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t � Notions of blo
k symmetry for dis-
rete, memoryless 
hannels are introdu
ed. Theresults deal with 
apa
ity and optimal distribu-tions and appear to be simple and natural oneswhi
h somehow were overlooked or not 
onsideredin the early development of information theory.I. PreviewLet P be the transition matrix for a dis
rete memory-less 
hannel (DMC) and 
onsider a blo
k de
omposition
(Pij)i,j of P as indi
ated in the �gure. Su
h a de
ompo-sition is indu
ed by two de
ompositions � or equivalen
erelations � one of the input-, the other of the output al-phabet. Assume that, within ea
h blo
k Pij , all row sumsare equal and also that all 
olumn sums are equal. As-sume further, that rows in the full matrix P whi
h 
or-respond to equivalent input letters have equal entropy.Then there exists an optimal input distribution � i.e. onefor whi
h the transmission rate rea
hes 
apa
ity � whi
his 
onsistent with the de
omposition of the input alpha-bet in the sense that equivalent input letters are sent withequal probability. The optimal output distribution is 
on-sistent in a similar way. This is the key result, stated indetail in Theorem 2.

Pij

II. DMC's with BenefitLet P = (pxy)x∈X,y∈Y be a sto
hasti
 matrix, �xedin the sequal. We view P as the transition matrix of aDMC. The sets X and Y , the input- and output alphabets,are assumed to be �nite. For x ∈ X , ~qx denotes the x'throw ve
tor in P. An input distribution is a distribution
~p = (px)x∈X over X . The indu
ed output distribution isthe mixture ~q =

∑

px~qx. The information transmissionrate I(~p) 
an be expressed, using �D� for Kullba
k-Leiblerdivergen
e, as
I(~p) =

∑

x∈X

pxD(~qx‖~q) . (1)1Supported by the Danish Natural S
ien
e Resear
h Coun
il andby INTAS, proje
t 00-738.

We need a re�ned notion of 
apa
ity, whi
h allows thatthe sending of an input symbol may be asso
iated with a
ertain bene�t. This idea, and the basi
 result 
onne
tedwith it, has been 
onsidered before, 
f. Blahut [2, The-orem 9℄, where it was found more natural to asso
iate a�
ost� with the transmission of an input symbol. Con-sider a bene�t fun
tion a : x y ax whi
h maps X intothe reals, and de�ne the modi�ed 
apa
ity with bene�t a,by
C(P;a) = sup

~p

(I(~p) + 〈a, ~p〉) . (2)The bra
ket notation indi
ates mean value: 〈a, ~p〉 =
∑

x pxax. Clearly, the supremum in (2) is attained, andwe are led to 
onsider optimal input- and output distri-butions for the modi�ed problem.Theorem 1 (Kuhn-Tu
ker 
onditions). Let ~p∗ be aninput distribution and ~q∗ the indu
ed output distribution.A ne
essary and su�
ient 
ondition that ~p∗ be optimalfor the modi�ed problem with bene�t a is that, for some
onstant C, the following two 
onditions hold:
D(~qx‖~q

∗) + ax ≤ C for all x , (3)
D(~qx‖~q

∗) + ax = C for all x with p∗x > 0 . (4)If these 
onditions are satis�ed, C = C(P;a).Proof. We present a simple proof based on [8℄. First as-sume that (3) and (4) hold. Employ the identity 1
I(~p) + D(~q‖~q∗) =

∑

x∈X

pxD(~qx‖~q
∗) ,valid for any input distribution ~p with indu
ed outputdistribution ~q, to 
on
lude that for any su
h ~p,

I(~p) + 〈a, ~p〉 ≤
∑

x∈X

px

(

D(~qx‖~q
∗) + ax

)

≤ C .It readily follows that C(P;a) = I(~p∗) + 〈a, ~p∗〉 .To prove ne
essity, assume that the stated 
onditionsfail. Denote the left hand side of (3) by Kx. Choose x0with Kx0
maximal. Then

Kx0
>

∑

x∈X

p∗xKx . (5)1This is the �
ompensation identity�, 
f. [9℄.



For 0 ≤ ε ≤ 1, put ~pε = (1 − ε)~p∗ + ε~px0
with ~px0representing a unit mass at x0. Let ~qε be the distributionindu
ed by ~pε. Then, by the 
ompensation identity,

(1 − ε)I(~p∗) + (1 − ε)D(~q∗‖~qε) + εD(~qx0
‖~qε) = I(~pε) .Writing I(~p∗) + 〈a, ~p∗〉 as ∑

p∗xKx, it follows from thisthat I(~pε) + 〈a, ~pε〉 is lower bounded by
∑

x∈X

p∗xKx + ε

(

D(~qx0
‖~qε) + ax0

−
∑

x∈X

p∗xKx

)

.By (5) and lower semi-
ontinuity of divergen
e, it fol-lows that for ε su�
iently small, but positive, I(~pε) +
〈a, ~pε〉 is stri
tly larger than I(~p∗) + 〈a, ~p∗〉, hen
e ~p∗ isnot optimal.Though some parts of the proof 
an be modi�ed to
over 
ases with X or Y in�nite, 
are has to be taken forseveral reasons, e.g. there may be no optimal distributionat all (
onsider P with rows (1, 0), (1

2
, 1

2
), (1

4
, 3

4
), · · · ).Every input distribution ~p∗ with all p∗x positive is op-timal for the modi�ed problem for some 
hoi
e of bene�tfun
tion. Indeed, with bene�ts ax = −D(~qx‖~q
∗), ~p∗ isoptimal and the modi�ed 
apa
ity is 0. In this setting, itis more natural to 
onsider D(~qx‖~q

∗) as a 
ost asso
iatedwith the transmission of x. This remark illuminates thevery de�nition of optimal distributions.Whereas there may be several optimal input distribu-tions, the optimal output distribution is unique, as inthe 
ase with zero bene�t. This follows by 
on
avity of
~p y I(~p) + 〈a, ~p〉.Expli
it formulas for the 
al
ulation of optimal distri-butions and modi�ed 
apa
ity do not exist in general,and even when they do, they be
ome 
ompli
ated. Inthe appendix we develop formulas pertaining to a 2 × 2matrix. III. The Basi
 ResultFor any set W , DEC(W ) denotes the set of de
omposi-tions of W , ordered by subde
omposition. Put Z = X×Y
orresponding to given �nite sets X and Y . A blo
k de-
omposition of Z is a de
omposition of the form ηX×ηY =
{A × B | A ∈ ηX , B ∈ ηY } with ηX ∈ DEC(X), and
ηY ∈ DEC(Y ). A set A × B ∈ ηX × ηY is 
alled a blo
kof the de
omposition. The set of blo
k de
ompositions of
Z is denoted BDE(Z).Consider η = ηX × ηY ∈ BDE(Z), to be �xed fromnow on. As η is seen in 
onjun
tion with P, we write
η ∈ BDE(P). The number of 
lasses in ηX and ηY aredenoted by M , respe
tively N . We put ηX = {Xi | i ≤
M} and ηY = {Yj | j ≤ N}. We denote by Pij the
ij'th blo
k in P, i.e. Pij = (pxy)x∈Xi,j∈Yj

. We write
η ∈ BDE(P; σ−) if, within ea
h blo
k Pij , the row sumsare equal, say = σ

ij
− . If η ∈ BDE(P; σ−), we de�ne thederived DMC as the DMC with transition matrix ∂ηP =

(σij
− )i≤M,j≤N and we denote the i′th row in ∂ηP by ~σi.We write η ∈ BDE(P; σ+) if η ∈ BDE(P; σ−) and if,

within ea
h blo
k Pij , the 
olumn sums are equal, say
= σ

ij
p
.We denote by mi (nj) the number of elements in Xi(Yj) and by ~ui (~vj) the uniform distribution over Xi (Yj).As indi
ated in se
tion I, a 
onsistent (or η-
onsistent) in-put distribution is a distribution ~p for whi
h, given i ≤ M ,

px is independent of x ∈ Xi. Clearly, an input distribu-tion ~p is 
onsistent if and only if it is a 
onvex 
ombination
~p =

∑

i≤M αi~u
i of the ~ui. Similarly, we 
onsider 
onsis-tent output distributions whi
h are 
onvex 
ombinationsof the form ~q =
∑

j≤N βj~v
j .Lemma 1. Assume that η ∈ BDE(P; σ+). Let ~p =

∑

i≤M αi~u
i be a 
onsistent input distribution and ~q theindu
ed output distribution. Let ~β = (βj)j≤N be the out-put distribution for ∂ηP indu
ed by ~α = (αi)i≤M . Then

~q =
∑

j≤N βj~v
j . In parti
ular, ~q is 
onsistent.Proof. This follows by simple 
omputation, relying alsoon the relation njσ

ij
p

= miσ
ij
− .The 
onne
tion between P and ∂ηP will be furtherexploited. For this we strengthen the 
onditions on η. Wesay that η is a generalized blo
k symmetri
 de
omposition,and write η ∈ GBSD(P), if η ∈ BDE(P; σ+) and if, forea
h i ≤ M , H(~qx) is independent of x for x ∈ Xi.For ea
h x ∈ X we 
onsider the ηY −
onditional di-vergen
e of ~qx w.r.t. (~vj)j≤N , a quantity de�ned by �rstdetermining i su
h that x ∈ Xi and then setting

Dη(~qx‖·) =
∑

j≤N

σ
ij
−D(~qx|Yj‖~v

j) (6)with ~qx|Yj the usual 
onditional distribution of ~qx given
Yj . If the output distribution ~q is 
onsistent, say ~q =
∑

j≤N βj~vj then, by a simple dataredu
tion identity,
D(~qx‖~q) = D(~σi‖~β) + Dη(~qx‖·) . (7)Here, we still assume that x ∈ Xi. For more on identitieslike (7), see [9℄. We 
an now state the main result.Theorem 2. Assume that η ∈ BDE(P; σ+).(i). If η ∈ GBSD(P), there exists an optimal 
onsistentinput distribution. In this 
ase, ai = Dη(~qx‖·) is indepen-dent of x for x ∈ Xi and C(P) = C(∂ηP;a) with bene�tve
tor a = (ai)i≤M .(ii). If an optimal 
onsistent input distribution exists withall point probabilities positive, then η ∈ GBSD(P).Proof. (i) follows by Theorem 1 (applied both to P with-out bene�t and to ∂ηP with bene�t a) in 
onjun
tionwith Lemma 1 and (7).To prove (ii) let ~p be an optimal 
onsistent input dis-tribution with positive point probabilities and let ~q =

∑

j≤N βj~v
j be the indu
ed output distribution. By The-orem 1, D(~qx‖~q) is indepent of x. By (7), Dη(~qx‖·) isindependent of x when restri
ting x to a 
lass Xi. As

Dη(~qx‖·) = −H(~qx) +
∑

j≤N

σ
ij
− log

nj

σ
ij
−

,it follows that H(~qx) is independent of x for x ∈ Xi.



It is a bit surprising that the 
ondition of equal en-tropies for the ~pi 's plays a 
entral role. It does not havemu
h of the �avour of a symmetry 
ondition. Previousresults work with stronger but more �
lean� 
onditions ofsymmetry. Su
h notions were studied already by Shan-non, 
f. [6, Se
tions 15 and 16℄ and appear in most text-books. For our purposes, a matrix is 
alled weakly sym-metri
 if the rows are permutations of ea
h other and ifall 
olumn sums are equal. This terminology is in 
onsis-ten
y with Cover and Thomas [3, p. 190℄. We 
all η ablo
k symmetri
 de
omposition of P if all blo
ks Pij areweakly symmetri
. Notationally we write η ∈ BSD(P).Clearly, if η ∈ BSD(P), then η ∈ GBSD(P), hen
e:Corollary 1. If η ∈ BSD(P), there exist 
onsistent op-timal input- and output distributions.The 
ase M = N = 1 is dealt with in [3℄. In Gallager[4, p. 94℄ one �nds a variant of the 
orollary 
orrespond-ing to the 
ase M = 1, N arbitrary, though there withthe stronger requirement of equal 
olumns modulo per-mutations.Example 1. Theorem 2 is stronger than Corollary 1.This is seen from the example of the 10 × 5 matrix Pwhi
h is 1

8
times the transpose of the matrix













1 1 1 1 4 2 2 2 2 0
1 1 1 4 1 2 2 2 0 2
1 1 4 1 1 2 2 0 2 2
1 4 1 1 1 2 0 2 2 2
4 1 1 1 1 0 2 2 2 2













.By Theorem 2, the uniform distribution ( 1

10
, · · · , 1

10
) is anoptimal input distribution. This result is not 
overed bya dire
t appli
ation of Corollary 1, but 
ould have beenobtained by two su

essive appli
ations of the 
orollary.Possibly, this kind of iterative pro
edure 
an be appliedmore generally. A 
omplete answer to the questions thisraises will 
ontain the 
hara
terization of 
hannels withthe uniform distribution as an optimal input distribution.Even the simple 
ase of a binary 
hannel is not entirelytrivial. 2IV. Coarsest de
ompositions, symmetry profilesTheorem 2 may not be all that informative. For in-stan
e, in 
ase η is the �nest blo
k symmetri
 de
omposi-tion (
onsisting of singletons), it 
ontains no information.The 
oarser η is, the more informative is the result. It is2This 
ase may be dis
ussed by 
onsidering the fun
tion

D(~q1‖~q) − D(~q2‖~q) with ~q = 1

2
~q1 + 1

2
~q2 as a fun
tion of p11 and

p22, observing that the determinant of the Hessian has a simplefa
torization; indeed, the determinant in question is
−(1 − α − β)4

αβ(1 − α)(1 − β)(1 − β + α)2(1 − α + β)2where α = p11, β = p22. This is the key fa
t needed to showthat the fun
tion only vanishes on the diagonals of the unit square(for this argument, we a
knowledge dis
ussions with J. P. R. Chris-tensen).

important that, given any DMC P, a 
oarsest blo
k sym-metri
 de
omposition exists. Moreover, there is a simplealgorithm to determine this most informative blo
k sym-metri
 de
omposition. A similar result does not hold forthe generalized notion of blo
k symmetry.Theorem 3. Any DMC P = (pxy)x∈X,y∈Y has a 
oars-est blo
k symmetri
 de
omposition.Proof. The key point is to show that BSD(P) is 
losedunder the latti
e operation ∧. 3Assume that η′ = η′
X × η′

Y and η′′ = η′′
X × η′′

Y are in
BSD(P) and put η = η′∧η′′ = ηX ×ηY , say. Consider an
η-
lass A × B and let Q = (pxy)x∈A,y∈B. We shall showthat Q is weakly symmetri
. This involves a 
ondition onthe rows and a 
ondition on the 
olumns in Q. Consider�rst the rows.As ηX = η′

X ∧η′′
x , we 
an pass from one element of A toanother by a �nite number of equivalen
es, ea
h one beingeither under η′

X (denoted ≡′) or under η′′
X (denoted ≡′′).Note that if a1, a2 ∈ A and a1 ≡′ a2, then the a1-row andthe a2-row of Q are de
omposed into parts 
orrespond-ing to the de
omposition of B into η′

Y -
lasses. Mutually,these parts are permutations of ea
h other. Then so arethe a1- and a2 rows of Q. A similar argument appliesif a1 ≡′′ a2. Applying this reasoning a �nite number oftimes, we 
on
lude that the rows in Q are indeed permu-tations of ea
h other.A similar analysis applied to the 
olumns of Q showthat the 
orresponding 
olumn sums are equal.We 
on
lude, that ea
h η-blo
k Q of P is weakly sym-metri
, hen
e η ∈ BSD(P).Theorem 3 gives rise to the following 
on
ept. Considera map τ whi
h, to every sto
hasti
 matrix P, asso
iatesa subset τ(P) of BDE(P). We use the notation ητ (P)to denote the 
oarsest de
omposition in τ(P), providedthis is well de�ned. We 
all ητ (P) the τ -pro�le of P. Inthis terminology, Theorem 3 asserts that the BSD-pro�leexists for every P. We write ηα(P) for ηBSD(P). Thestrong symmetry pro�le of P, denoted ηβ(P), is de�ned asthe pro�le 
orresponding to the subset SBS(P) of strongblo
k symmetri
 de
omposition of P. This set 
onsists of
η ∈ BDE(P) su
h that, for ea
h η-blo
k of P, not onlythe rows, but also the 
olumns are permutations of ea
hother. Applying the same te
hnique as in the proof above,we see that also ηβ(P) exists for every P. We always have
ηα(P) ≤ ηβ(P). In general, the pro�les are di�erent. 4It lies nearby to ask for an e�e
tive algorithm whi
hdetermines ηα(P). In fa
t, su
h an algorithm exists.5Brie�y, this works as follows. Firstly, η1 ∈ BDE(P) is
onstru
ted 
orresponding to the two equivalen
e rela-tions �
orresponding rows in P are permutations of ea
h3The set BDE(Z) is a sublatti
e of DEC(Z), but BSD(P) is nota further sublatti
e. To see this, 
onsider P 
onsisting of the tworows (0, 1

2
, 0, 1

2
) and ( 1

2
, 0, 1

2
, 0) and note that BSD(P) is not 
losedunder the latti
e operation ∨.4Consider the 2 × 3 matrix with rows (0, 1

3
, 2

3
) and ( 2

3
, 1

3
, 0).5This observation resulted from dis
ussions with Mr. ThomasJakobsen, the Danish Te
hni
al University, who also implementedthe algorithm.



other�, and, �
orresponding 
olumn sums in P are equal�.Ea
h of the η1-blo
ks of P are then handled one by onein a similar way. Ea
h step introdu
es a blo
k de
om-position of P, �ner than the previous one. The pro
ess
ontinues until no blo
k gives rise to a �ner de
omposi-tion. A �nite sequen
e 0 ≤ η1 ≤ η2 ≤ · · · ≤ ηk is then
onstru
ted with ηk = ηα(P). The algorithm needs ap-proximately ν3 log ν steps where ν = max(m, n).V. Dis
ussionTheorem 2 redu
es the problem to determine 
apa
-ity and optimal distributions from P to ∂ηP (e.g. with
η = ηα(P)). However, the redu
ed problem 
annot, ingeneral, be solved in 
losed form. One often has to turnto numeri
al methods, and here, the Arimoto-Blahut al-gorithm is the obvious 
hoi
e, 
f. [1℄ and [2℄. Note thatthis algorithm 
an be modi�ed without di�
ulty to the
ase when we allow bene�ts. Theoreti
al results and nu-meri
al experiments have shown the feasibility of this ap-proa
h but, at the same time, indi
ated that there is littleor no saving in using the redu
tion provided by our resultsas 
ompared to an approa
h where the Arimoto-Blahutalgorithm is employed dire
tly to the original problem.In the literature (Silverman [7℄, [3℄, [4℄, [5℄ et
.), non-trivial 
on
rete examples of DMC's are often pointed outwith P a 3 × 3 matrix. They all have a non-trivial blo
ksymmetri
 de
omposition, hen
e are of the form

P =





α β γ

β α γ

δ δ ε



 . (8)For instan
e, [7℄ has β = ε = 0. Applying our resultsleads to substantial simpli�
ations.VI. AppendixConsider the DMC P given by
P =

(

p11 p12

p21 p22

) (9)and an asso
iated bene�t ve
tor a = (a1, a2).Below, i and j are either 1 or 2 and i 6= j. Denote by
d the determinant of P, by Hi the entropy of ~qi and by
Dij the divergen
e D(~qi‖~qj). Put aij = ai − aj, Hij =
Hi − Hj and de�ne, for d 6= 0, quantities hi, hij , and dijby hi = d−1(pjj(ai −Hi)− pij(aj −Hj)), hij = hi −hj =
d−1(aij − Hij) and dij = d−1(Dij + aij).For d 6= 0 
onsider ~q∗ = (q∗1 , q∗2) given by

q∗i = (1 + ehji)−1and 
onsider the unique signed (!) input distribution ~p∗whi
h indu
es ~q∗ i.e.
p∗i = d−1(q∗i − pji).Elementary 
al
ulations lead to the formulas:

q∗i =
pii

pii + pijedji
=

pji

pji + pjje−dij
,

p∗i =
q∗i
d

(

pjj − pjie
hji

)

=
q∗j

d

(

pjje
hij − pji

)

,

p∗i =
pjiq

∗
j

d

(

edij − 1
)

=
pjjq

∗
i

d

(

1 − e−dij
)

,whi
h apply when d 6= 0. Continuity 
onsiderations mayhave to be taken into a

ount, however, we 
an alwayssele
t formulas to avoid this. Applying Theorem 1, one�nds:Theorem 4. Consider P given by (9) and with asso
i-ated bene�t ve
tor a = (a1, a2). If d = 0 and a1 > a2,then (1, 0) is the unique optimal input distribution and
C(P;a) = a1; if d = 0 and a2 > a1, a similar statementholds, and if d = 0 and a1 = a2, any input distribution isoptimal and C(P;a) = a1.If d 6= 0, the optimal input distribution is unique, anda ne
essary and su�
ient 
ondition that this distributionis non-trivial (i.e. both input probabilities are positive) isthat

−D21 < a2 − a1 < D12 (10)When (10) holds, the optimal input- and output distri-butions are ~p∗ and ~q∗ given by the formulas above and themodi�ed 
apa
ity 
an be determined from Theorem 1 orfrom the formulas
C(P;a) = h1 − log q∗1 = h2 − log q∗2 = log

(

eh1 + eh2

)

.If a2−a1 ≤ −D21, the optimal input distribution is (1, 0)and C(P;a) = a1, and if a2−a1 ≥ D12, the optimal inputdistribution is (0, 1) and C(P;a) = a2.By Theorem 1, this is easily 
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