/(w + 1) (8)

Proof. Though this is known from [17], we give
the details of the proof for the convenience of the
reader.

Consider a Bernoulli source p and an integer t ≥
w. We employ the general inequality

D(µ‖η) ≤ −1 +
∑
a∈A

µ(a)2/η(a),

valid for any distributions µ and η over A (follows
from the elementary inequality log x ≤ x− 1), and
find:

Dt(p‖α0) = EptD(p(· | x1 · · ·xt)‖p∗(· | x1 · · ·xt))

= Epw(D(p‖p∗(· | x1 · · ·xw))

≤ −1 +
∑

x1···xw∈Aw
p(x1 · · ·xw)

∑
a∈A

p(a)2(w + n)
νa(x1 · · ·xw) + 1

= −1 +
∑
a∈A

w∑
i=0

p(a)2(w + n)
i+ 1

(w
i

)
p(a)i(1− p(a))w−i = −1 +

w + n

w + 1

∑
a∈A

p(a)

w∑
i=0

(w + 1
i+ 1

)
p(a)i+1(1− p(a))w−i

≤ −1 +
w + n

w + 1

∑
a∈A

p(a)

w+1∑
j=0

(w + 1
j

)
p(a)j(1− p(a))w+1−j =

n− 1
w + 1

.

As this holds for any t ≥ w and any Bernoulli
source p, (8) follows. 2

It may be remarked that if, instead of (5), we
define the method α′ by the formula

p∗α′(a|x1 · · ·xt) =
νa(x1 · · ·xw) + 1

2

w + n/2
; t ≥ w,

then the redundancy for small values of w will be
less than for α0 (see [12], [17]), however, the asymp-
totic properties (for memory size going to infinity)
will not be changed, whereas the analysis needed to
replace Lemma 1 will be more complicated.

In order to reach a given (small) value of r =
D∞(M0(A)‖α0), a certain size of the window is re-
quired as shown by (8). By (6) this imposes a con-
dition on the memory size Sα0 demanded by the
method. Thus, the required memory size may be
considered to be a function of r = D∞(M0(A)‖α0)
and we may write S = Sα0(r). In the same man-
ner, the time of prediction may be considered to be
a function of r: T = Tα0(r). Similar considerations
apply to any method γ.

Lemma 1 and the considerations above suffice in
order to establish the appropriate upper bounds for
the complexity of the method α0. However, we
must also develop results that permit the deriva-
tion of lower bounds and these results must apply
to any method. Otherwise, (near–) optimality of
any particular method, such as e.g. α0, cannot be
ascertained.

The technique we shall use in the search for lower
bounds uses the notions of ε-capacity and ε-nets de-
veloped by Kolmogorov and Tihomirov [11]. Let
M(A) denote the set of probability distributions
over the alphabet A and consider an ε > 0. A
subset Γ ⊆ M(A) is a 2ε− net for M(A) if, for
every p, q ∈ Γ with p 6= q there does not exist a
distribution λ ∈ M(A) for which both D(p‖λ) < ε
and D(q‖λ) < ε hold. By Cε(M(A)) we denote
the ε-capacity of M(A) defined as the maximum of
all numbers logN for which there exists a 2ε-net
Γ ⊆M(A) with N elements.

Before we state the capacity bound we need, it
is convenient to point out the following auxiliary
result:

Lemma 2. Let p = (p1, · · · , pn), q = (q1, · · · , qn)
and π = (π1, · · · , πn) be probability distributions.
Then

max(D(p‖π), D(q‖π)) ≥ 1
8
‖p− q‖2 (9)

with ‖ · ‖ denoting l1-norm (total variation).
Proof. By Pinsker’s inequality (cf. Csiszár and

Körner [5]), D(p‖π) ≥ 1
2‖p − π‖2 and D(q‖π) ≥

1
2‖q − π‖

2. Then

1
8
‖p− q‖2 ≤ 1

8
(‖p− π‖+ ‖q − π‖)2 ≤

4

1
8

(2 max ‖p− π‖, ‖q − π‖)2 ≤

max
1
2
‖q − π‖2) ≤

max(D(p‖π), D(q‖π)). 2

We can then prove a key lemma:
Lemma 3.

Cε(M(A)) ≥ n− 1
2

log2

1
ε

+O(1). (10)

Proof. Put δ =
√

8ε and denote by Γ ⊆ M(A)
the set of distributions p = (p1, · · · , pn) such that
all coordinates pi with i ≤ n − 1 are of the form
pi = kiδ with k1, · · · , kn−1 non-negative integers.
We show that Γ is a 2ε-net. Indeed, if p ∈ Γ, q ∈ Γ
and p 6= q, there exists i ≤ n− 1 such that pi 6= qi.
Then |pi − qi| ≥ δ, hence we obtain from Lemma 2
that for any distribution π,

max(D(p‖π), D(q‖π)) ≥ 1
8
δ2 = ε,

and it follows that Γ is a 2ε-net. Thus Cε(M0(A)) ≥
log |Γ| (| · | denoting “number of elements in”).

Let K = b1
δ c and denote by an−1(K) the number

of solutions of the inequality k1 + · · · + kn−1 ≤ K
with all the ki’s non-negative integers. It is then
clear that |Γ| ≥ an−1(K). Now,

an−1(K) =
K∑
j=0

(j + n− 2
n− 2

)
≥ 1

(n− 2)!

K+1∑
j=1

jn−2 ≥ 1
(n− 2)!

∫ K+1

0

xn−2dx

=
(K + 1)n−1

(n− 1)!
.

Putting things together, we find that

Cε(M0(A)) ≥ log
1

δn−1(n− 1)!
=

n− 1
2

log
1
ε

+O(1)

as claimed. 2

We may note that the O(1)-term in Lemma 3 is
approximately −n log n (apply Stirling’s formula).

The theorem below shows that the method α0 is
close to being optimal for r → 0.

Theorem 1. (i). For r → 0, where r =
D∞(M0(A)‖α0), we have

Sα0(r) ≤ (n− 1) log2

n− 1
r

=

(n− 1) log2

1
r

+O(1) (11)

and
Tα0(r) = O(log

1
r

). (12)

(ii). For any prediction method γ we have for
r → 0, where r = D∞(M0(A)‖γ),

Sγ(r) ≥ n− 1
2

log2

1
r

+O(1), (13)

Tγ(r) ≥ c
(

log
1
r

)
, (14)

where c is a positive constant (also depending on
n).

Proof. The proof of (i) was indicated above in
connection with Lemma 1.

In order to establish the more difficult part (ii)
of the theorem, consider an r > 0 and any method
γ of prediction with D∞(M0(A)‖γ) = r. We shall
prove that (11) and (12) hold for any such method.
In order to make the ideas of the proof clear, we
first treat the simpler case when γ is a deterministic
method. In that case the formula

Dt(p‖γ) = EptD(p‖p∗γ(·|x1 · · ·xt)) (15)

holds for all t and p ∈ M(A). Choose t so large
that Dt(p‖γ) ≤ r for all p ∈M(A). Then, for each
p, there must exist at least one string x1 · · ·xt such
that D(p‖p∗γ(·|x1 · · ·xt)) ≤ r.

Now, let Γ = {p1, · · · , pN} be a 2r-net. We can
then find strings xi1 · · ·xit; i ≤ N such that

D(pi‖p∗γ(·|xi1 · · ·xit)) ≤ r ; i = 1, · · · , N.

According to the definition of a 2r-net, the dis-
tributions p∗γ(·|xi1 · · ·xit); i ≤ N must be distinct,
hence the N input strings xi1 · · ·xit; i ≤ N must be
distinct too and the computer must be able to dis-
tinguish between them. This means that the com-
puter must have a memory of at least log2N bits.
As N may be chosen equal to expCr(M(A)), (13)
now follows from (10).

Then we consider the general case of a method
which may involve randomization. In that case we
find from (1) and (2) that

Dt(p‖γ) = EptEγD(p‖p∗γ(·|x1 · · ·xt)). (16)

By Jensen’s inequality in the form E(log 1
x) ≥

log 1
E(x) we obtain

Dt(p‖γ) ≥ EptD(p‖λγ(·|x1 · · ·xt)) (17)

where we have defined λγ(·|x1 · · ·xt) ∈M(A) by

λγ(a|x1 · · ·xt) = Eγp
∗
γ(a|x1 · · ·xt) ; a ∈ A.

5

Choose t so large that Dt(p‖γ) ≤ r for all p ∈
M0(A). Again, let Γ = {p1, · · · , pN} be a 2r-net.
Let us consider a distribution pi ∈ Γ. Then there
exists at least one string xi1 · · ·xit for which

EγD(pi‖p∗γ(·|xi1 · · ·xit)) ≤ r.

From (17) and the assumption about the perfor-
mance of the method γ we obtain the inequality

D(pi‖λγ(·|xi1 · · ·xit)) ≤ r.

We should note that

D(pj‖λγ(·|xi1 · · ·xit)) > r

for all pj ∈ Γ, j 6= i because Γ is a 2r-net.
The (deterministic) distributions λγ(·|xi1 · · ·xit),

i ≤ N are thus all different, hence also the (random)
distributions p∗γ(·|xi1 · · ·xit), i ≤ N are different. So
we found N input strings such that the N output
objects provided by the method γ (the above in-
dicated random distribution) are all distinct. The
computer must therefore be able to distinguish be-
tween these N input strings, and this requires a
memory of at least log2N bits. The lower bound
(13) now follows as before by reference to (10).

As to the lower bound (14), this is directly con-
nected with the proof of (13). Indeed, every predic-
tion method must be able to print the distribution
which is predicted at each time instant. And, as
we saw in the proof of (11), if D∞(M0(A)‖γ) ≤ r,
then, at some time instant t, the method could
lead to any of expCr(M(A)) many distributions
(whether random or not) as the distribution pre-
dicted for xt+1. So the computer must contain
a code to distinguish between these distributions.
Such a code must contain a codeword of bit length
at least log2 expCr(M(A)). If the corresponding
distribution is to be printed – and the computer
must be capable of doing that – then a look-up of
the codeword in question is required, and this takes
time measured in bit operations of at least the bit
length of the codeword. Therefore, for a positive
constant which is characteristic for the computer
used,

Tγ(r) ≥ c · log2 expCr(M(A))

and (14) follows from (10). 2

Remark. An inspection of the proof shows that
the given lower bounds hold in a slightly more gen-
eral setting for which lim sup in the defining relation
(4) is replaced by lim inf.

4 A method which is asymp-
totically optimal with prob-
ability one

First, we notice that the method α0 has a serious
shortage as the first w letters on which the method
is based could exhibit a bad statistics. On first
sight, it is tempting to improve on this by using the
window xt−w+1 · · ·xt rather than x1 · · ·xw for the
prediction of xt+1. With this change, the method
will be good with probability one and not only in av-
erage. But then, after predicting every letter xt+1,
we would have to move the window: xt+1 should be
included in the window and xt−w+1 removed. This
will require w log2 n bits rather than the n log2 w
bits which suffice for α0. In more detail, the point
is that for any of the w positions making up the
window, we would have to know which letter was
observed at that time instant , so that even if n = 2,
we would need w bits of memory for this purpose.
When the precision r goes to 0, the parameter w
goes to infinity and the method with a sliding win-
dow would need constant/r bits of memory as com-
pared to (n− 1) log(1/r) bits for α0.

In order to preserve the relatively small demand
for memory for α0 while at the same time improv-
ing the prediction by using also the later letters, we
propose to use the method β0 of the imaginary slid-
ing window from [19] (related methods are used in
computer science, e.g. regarding so-called paging,
cf. [14], Chapter 13).

At each time instant t (we need only worry
about t ≥ w) we keep track of certain numbers
νt(a1), · · · , νt(an), which we think of as frequencies,
and use these to predict xt+1 according to the for-
mula

p∗β0
(a|x1 · · ·xt) =

νt(a) + 1
w + n

; t ≥ w.

The frequencies νt(a) are random variables as
they depend on x1, · · · , xt. We shall now explain
how these frequencies are defined.

The starting frequencies νw(a1), · · · , νw(an) are
the true frequencies in the window x1 · · ·xw. The
new feature of β0 is that after prediction of xt+1

(t ≥ w), we change the frequencies as follows: First,
we consult the oracle and choose a letter at random
according to the probabilities νt(a)/w, a ∈ A. If
aj is chosen, we define the new frequency for this
letter using the convention νt+1(aj) = νt(aj) − 1.
After this, we add 1 to the frequency of xt+1

(νt+1(xt+1) = νt(xt+1)+1). If a 6= xt+1 and a 6= aj ,

6

we do not change its frequency (νt+1(a) = νt(a)).
The new frequencies νt+1(ai); i ≤ n are then used
to predict xt+2, and after this the frequencies are
again changed, xt+3 is predicted and so on.

The memory size required for the method β0 is
(n−1)dlog2(w+1)e bits, and can more conveniently
be taken to be

Sw = (n− 1) log2 w (18)

just as for the method α0, cf. (6). However, in
taking (18) as expression for the memory size, we
ignore the (asymptotically negligible) demand for
memory resulting from the use of a random number
generator. This is also justifyed by the considera-
tions detailed in the introduction.

When estimating the time of prediction, we like-
wise ignore the complexity of a random number gen-
erator and only consider the transformation to val-
ues with probabilities νt(a)/w; a ∈ A. Using fast
methods of transformation as described in [18], one
finds that the average time of transformation per
letter is O(logw) bit operations.

Using properties of the imaginary sliding window,
see [19] and also the remarks below, and appealing
to calculations similar to those for the proof of The-
orem 1, we now obtain the following result:

Theorem 2. Let r > 0 be given, put w = d(n−
1) log2 e/re and apply the method β0 of prediction
with this parameter value w. Then, for every p ∈
M0(A),

Pr

(
lim sup
t→∞

rβ0,p(x1, · · · , xt) ≤ r
)

= 1,

Sβ0(r) ≤ (n− 1) log2

1
r

+O(1),

Tα0(r) = O

(
log

1
r

)
.

Remarks. As the lower bounds (13) and (14) still
apply, the result shows that the method β0 is not
all that far from being optimal. A remark on the
proof is also in place. It is essential that the statis-
tics of the numbers νt(ai) really do behave as they
should, i.e. that they converge to the corresponding
true frequencies. We point out that the proof of this
crucial fact is easily accomplished when transform-
ing the problem in a natural way into a problem
of calculating the invarient distribution associated
with the Markov chain which models the updating
method of the imaginary sliding window.

5 Markov sources

In §2 we indicated that extensions of the key results
to cover the general Markov case are possible. We

take this up now. The trick is to view a Markov
source p ∈ Mk(A) as resulting from |A|k Bernoulli
sources. We illustrate this idea by an example.

So assume that A = {O, I}, k = 2 and assume
that the source p ∈ M2(A) has generated the se-
quence

OOIOIIOOIIIOIO.

We represent this sequence by the following four
subsequences:

∗ ∗ I ∗ ∗ ∗ ∗ ∗ I ∗ ∗ ∗ ∗∗,

∗ ∗ ∗O ∗ I ∗ ∗ ∗ I ∗ ∗ ∗O,
∗ ∗ ∗ ∗ I ∗ ∗O ∗ ∗ ∗ ∗I∗,
∗ ∗ ∗ ∗ ∗ ∗O ∗ ∗ ∗ IO ∗ ∗.

These four subsequences contain letters which fol-
low after OO, after OI, after IO and after
II, respectively. By definition, p ∈ Mk(A) if
p(a|x1 · · ·xt) = p(a|xt−m+1 · · ·xt), for all k ≤ m ≤
t, all a ∈ A and all x1 · · ·xt ∈ At. Therefore, each of
the four generated subsequences may be considered
to be generated by a Bernoulli source. Further, it is
possible to reconstruct the original sequence if we
know the four (= |A|k) subsequences and the two
(= k) first letters of the original sequence.

In order to predict, it is enough to store in the
memory |A|k methods for Bernoulli sources (α0 or
β0), one corresponding to each word in Ak. Thus,
in the example, the letter x3 which follows after
OO is predicted based on the Bernoulli method cor-
responding to the OO- subsequence (= II), then
x4 is predicted based on the Bernoulli method cor-
responding to x2x3, i.e. to the OI- subsequence
(= OIIO), and so forth. It will not be important
how to predict x1x2 or, in general, x1 · · ·xk.

The methods for Mk(A) which are obtained in
this way by using either α0 for all |A|k subsequences
or else β0 for all these subsequences, we denote by
αk and βk, respectively. For the associated memory
size and the associated average time of calculation
by letter we find the following result:

Theorem 3. (i). Denoting the limiting average
divergence for the method αk by r, then, as r → 0,

Sαk(r) = nk(n− 1) log2

1
r

+O(1) (19)

and

Tαk(r) = O

(
log

1
r

)
. (20)

(ii). If, for the method βk,

Pr

(
lim sup
t→∞

rβk,p(x1 · · ·xt) ≤ r
)

= 1,

7

then, as r →∞,

Sβk(r) ≤ nk(n− 1) log2

1
r

+O(1) (21)

and

Tβk(r) = O

(
log

1
r

)
. (22)

(iii). For every prediction method γ for Mk(A),

Sγ(r) ≥ nk(n− 1)
2

log2

1
r

+O(1) (23)

and

Tγ(r) ≥ c
(

log
1
r

)
, (24)

where c is a positive constant (which also depends
on n and k).

Proof. As it was shown above , every Markov
source p ∈ Mk(A) can be presented as resulting
from |A|k Bernoulli sources.

So, the computer has to store |A|k tables in or-
der to predict each letter xt using the correspond-
ing above described method for M0(A). That is
why the memory size required for the suggested
method is |A|k times more than for the correspond-
ing method for a single Bernoulli source, but the
time of prediction is asymptotically the same. It
is not important how to predict the first letters
x1, · · · , xk , because we are interested in asymp-
totic behaviour of the method. For example, we
can ascribe equal probabilities |A|−k to all strings
x1 · · ·xk.

The same representation of a Markov source may
be used in order to obtain the lower bounds . In
fact, in the case of Markov sources, the dimension
of the parameter space is equal to (|A|−1)|A|k, un-
like the Bernoulli case when the dimension is |A|−1.
Using a similar estimation of the ε-capacity as be-
fore, we can obtain the lower bounds of the memory
size. 2

6 Concluding remarks

From a practical point of view, the β–methods have
an extra advantage over the α–methods which is
connected also with the fact that the β–methods
are good with probability 1 whereas α–methods are
only good in average. The point is that the very na-
ture of the β–methods make them robust to changes
in time of the statistics of the source.

Note that the methods developed (α as well as β)
were designed solely with the aim of obtaining good
methods for special stationary sources. Clearly, fur-
ther research should broaden the scope. But even

though we did not aim at developing methods for
non-stationary sources it so happens that the no-
tion of the (imaginary) sliding window is perfectly
suited to handle sources with changes in time of the
statistics. This paper is focused on theoretical con-
siderations and has the primary aim to study per-
formance in terms of complexity, especially we have
endeavoured to initiate research which gives tight
lower bounds of performance possibilities which are
close to the optimally achievable.

On the more practical side, it would be interest-
ing to study the performance of our methods and
methods developed by other authors in real exper-
iments based on real data.

Acknowledgements. The authors had helpful
discussions with Joe Suzuki in Novosibirsk, July
1998, and later with Jyrki Katajainen, Peter An-
dreasen and Peter Harremoës. Some of the com-
ments received resulted in clarifications regarding
the use of randomization. Thanks are due to two
referees who requested certain expansions and rear-
rangements of the material which has made the pa-
per more readable and self-contained. The meticu-
lous work of the referees is gratefully acknowledged.

References

1. Aho A.V., Hopcroft J.E. and Ullman
J.D., The design and analysis of computer al-
gorithms. Addison-Wesley, Cambridge, 1976.

2. Algoet P., Universal Schemes for Learning
the Best Nonlinear Predictor Given the Infi-
nite Past and Side Information, IEEE Trans.
Inform. Theory, v. 45, pp. 1165-1185, 1999.

3. Cover T.M., Freedman A.M. and Hell-
man M.E., Optimal Finite Memory Learning
Algorithms for the Finite Sample Problem, In-
formation and Control, v. 30, pp. 49-85, 1976.

4. Cover T.M. and Thomas J.A., Elements of
Information Theory. John Wiley & Sons, New
York, 1991.

5. Csiszár I. and Körner J., Information The-
ory, Coding Theorems for Discrete Memoryless
Systems. Akademiai Kiado, Budapest 1981.

6. Feder M. and Merhav N., Universal predic-
tion, IEEE Trans. Inform. Theory, v. 44, pp.
2124-2147, 1998.

7. Feder M., Merhav N. and Gutman M.,
Universal prediction of individual sequences,
IEEE Trans. Inform. Theory, v. 38, pp. 1258-
1270, 1992.

8

8. Feller W., An Introduction to Probabability
Theory and Its Applications, vol.1. John Wiley
& Sons, New York, 1970.

9. Gallager R. G., Information Theory and Re-
liable Communication. John Wiley & Sons,
New York, 1968.

10. Kelly J.L., A new interpretation of informa-
tion rate, Bell System Tech. J., v. 35, pp.
917-926, 1956.

11. Kolmogorov A.N. and Tihomirov V.M.,
Epsilon-entropy and epsilon-capacity of sets in
metric spases, Uspechi Math. Nauk. v. 14,
pp. 2-86, 1959. (Russian original, translated
into English).

12. Krichevsky R., Universal Compression and
Retrival. Kluver Academic Publishers, Dor-
drecht, 1994.

13. Krichevskii R., Laplace’s Law of Succession
and Universal Encoding, IEEE Trans. Inform.
Theory, v. 44, pp. 296-303, 1998.

14. Motwani R. and Raghavan, P., Random-
ized Algorithms. Cambridge University Press,
Cambridge, 1995.

15. Rissanen J., Universal coding, information,
prediction, and estimation, IEEE Trans. In-
form. Theory, v. 30 pp. 629-636, 1984.

16. Ryabko B. Ya., The complexity and effective-
ness of prediction algorithms, J. of Complexity,
v. 10, pp. 281-295, 1994.

17. Ryabko B. Ya., Prediction of random se-
quences and universal coding, Problems In-
form. Transm. v. 24, pp. 87-96, 1988.

18. Ryabko B. Ya., A fast on-line adaptive code,
IEEE Trans. Inform. Theory, v. 38, pp. 1400-
1404, 1992.

19. Ryabko B. Ya., Data compression by “an
imaginary sliding window”, Problems Inform.
Transmission v. 32, pp. 156-163, 1996.

20. Topsøe F, Information Theoretical Optimiza-
tion Techniques, Kybernetika, v. 15, pp. 8-27,
1979.

21. Topsøe F., Game Theoretical Equilibrium,
Maximum Entropy and Minimum Information
Discrimination, in Mohammad-Djafari et al
(eds.): Maximum Entropy and Bayesian Meth-
ods. Kluwer, Dordrecht, 1993.

22. Verdu S., Fifty years of Shannon Theory,
IEEE Trans. Inform. Theory, v. 44, pp. 2057-
2078, 1998.

9

