
ITW2002, Bangalore, India Ot. 20-25, 2002Blok Symmetry in Disrete Memoryless ChannelsJakob Bøje PedersenFrederiksborg GymnasiumHillerødDenmark.e-mail: jakobbp�worldonline.dk Flemming Topsøe1Department of MathematisUniversity of CopenhagenDenmark.e-mail: topsoe�math.ku.dkAbstrat � Notions of blok symmetry for dis-rete, memoryless hannels are introdued. Theresults deal with apaity and optimal distribu-tions and appear to be simple and natural oneswhih somehow were overlooked or not onsideredin the early development of information theory.I. PreviewLet P be the transition matrix for a disrete memory-less hannel (DMC) and onsider a blok deomposition
(Pij)i,j of P as indiated in the �gure. Suh a deompo-sition is indued by two deompositions � or equivalenerelations � one of the input-, the other of the output al-phabet. Assume that, within eah blok Pij , all row sumsare equal and also that all olumn sums are equal. As-sume further, that rows in the full matrix P whih or-respond to equivalent input letters have equal entropy.Then there exists an optimal input distribution � i.e. onefor whih the transmission rate reahes apaity � whihis onsistent with the deomposition of the input alpha-bet in the sense that equivalent input letters are sent withequal probability. The optimal output distribution is on-sistent in a similar way. This is the key result, stated indetail in Theorem 2.

Pij

II. DMC's with BenefitLet P = (pxy)x∈X,y∈Y be a stohasti matrix, �xedin the sequal. We view P as the transition matrix of aDMC. The sets X and Y , the input- and output alphabets,are assumed to be �nite. For x ∈ X , ~qx denotes the x'throw vetor in P. An input distribution is a distribution
~p = (px)x∈X over X . The indued output distribution isthe mixture ~q =

∑

px~qx. The information transmissionrate I(~p) an be expressed, using �D� for Kullbak-Leiblerdivergene, as
I(~p) =

∑

x∈X

pxD(~qx‖~q) . (1)1Supported by the Danish Natural Siene Researh Counil andby INTAS, projet 00-738.

We need a re�ned notion of apaity, whih allows thatthe sending of an input symbol may be assoiated with aertain bene�t. This idea, and the basi result onnetedwith it, has been onsidered before, f. Blahut [2, The-orem 9℄, where it was found more natural to assoiate a�ost� with the transmission of an input symbol. Con-sider a bene�t funtion a : x y ax whih maps X intothe reals, and de�ne the modi�ed apaity with bene�t a,by
C(P;a) = sup

~p

(I(~p) + 〈a, ~p〉) . (2)The braket notation indiates mean value: 〈a, ~p〉 =
∑

x pxax. Clearly, the supremum in (2) is attained, andwe are led to onsider optimal input- and output distri-butions for the modi�ed problem.Theorem 1 (Kuhn-Tuker onditions). Let ~p∗ be aninput distribution and ~q∗ the indued output distribution.A neessary and su�ient ondition that ~p∗ be optimalfor the modi�ed problem with bene�t a is that, for someonstant C, the following two onditions hold:
D(~qx‖~q

∗) + ax ≤ C for all x , (3)
D(~qx‖~q

∗) + ax = C for all x with p∗x > 0 . (4)If these onditions are satis�ed, C = C(P;a).Proof. We present a simple proof based on [8℄. First as-sume that (3) and (4) hold. Employ the identity 1
I(~p) + D(~q‖~q∗) =

∑

x∈X

pxD(~qx‖~q
∗) ,valid for any input distribution ~p with indued outputdistribution ~q, to onlude that for any suh ~p,

I(~p) + 〈a, ~p〉 ≤
∑

x∈X

px

(

D(~qx‖~q
∗) + ax

)

≤ C .It readily follows that C(P;a) = I(~p∗) + 〈a, ~p∗〉 .To prove neessity, assume that the stated onditionsfail. Denote the left hand side of (3) by Kx. Choose x0with Kx0
maximal. Then

Kx0
>

∑

x∈X

p∗xKx . (5)1This is the �ompensation identity�, f. [9℄.



For 0 ≤ ε ≤ 1, put ~pε = (1 − ε)~p∗ + ε~px0
with ~px0representing a unit mass at x0. Let ~qε be the distributionindued by ~pε. Then, by the ompensation identity,

(1 − ε)I(~p∗) + (1 − ε)D(~q∗‖~qε) + εD(~qx0
‖~qε) = I(~pε) .Writing I(~p∗) + 〈a, ~p∗〉 as ∑

p∗xKx, it follows from thisthat I(~pε) + 〈a, ~pε〉 is lower bounded by
∑

x∈X

p∗xKx + ε

(

D(~qx0
‖~qε) + ax0

−
∑

x∈X

p∗xKx

)

.By (5) and lower semi-ontinuity of divergene, it fol-lows that for ε su�iently small, but positive, I(~pε) +
〈a, ~pε〉 is stritly larger than I(~p∗) + 〈a, ~p∗〉, hene ~p∗ isnot optimal.Though some parts of the proof an be modi�ed toover ases with X or Y in�nite, are has to be taken forseveral reasons, e.g. there may be no optimal distributionat all (onsider P with rows (1, 0), (1

2
, 1

2
), (1

4
, 3

4
), · · · ).Every input distribution ~p∗ with all p∗x positive is op-timal for the modi�ed problem for some hoie of bene�tfuntion. Indeed, with bene�ts ax = −D(~qx‖~q
∗), ~p∗ isoptimal and the modi�ed apaity is 0. In this setting, itis more natural to onsider D(~qx‖~q

∗) as a ost assoiatedwith the transmission of x. This remark illuminates thevery de�nition of optimal distributions.Whereas there may be several optimal input distribu-tions, the optimal output distribution is unique, as inthe ase with zero bene�t. This follows by onavity of
~p y I(~p) + 〈a, ~p〉.Expliit formulas for the alulation of optimal distri-butions and modi�ed apaity do not exist in general,and even when they do, they beome ompliated. Inthe appendix we develop formulas pertaining to a 2 × 2matrix. III. The Basi ResultFor any set W , DEC(W ) denotes the set of deomposi-tions of W , ordered by subdeomposition. Put Z = X×Yorresponding to given �nite sets X and Y . A blok de-omposition of Z is a deomposition of the form ηX×ηY =
{A × B | A ∈ ηX , B ∈ ηY } with ηX ∈ DEC(X), and
ηY ∈ DEC(Y ). A set A × B ∈ ηX × ηY is alled a blokof the deomposition. The set of blok deompositions of
Z is denoted BDE(Z).Consider η = ηX × ηY ∈ BDE(Z), to be �xed fromnow on. As η is seen in onjuntion with P, we write
η ∈ BDE(P). The number of lasses in ηX and ηY aredenoted by M , respetively N . We put ηX = {Xi | i ≤
M} and ηY = {Yj | j ≤ N}. We denote by Pij the
ij'th blok in P, i.e. Pij = (pxy)x∈Xi,j∈Yj

. We write
η ∈ BDE(P; σ−) if, within eah blok Pij , the row sumsare equal, say = σ

ij
− . If η ∈ BDE(P; σ−), we de�ne thederived DMC as the DMC with transition matrix ∂ηP =

(σij
− )i≤M,j≤N and we denote the i′th row in ∂ηP by ~σi.We write η ∈ BDE(P; σ+) if η ∈ BDE(P; σ−) and if,

within eah blok Pij , the olumn sums are equal, say
= σ

ij
p
.We denote by mi (nj) the number of elements in Xi(Yj) and by ~ui (~vj) the uniform distribution over Xi (Yj).As indiated in setion I, a onsistent (or η-onsistent) in-put distribution is a distribution ~p for whih, given i ≤ M ,

px is independent of x ∈ Xi. Clearly, an input distribu-tion ~p is onsistent if and only if it is a onvex ombination
~p =

∑

i≤M αi~u
i of the ~ui. Similarly, we onsider onsis-tent output distributions whih are onvex ombinationsof the form ~q =
∑

j≤N βj~v
j .Lemma 1. Assume that η ∈ BDE(P; σ+). Let ~p =

∑

i≤M αi~u
i be a onsistent input distribution and ~q theindued output distribution. Let ~β = (βj)j≤N be the out-put distribution for ∂ηP indued by ~α = (αi)i≤M . Then

~q =
∑

j≤N βj~v
j . In partiular, ~q is onsistent.Proof. This follows by simple omputation, relying alsoon the relation njσ

ij
p

= miσ
ij
− .The onnetion between P and ∂ηP will be furtherexploited. For this we strengthen the onditions on η. Wesay that η is a generalized blok symmetri deomposition,and write η ∈ GBSD(P), if η ∈ BDE(P; σ+) and if, foreah i ≤ M , H(~qx) is independent of x for x ∈ Xi.For eah x ∈ X we onsider the ηY −onditional di-vergene of ~qx w.r.t. (~vj)j≤N , a quantity de�ned by �rstdetermining i suh that x ∈ Xi and then setting

Dη(~qx‖·) =
∑

j≤N

σ
ij
−D(~qx|Yj‖~v

j) (6)with ~qx|Yj the usual onditional distribution of ~qx given
Yj . If the output distribution ~q is onsistent, say ~q =
∑

j≤N βj~vj then, by a simple dataredution identity,
D(~qx‖~q) = D(~σi‖~β) + Dη(~qx‖·) . (7)Here, we still assume that x ∈ Xi. For more on identitieslike (7), see [9℄. We an now state the main result.Theorem 2. Assume that η ∈ BDE(P; σ+).(i). If η ∈ GBSD(P), there exists an optimal onsistentinput distribution. In this ase, ai = Dη(~qx‖·) is indepen-dent of x for x ∈ Xi and C(P) = C(∂ηP;a) with bene�tvetor a = (ai)i≤M .(ii). If an optimal onsistent input distribution exists withall point probabilities positive, then η ∈ GBSD(P).Proof. (i) follows by Theorem 1 (applied both to P with-out bene�t and to ∂ηP with bene�t a) in onjuntionwith Lemma 1 and (7).To prove (ii) let ~p be an optimal onsistent input dis-tribution with positive point probabilities and let ~q =

∑

j≤N βj~v
j be the indued output distribution. By The-orem 1, D(~qx‖~q) is indepent of x. By (7), Dη(~qx‖·) isindependent of x when restriting x to a lass Xi. As

Dη(~qx‖·) = −H(~qx) +
∑

j≤N

σ
ij
− log

nj

σ
ij
−

,it follows that H(~qx) is independent of x for x ∈ Xi.



It is a bit surprising that the ondition of equal en-tropies for the ~pi 's plays a entral role. It does not havemuh of the �avour of a symmetry ondition. Previousresults work with stronger but more �lean� onditions ofsymmetry. Suh notions were studied already by Shan-non, f. [6, Setions 15 and 16℄ and appear in most text-books. For our purposes, a matrix is alled weakly sym-metri if the rows are permutations of eah other and ifall olumn sums are equal. This terminology is in onsis-teny with Cover and Thomas [3, p. 190℄. We all η ablok symmetri deomposition of P if all bloks Pij areweakly symmetri. Notationally we write η ∈ BSD(P).Clearly, if η ∈ BSD(P), then η ∈ GBSD(P), hene:Corollary 1. If η ∈ BSD(P), there exist onsistent op-timal input- and output distributions.The ase M = N = 1 is dealt with in [3℄. In Gallager[4, p. 94℄ one �nds a variant of the orollary orrespond-ing to the ase M = 1, N arbitrary, though there withthe stronger requirement of equal olumns modulo per-mutations.Example 1. Theorem 2 is stronger than Corollary 1.This is seen from the example of the 10 × 5 matrix Pwhih is 1

8
times the transpose of the matrix













1 1 1 1 4 2 2 2 2 0
1 1 1 4 1 2 2 2 0 2
1 1 4 1 1 2 2 0 2 2
1 4 1 1 1 2 0 2 2 2
4 1 1 1 1 0 2 2 2 2













.By Theorem 2, the uniform distribution ( 1

10
, · · · , 1

10
) is anoptimal input distribution. This result is not overed bya diret appliation of Corollary 1, but ould have beenobtained by two suessive appliations of the orollary.Possibly, this kind of iterative proedure an be appliedmore generally. A omplete answer to the questions thisraises will ontain the haraterization of hannels withthe uniform distribution as an optimal input distribution.Even the simple ase of a binary hannel is not entirelytrivial. 2IV. Coarsest deompositions, symmetry profilesTheorem 2 may not be all that informative. For in-stane, in ase η is the �nest blok symmetri deomposi-tion (onsisting of singletons), it ontains no information.The oarser η is, the more informative is the result. It is2This ase may be disussed by onsidering the funtion

D(~q1‖~q) − D(~q2‖~q) with ~q = 1

2
~q1 + 1

2
~q2 as a funtion of p11 and

p22, observing that the determinant of the Hessian has a simplefatorization; indeed, the determinant in question is
−(1 − α − β)4

αβ(1 − α)(1 − β)(1 − β + α)2(1 − α + β)2where α = p11, β = p22. This is the key fat needed to showthat the funtion only vanishes on the diagonals of the unit square(for this argument, we aknowledge disussions with J. P. R. Chris-tensen).

important that, given any DMC P, a oarsest blok sym-metri deomposition exists. Moreover, there is a simplealgorithm to determine this most informative blok sym-metri deomposition. A similar result does not hold forthe generalized notion of blok symmetry.Theorem 3. Any DMC P = (pxy)x∈X,y∈Y has a oars-est blok symmetri deomposition.Proof. The key point is to show that BSD(P) is losedunder the lattie operation ∧. 3Assume that η′ = η′
X × η′

Y and η′′ = η′′
X × η′′

Y are in
BSD(P) and put η = η′∧η′′ = ηX ×ηY , say. Consider an
η-lass A × B and let Q = (pxy)x∈A,y∈B. We shall showthat Q is weakly symmetri. This involves a ondition onthe rows and a ondition on the olumns in Q. Consider�rst the rows.As ηX = η′

X ∧η′′
x , we an pass from one element of A toanother by a �nite number of equivalenes, eah one beingeither under η′

X (denoted ≡′) or under η′′
X (denoted ≡′′).Note that if a1, a2 ∈ A and a1 ≡′ a2, then the a1-row andthe a2-row of Q are deomposed into parts orrespond-ing to the deomposition of B into η′

Y -lasses. Mutually,these parts are permutations of eah other. Then so arethe a1- and a2 rows of Q. A similar argument appliesif a1 ≡′′ a2. Applying this reasoning a �nite number oftimes, we onlude that the rows in Q are indeed permu-tations of eah other.A similar analysis applied to the olumns of Q showthat the orresponding olumn sums are equal.We onlude, that eah η-blok Q of P is weakly sym-metri, hene η ∈ BSD(P).Theorem 3 gives rise to the following onept. Considera map τ whih, to every stohasti matrix P, assoiatesa subset τ(P) of BDE(P). We use the notation ητ (P)to denote the oarsest deomposition in τ(P), providedthis is well de�ned. We all ητ (P) the τ -pro�le of P. Inthis terminology, Theorem 3 asserts that the BSD-pro�leexists for every P. We write ηα(P) for ηBSD(P). Thestrong symmetry pro�le of P, denoted ηβ(P), is de�ned asthe pro�le orresponding to the subset SBS(P) of strongblok symmetri deomposition of P. This set onsists of
η ∈ BDE(P) suh that, for eah η-blok of P, not onlythe rows, but also the olumns are permutations of eahother. Applying the same tehnique as in the proof above,we see that also ηβ(P) exists for every P. We always have
ηα(P) ≤ ηβ(P). In general, the pro�les are di�erent. 4It lies nearby to ask for an e�etive algorithm whihdetermines ηα(P). In fat, suh an algorithm exists.5Brie�y, this works as follows. Firstly, η1 ∈ BDE(P) isonstruted orresponding to the two equivalene rela-tions �orresponding rows in P are permutations of eah3The set BDE(Z) is a sublattie of DEC(Z), but BSD(P) is nota further sublattie. To see this, onsider P onsisting of the tworows (0, 1

2
, 0, 1

2
) and ( 1

2
, 0, 1

2
, 0) and note that BSD(P) is not losedunder the lattie operation ∨.4Consider the 2 × 3 matrix with rows (0, 1

3
, 2

3
) and ( 2

3
, 1

3
, 0).5This observation resulted from disussions with Mr. ThomasJakobsen, the Danish Tehnial University, who also implementedthe algorithm.



other�, and, �orresponding olumn sums in P are equal�.Eah of the η1-bloks of P are then handled one by onein a similar way. Eah step introdues a blok deom-position of P, �ner than the previous one. The proessontinues until no blok gives rise to a �ner deomposi-tion. A �nite sequene 0 ≤ η1 ≤ η2 ≤ · · · ≤ ηk is thenonstruted with ηk = ηα(P). The algorithm needs ap-proximately ν3 log ν steps where ν = max(m, n).V. DisussionTheorem 2 redues the problem to determine apa-ity and optimal distributions from P to ∂ηP (e.g. with
η = ηα(P)). However, the redued problem annot, ingeneral, be solved in losed form. One often has to turnto numerial methods, and here, the Arimoto-Blahut al-gorithm is the obvious hoie, f. [1℄ and [2℄. Note thatthis algorithm an be modi�ed without di�ulty to thease when we allow bene�ts. Theoretial results and nu-merial experiments have shown the feasibility of this ap-proah but, at the same time, indiated that there is littleor no saving in using the redution provided by our resultsas ompared to an approah where the Arimoto-Blahutalgorithm is employed diretly to the original problem.In the literature (Silverman [7℄, [3℄, [4℄, [5℄ et.), non-trivial onrete examples of DMC's are often pointed outwith P a 3 × 3 matrix. They all have a non-trivial bloksymmetri deomposition, hene are of the form

P =





α β γ

β α γ

δ δ ε



 . (8)For instane, [7℄ has β = ε = 0. Applying our resultsleads to substantial simpli�ations.VI. AppendixConsider the DMC P given by
P =

(

p11 p12

p21 p22

) (9)and an assoiated bene�t vetor a = (a1, a2).Below, i and j are either 1 or 2 and i 6= j. Denote by
d the determinant of P, by Hi the entropy of ~qi and by
Dij the divergene D(~qi‖~qj). Put aij = ai − aj, Hij =
Hi − Hj and de�ne, for d 6= 0, quantities hi, hij , and dijby hi = d−1(pjj(ai −Hi)− pij(aj −Hj)), hij = hi −hj =
d−1(aij − Hij) and dij = d−1(Dij + aij).For d 6= 0 onsider ~q∗ = (q∗1 , q∗2) given by

q∗i = (1 + ehji)−1and onsider the unique signed (!) input distribution ~p∗whih indues ~q∗ i.e.
p∗i = d−1(q∗i − pji).Elementary alulations lead to the formulas:

q∗i =
pii

pii + pijedji
=

pji

pji + pjje−dij
,

p∗i =
q∗i
d

(

pjj − pjie
hji

)

=
q∗j

d

(

pjje
hij − pji

)

,

p∗i =
pjiq

∗
j

d

(

edij − 1
)

=
pjjq

∗
i

d

(

1 − e−dij
)

,whih apply when d 6= 0. Continuity onsiderations mayhave to be taken into aount, however, we an alwaysselet formulas to avoid this. Applying Theorem 1, one�nds:Theorem 4. Consider P given by (9) and with assoi-ated bene�t vetor a = (a1, a2). If d = 0 and a1 > a2,then (1, 0) is the unique optimal input distribution and
C(P;a) = a1; if d = 0 and a2 > a1, a similar statementholds, and if d = 0 and a1 = a2, any input distribution isoptimal and C(P;a) = a1.If d 6= 0, the optimal input distribution is unique, anda neessary and su�ient ondition that this distributionis non-trivial (i.e. both input probabilities are positive) isthat

−D21 < a2 − a1 < D12 (10)When (10) holds, the optimal input- and output distri-butions are ~p∗ and ~q∗ given by the formulas above and themodi�ed apaity an be determined from Theorem 1 orfrom the formulas
C(P;a) = h1 − log q∗1 = h2 − log q∗2 = log

(

eh1 + eh2

)

.If a2−a1 ≤ −D21, the optimal input distribution is (1, 0)and C(P;a) = a1, and if a2−a1 ≥ D12, the optimal inputdistribution is (0, 1) and C(P;a) = a2.By Theorem 1, this is easily heked.Referenes[1℄ S. Arimoto �An Algorithm for Computing the Capaity of Ar-bitrary Disrete Memoryless Channels�, IEEE Trans. Inform.Theory, vol. IT-18, pp. 14�20, Jan. 1972.[2℄ R. E. Blahut, �Computation of Channel Capaity and Rate-Distortion Funtions�, IEEE Trans. Inform. Theory, vol. IT-18,pp. 460�473, July 1972.[3℄ T. M. Cover and J. A. Thomas, Elements of Information The-ory. New York: Wiley 1991.[4℄ R. C. Gallager, Information Theory and Reliable Communia-tion. New York: Wiley 1968.[5℄ C. M. Goldie and R. G. E. Pinh, Communiation Theory, Cam-bridge: Cambridge University Press 1991.[6℄ C. Shannon, �A mathematial theory of ommuniation�, BellSyst. Teh. J., vol. 27, pp. 379�423, 623�656, 1948.[7℄ R. A. Silverman, �On Binary Channels and their Casades�, IRETrans. on Inform. Theory, vol. IT-1, pp. 19�27, De. 1955.[8℄ F. Topsøe, �A New Proof of a Result Conerning Computationof the Capaity for a Disrete Channel�, Z. Wahrsheinlihkeit-stheorie verw. Geb., vol. 22, pp. 166�168, 1972.[9℄ F. Topsøe, �Basi Conepts, Identities and Inequalities � theToolkit of Information Theory�, Entropy, vol. 3, pp. 162�190,2001, http://www.unibas.h/mdpi/entropy/ [ONLINE℄.


