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Abstract — Notions of block symmetry for dis-
crete, memoryless channels are introduced. The
results deal with capacity and optimal distribu-
tions and appear to be simple and natural ones
which somehow were overlooked or not considered
in the early development of information theory.

I. PREVIEW

Let P be the transition matrix for a discrete memory-
less channel (DMC) and consider a block decomposition
(P%); ; of P as indicated in the figure. Such a decompo-
sition is induced by two decompositions — or equivalence
relations — one of the input-, the other of the output al-
phabet. Assume that, within each block P¥, all row sums
are equal and also that all column sums are equal. As-
sume further, that rows in the full matrix P which cor-
respond to equivalent input letters have equal entropy.
Then there exists an optimal input distribution —i.e. one
for which the transmission rate reaches capacity — which
is consistent with the decomposition of the input alpha-
bet in the sense that equivalent input letters are sent with
equal probability. The optimal output distribution is con-
sistent in a similar way. This is the key result, stated in
detail in Theorem 2.

P

II. DMC’s WITH BENEFIT

Let P = (pgy)zex,yey be a stochastic matrix, fixed
in the sequal. We view P as the transition matrix of a
DMC. The sets X and Y, the input- and output alphabets,
are assumed to be finite. For x € X, ¢, denotes the x’th
row vector in P. An input distribution is a distribution
P = (pz)zex over X. The induced output distribution is
the mixture ¢ = Y p.d,. The information transmission
rate I(p) can be expressed, using “D” for Kullback-Leibler
divergence, as
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We need a refined notion of capacity, which allows that
the sending of an input symbol may be associated with a
certain benefit. This idea, and the basic result connected
with it, has been considered before, cf. Blahut [2, The-
orem 9], where it was found more natural to associate a
“cost” with the transmission of an input symbol. Con-
sider a benefit function a : * ~ a; which maps X into
the reals, and define the modified capacity with benefit a,
by

C(P;a) = sup (I(p) + (a,p)) - (2)

p

The bracket notation indicates mean value: (a,p) =
> . Pzag. Clearly, the supremum in (2) is attained, and
we are led to consider optimal input- and output distri-
butions for the modified problem.

Theorem 1 (Kuhn-Tucker conditions). Let p* be an
input distribution and q* the induced output distribution.
A necessary and sufficient condition that p* be optimal
for the modified problem with benefit a is that, for some
constant C, the following two conditions hold:

D(Z:Nq") +az <C for all x, (3)
D(@:||q*) + ax = C for all x withp) >0. (4)

If these conditions are satisfied, C = C(P;a).

Proof. We present a simple proof based on [8]. First as-
sume that (3) and (4) hold. Employ the identity !
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valid for any input distribution p with induced output
distribution ¢, to conclude that for any such p),

1)+ i) < 3 o (D@ +ar) <
rzeX
It readily follows that C'(P;a) = I(p*) + (a, p*) .
To prove necessity, assume that the stated conditions

fail. Denote the left hand side of (3) by K,. Choose zg
with K, maximal. Then

Koy > > piKa. (5)

rzeX

I This is the “compensation identity”, cf. [9].



For 0 < e <1, put pp = (1 - 5)}5& + Eﬁzo with ﬁzo
representing a unit mass at zg. Let g- be the distribution
induced by p.. Then, by the compensation identity,

(1 =) (") + (1 =€) D(q"[|¢=) + eD(qay l|G2) = 1(P2) -

Writing I(p*) + (a,p*) as > piK,, it follows from this
that I(p.) + (a,p-) is lower bounded by

5 v oD ) +any — D 1K)

zeX rzeX

By (5) and lower semi-continuity of divergence, it fol-
lows that for e sufficiently small, but positive, I(p.) +
(a,p.) is strictly larger than I(p*) + (a,p*), hence p* is
not optimal. O

Though some parts of the proof can be modified to
cover cases with X or Y infinite, care has to be taken for
several reasons, e.g. there may be no optimal distribution
at all (consider P with rows (1,0), (1,3), (§,2),--+)-

Every input distribution p* with all p} positive is op-
timal for the modified problem for some choice of benefit
function. Indeed, with benefits a, = —D(q:||q*), p* is
optimal and the modified capacity is 0. In this setting, it
is more natural to consider D(q||¢*) as a cost associated
with the transmission of x. This remark illuminates the
very definition of optimal distributions.

Whereas there may be several optimal input distribu-
tions, the optimal output distribution is unique, as in
the case with zero benefit. This follows by concavity of

P 1(D) + (3, p)-

Explicit formulas for the calculation of optimal distri-
butions and modified capacity do not exist in general,
and even when they do, they become complicated. In
the appendix we develop formulas pertaining to a 2 x 2
matrix.

III. THE BAsic RESULT

For any set W, DEC(W) denotes the set of decomposi-
tions of W, ordered by subdecomposition. Put Z = X xY
corresponding to given finite sets X and Y. A block de-
composition of Z is a decomposition of the form ny xny =
{AxB | Ae€nx,B <€ ny} with ny € DEC(X), and
ny € DEC(Y). A set A x B € nx x ny is called a block
of the decomposition. The set of block decompositions of
Z is denoted BDE(Z).

Consider n = nx X ny € BDE(Z), to be fixed from
now on. As 7 is seen in conjunction with P, we write
n € BDE(P). The number of classes in nx and ny are
denoted by M, respectively N. We put nx = {X; | i <
M} and ny = {Y; | j < N}. We denote by P% the
ij’th block in P, ie. PY = (pyy)zex, jey,. We write
n € BDE(P;o_) if, within each block P%, the row sums
are equal, say = ¢”. If n € BDE(P;0_), we define the
derived DMC as the DMC with transition matrix 9,P =
(6"7)i<m j<n and we denote the i'th row in 8,P by &;.
We write n € BDE(P;04) if n € BDE(P;0_) and if,

within each block P, the column sums are equal, say
=o/.

We denote by m; (n;) the number of elements in X;
(Y;) and by @ (97) the uniform distribution over X; (Y;).
As indicated in section I, a consistent (or n-consistent) in-
put distribution is a distribution p for which, given i < M,
pz is independent of x € X;. Clearly, an input distribu-
tion p'is consistent if and only if it is a convex combination
P = ,cp @it of the @. Similarly, we consider consis-
tent output distributions which are convex combinations

of the form ¢ =", ;7.

Lemma 1. Assume that n € BDE(P;0.). Let p =
ZigM a; it be a consistent input distribution and ¢ the

induced output distribution. Let B: (Bj)j<n be the out-
put distribution for 0,P induced by & = (o;)i<amr. Then
q= ngN B;70. In particular, § is consistent.

Proof. This follows by simple computation, relying also

on the relation njo;? = m;o?. O

The connection between P and 0,P will be further
exploited. For this we strengthen the conditions on 7. We
say that n is a generalized block symmetric decomposition,
and write n € GBSD(P), if n € BDE(P;04) and if, for
each i < M, H(q,) is independent of z for z € X.

For each x € X we consider the 1y —conditional di-
vergence of @, w.r.t. (#7);<n, a quantity defined by first
determining ¢ such that € X; and then setting

DGy =Y o D(&|Y;]#)

J<N

(6)

with §,|Y; the usual conditional distribution of g, given
Y;. If the output distribution ¢ is consistent, say ¢ =
Zj <y B3U; then, by a simple datareduction identity,

D(q:|1q) = D(&:l|8) + D"(gx|-) - (7)
Here, we still assume that z € X;. For more on identities
like (7), see [9]. We can now state the main result.

Theorem 2. Assume that n € BDE(P;0).

(i). If n € GBSD(P), there exists an optimal consistent
input distribution. In this case, a; = D"(q:||-) is indepen-
dent of x for x € X; and C(P) = C(0,P;a) with benefit
vector a = (a;)i<M-

(#). If an optimal consistent input distribution exists with
all point probabilities positive, then n € GBSD(P).

Proof. (i) follows by Theorem 1 (applied both to P with-
out benefit and to 0,P with benefit a) in conjunction
with Lemma 1 and (7).

To prove (ii) let p be an optimal consistent input dis-
tribution with positive point probabilities and let ¢ =
Zj<N ;07 be the induced output distribution. By The-
orem 1, D(q,||q) is indepent of z. By (7), D"(g||) is
independent of x when restricting x to a class X;. As

N o i n;
DG|-) = —H(G@) + »_ o7 1og0—?,,

it follows that H(g,) is independent of = for x € X;. O



It is a bit surprising that the condition of equal en-
tropies for the pj;’s plays a central role. It does not have
much of the flavour of a symmetry condition. Previous
results work with stronger but more “clean” conditions of
symmetry. Such notions were studied already by Shan-
non, cf. [6, Sections 15 and 16] and appear in most text-
books. For our purposes, a matrix is called weakly sym-
metric if the rows are permutations of each other and if
all column sums are equal. This terminology is in consis-
tency with Cover and Thomas [3, p. 190]. We call 5 a
block symmetric decomposition of P if all blocks P¥ are
weakly symmetric. Notationally we write n € BSD(P).
Clearly, if n € BSD(P), then n € GBSD(P), hence:

Corollary 1. If n € BSD(P), there exist consistent op-
timal input- and output distributions.

The case M = N =1 is dealt with in [3]. In Gallager
[4, p. 94] one finds a variant of the corollary correspond-
ing to the case M = 1, N arbitrary, though there with
the stronger requirement of equal columns modulo per-
mutations.

Example 1. Theorem 2 is stronger than Corollary 1.
This is seen from the example of the 10 x 5 matrix P
which is é times the transpose of the matrix

11114 2 2 2 20
111412 2 2 0 2
114112 2 0 2 2
1411120 2 2 2
4111102 2 2 2

By Theorem 2, the uniform distribution (%, e %) isan
optimal input distribution. This result is not covered by
a direct application of Corollary 1, but could have been
obtained by two successive applications of the corollary.
Possibly, this kind of iterative procedure can be applied
more generally. A complete answer to the questions this
raises will contain the characterization of channels with
the uniform distribution as an optimal input distribution.
Even the simple case of a binary channel is not entirely
trivial. 2

IV. COARSEST DECOMPOSITIONS, SYMMETRY PROFILES

Theorem 2 may not be all that informative. For in-
stance, in case 7 is the finest block symmetric decomposi-
tion (consisting of singletons), it contains no information.
The coarser 7 is, the more informative is the result. It is

2This case may be discussed by considering the function
D(q1]|q) — D(@11@) with § = & + 1@ as a function of p11 and
p22, observing that the determinant of the Hessian has a simple
factorization; indeed, the determinant in question is

~(1-a-p)°
a1~ )1~ B)(1— B+ )21 —a+ )
where « = p11, B = p22. This is the key fact needed to show
that the function only vanishes on the diagonals of the unit square
(for this argument, we acknowledge discussions with J. P. R. Chris-
tensen).

important that, given any DMC P, a coarsest block sym-
metric decomposition exists. Moreover, there is a simple
algorithm to determine this most informative block sym-
metric decomposition. A similar result does not hold for
the generalized notion of block symmetry.

Theorem 3. Any DMC P = (pgy)sex,yey has a coars-
est block symmetric decomposition.

Proof. The key point is to show that BSD(P) is closed
under the lattice operation A. 3

Assume that ' = 7y x n} and " = n% x 0§ are in
BSD(P) and put n =7’ Ay’ = nx X ny, say. Consider an
n-class A x B and let Q = (psy)zea,yen. We shall show
that Q is weakly symmetric. This involves a condition on
the rows and a condition on the columns in Q. Consider
first the rows.

Asnx = n'y Anl, we can pass from one element of A to
another by a finite number of equivalences, each one being
either under 7 (denoted =) or under 7% (denoted =").
Note that if a1, a2 € A and a; =’ as, then the a;-row and
the ao-row of Q are decomposed into parts correspond-
ing to the decomposition of B into 74 -classes. Mutually,
these parts are permutations of each other. Then so are
the a1- and ag rows of Q. A similar argument applies
if a1 =" as. Applying this reasoning a finite number of
times, we conclude that the rows in Q are indeed permu-
tations of each other.

A similar analysis applied to the columns of Q show
that the corresponding column sums are equal.

We conclude, that each n-block Q of P is weakly sym-
metric, hence n € BSD(P). O

Theorem 3 gives rise to the following concept. Consider
a map 7 which, to every stochastic matrix P, associates
a subset 7(P) of BDE(P). We use the notation 7, (P)
to denote the coarsest decomposition in 7(P), provided
this is well defined. We call 7. (P) the m-profile of P. In
this terminology, Theorem 3 asserts that the BSD-profile
exists for every P. We write n,(P) for npsp(P). The
strong symmetry profile of P, denoted ng(P), is defined as
the profile corresponding to the subset SBS(P) of strong
block symmetric decomposition of P. This set consists of
n € BDE(P) such that, for each n-block of P, not only
the rows, but also the columns are permutations of each
other. Applying the same technique as in the proof above,
we see that also nz(P) exists for every P. We always have
Na(P) < ns(P). In general, the profiles are different. *

It lies nearby to ask for an effective algorithm which
determines 7, (P). In fact, such an algorithm exists.?
Briefly, this works as follows. Firstly, 71 € BDE(P) is
constructed corresponding to the two equivalence rela-
tions “corresponding rows in P are permutations of each

3The set BDE(Z) is a sublattice of DEC(Z), but BSD(P) is not
a further sublattice. To see this, consider P consisting of the two
rows (0, %, 0, %) and (%, 0, %,0) and note that BSD(P) is not closed
under the lattice operation V.

4Consider the 2 x 3 matrix with rows (0, %, %) and (%, é, 0).

5This observation resulted from discussions with Mr. Thomas
Jakobsen, the Danish Technical University, who also implemented
the algorithm.



other”, and, “corresponding column sums in P are equal”.
Each of the n;-blocks of P are then handled one by one
in a similar way. Each step introduces a block decom-
position of P, finer than the previous one. The process
continues until no block gives rise to a finer decomposi-
tion. A finite sequence 0 < 1y < 1y < -+ < 7 is then
constructed with 7, = 7, (P). The algorithm needs ap-
proximately 3 logv steps where v = max(m,n).

V. DISCUSSION

Theorem 2 reduces the problem to determine capac-
ity and optimal distributions from P to J,P (e.g. with
17 = 1.(P)). However, the reduced problem cannot, in
general, be solved in closed form. One often has to turn
to numerical methods, and here, the Arimoto-Blahut al-
gorithm is the obvious choice, cf. [1] and [2]. Note that
this algorithm can be modified without difficulty to the
case when we allow benefits. Theoretical results and nu-
merical experiments have shown the feasibility of this ap-
proach but, at the same time, indicated that there is little
or no saving in using the reduction provided by our results
as compared to an approach where the Arimoto-Blahut
algorithm is employed directly to the original problem.

In the literature (Silverman [7], [3], [4], [5] etc.), non-
trivial concrete examples of DMC’s are often pointed out
with P a 3 x 3 matrix. They all have a non-trivial block
symmetric decomposition, hence are of the form

a B v
P=|(8 a ~]. (8)
6 0 ¢

For instance, [7] has 8 = ¢ = 0. Applying our results
leads to substantial simplifications.

VI. APPENDIX
Consider the DMC P given by

(i)

P22

and an associated benefit vector a = (ay, ag).

Below, i and j are either 1 or 2 and ¢ # j. Denote by
d the determinant of P, by H; the entropy of ¢; and by
D;; the divergence D(g;l|g;). Put a;; = a; — aj, Hij =
H; — H; and define, for d # 0, quantities h;, h;j, and d;;
by hi = d~(pjj(ai — H;) — pij(a; — Hj)), hij = hi —h; =
d_l(aij — Hl’j) and dij = d_l(Dij + aij).

For d # 0 consider ¢* = (¢}, ¢5) given by

gf = (1+eh)!

and consider the unique signed (!) input distribution p*
which induces ¢* i.e.

p; =d (g — pji)-

Elementary calculations lead to the formulas:

g =—Pi _ _ Pii
! Pii +pij€dfi Pji +pjje_d”' ’
q; N4 y
pi = j (pij — pjie") = EJ (pss€™ —pji)
p;k _ pj;qj (edij _ 1) _ p]zlqz (1 _ e*di]‘) ,

which apply when d # 0. Continuity considerations may
have to be taken into account, however, we can always
select formulas to avoid this. Applying Theorem 1, one
finds:

Theorem 4. Consider P given by (9) and with associ-
ated benefit vector a = (a1,a2). If d = 0 and a1 > aq,
then (1,0) is the unique optimal input distribution and
C(P;a) =ay; if d =0 and az > a1, a similar statement
holds, and if d = 0 and a1 = az, any input distribution is
optimal and C(P;a) = a;.

If d # 0, the optimal input distribution is unique, and
a necessary and sufficient condition that this distribution
is non-trivial (i.e. both input probabilities are positive) is
that

—D21 <as —a1 < D12 (10)

When (10) holds, the optimal input- and output distri-
butions are p* and q* given by the formulas above and the
modified capacity can be determined from Theorem 1 or
from the formulas

C(P;a) = hy —logq} = ha —loggs = log (e +€"?).

If ag — a1 < — Doy, the optimal input distribution is (1,0)
and C(P;a) = ay, and if ax—ay > D12, the optimal input
distribution is (0,1) and C(P;a) = as.

By Theorem 1, this is easily checked.
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