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Abstract

Three results dealing with probability distributions (p, q) over a
two-element set are presented. The two first give bounds for the en-
tropy function H(p, q) and are referred to as the logarithmic and the
power-type bounds, respectively. The last result is a refinement of well
known Pinsker-type inequalities for information divergence. The re-
finement readily extends to general distributions, but the key case to
consider involves distributions on a two-element set.

The discussion points to some elementary, yet non-trivial problems
concerning seemingly simple concrete functions.

Keywords. Entropy, divergence, Pinsker’s inequality.

1 Introduction and statements of results

Denote by M1
+(N) the set of discrete probability distributions over N, ty-

pically identified by the set of point probabilities P = (p1, p2, . . . ), Q =
(q1, q2, . . . ) or what the case may be. Entropy, (Kullback-Leibler–) divergence
and (total) variation are defined as usual:

H(P ) = −
∞∑
i=1

pi ln pi, (1)

D(P‖Q) =
∞∑
i=1

pi ln
pi
qi
, (2)

V (P,Q) =
∞∑
i=1

|pi − qi|. (3)
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Here, “ln” denotes natural logarithm. Thus we measure entropy and diver-
gence in “nits” (natural units) rather than in “bits”. Admitedly, some of our
results, especially the power–type bounds, would look more appealing had
we chosen to work with logarithms to the base 2, i.e. with bits.

By M1
+(n) we denote the set of P ∈M1

+(N) with pi = 0 for i > n.

We shall pay special attention to M1
+(2). Our two first results give bounds

for H(P ) with P = (p, q) = (p, q, 0, 0, . . . ) ∈M1
+(2):

Theorem 1 (Logarithmic bounds). For any P = (p, q) ∈M1
+(2),

ln p · ln q ≤H(p, q) ≤ ln p · ln q
ln 2

. (4)

Theorem 2 (Power–type bounds). For any P = (p, q) ∈M1
+(2),

ln 2 · (4pq) ≤H(p, q) ≤ ln 2 · (4pq)1/ ln 4. (5)

The proofs are given in sections 2 and 3 and the final section contains a
discussions of these inequalities. Here we only remark that the results are
best possible in a natural sense, e.g. in Theorem 2 the exponent 1/ ln 4 is the
largest one possible.

The last inequality we shall prove concerns the relation between D =
D(P‖Q) and V = V (P,Q). We are interested in lower bounds of D in terms
of V . The start of research in this direction is Pinskers inequality

D ≥ 1

2
V 2, (6)

cf. Pinsker [10] and a later improvement by Csiszár [1], where the best con-
stant for this inequality is found (1/2 as stated in (6)). The best two term
inequality of this type is

D ≥ 1

2
V 2 +

1

36
V 4 (7)

as proved by Krafft [6].

A further term 1/288V 6 was added by Krafft and Schmitz [7] and Toussaint
[12]. For further details see Vajda [13] and also Topsøe [11] where an improve-
ment of the results in [7] and [12] was announced. For present purposes, the
best constants cmax

ν , ν = 0, 1, 2, . . . , are defined recursively by taking cmax
ν to

be the largest constant c for which the inequality

D ≥
∑
i<ν

cmax
i V i + cV ν (8)
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holds generally (for any P and Q in M1
+(N)). Clearly cmax

ν , ν = 0, 1, 2, . . . ,
are well defined non-negative real constants.

By the datareduction inequality, cf. Kullback and Leibler [8] and also Csiszár
[1], it follows that the determination of lower bounds of the type considered
only depends on the interrelationship between D and V for distributions P,Q
inM1

+(2). In particular, in the relation (8) defining the best constants, we may
restrict attention to distributions P and Q in M1

+(2). Thus, researching lower
bounds as here, belongs to the theme of the present paper as it essentially
amounts to a study of distributions in M1

+(2). Our contribution is easily
summarized:

Theorem 3.

cmax
6 =

1

270
, (9)

cmax
8 =

221

340200
. (10)

Corollary 4 (Refinements of Pinsker’s inequality). For any set of
probability distributions P and Q, the inequality

D ≥ 1

2
V 2 +

1

36
V 4 +

1

270
V 6 +

221

340200
V 8 (11)

holds with D = D(P‖Q) and V = V (P,Q).

Note also that the term 1/270V 6 is better than the term 1/288V 6 which is
the term given in the papers by Krafft and Schmitz and by Toussaint. Indeed,
the term is the best one in the sense described. And so is the last term in
(11). The proofs of these facts depend on an expansion of D in terms of V
which is of independent interest. The expansion in question is due to Kambo
and Kotz, [5], and is presented in Section 4. The proof of (9) is given in all
details in Section 5, whereas the proof of (10), which is similar, is here left
to the reader (it may be included in a later publication).

We stress once more that though the proofs deal with distributions on a
two-element set, Corollary 4 applies to general distributions.

2 The logarithmic bounds

In this section we prove Theorem 1. The original proof found by the author
and supplied for the first version of the manuscript was not elegant but
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cumbersome (with seven differentiations!). The idea of the simple proof we
shall now present is due to O.N. Arjomand, M. Bahramgiri and B.D. Rouhani,
Teheran, (private communication). These authors remark that the function
f given by

f(p) =
H(p, q)

ln p · ln q
; 0 ≤ p ≤ 1 (12)

(with q = 1−p and f(0) and f(1) defined by continuity for p = 0 and p = 1)
can be written in the form

f(p) = ϕ(p) + ϕ(q)

where ϕ denotes the function given by

ϕ(x) =
x− 1

lnx
; x ≥ 0 (13)

(with ϕ(0) = 1), and they observe that ϕ is concave (details below). It follows
that f is concave too, and as f is also symmetric around p = 1

2
, f must be

increasing in [0, 1
2
], decreasing in [1

2
, 1]. Thus f(0) ≤ f ≤ f(1

2
) which is the

inequalities claimed in Theorem 1.

The essential concavity of ϕ is proved by differentiation. Indeed,

ϕ′′(x) =
−1

x2(ln x)3
ψ(x)

with

ψ(x) = (x+ 1) ln x+ 2(1− x) .

As

ψ′(x) = ln x−
(

1− 1

x

)
≥ 0 ,

and as ψ(1) = 0, inspection of the sign of ϕ′′ shows that ϕ′′(x) ≤ 0 for all
x > 0, and concavity of ϕ follows.

3 The power–type bounds

In this section we prove Theorem 2.
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The lower bound of H(p, q) is a special case of Theorem 2.6 of Harremoës
and Topsøe, [3].

A direct proof of this bound is quite easy. We may also apply the technique
of the previous section. Indeed, let f ∗ and ϕ∗ be the functions “dual” to f
and ϕ:

f ∗(p) =
H(p, q)

pq
; 0 ≤ p ≤ 1 , (14)

ϕ∗(x) =
1

ϕ(x)
=

ln x

x− 1
; x ≥ 0 (15)

(f ∗(0) = f ∗(1) = ϕ∗(0) = ∞). Then ϕ∗ is convex and f ∗(p) = ϕ∗(p) +
ϕ∗(q), so f ∗ is convex too. Noting also the symmetry of f ∗, we see that f ∗ is
decreasing in

[
0, 1

2

]
, increasing in [1

2
, 1]. Thus f ∗(1

2
) ≤ f ∗ ≤ f ∗(0) which shows

that 4 ln 2 ≤ f ∗ ≤ ∞, thereby establishing the lower bound in Theorem 2.

For the proof of the upper bound, we parametrize P = (p, q) by p = 1+x
2

,
q = 1−x

2
and consider only values of x in [0, 1]. From the cited reference it

follows that for no larger exponent α than α = (ln 4)−1 can the inequality

H(p, q) ≤ ln 2 · (4pq)α (16)

hold generally (see also the discussion). For the remainder of this section we
put

α =
1

ln 4
. (17)

With this choice of α we have to prove that (16) holds generally. Let ψ denote
the auxiliary function

ψ = ln 2 · (4pq)α −H(p, q), (18)

conceived as a function of x ∈ [0, 1], i.e.

ψ(x) = ln 2 · (1− x2)α − ln 2 +
1 + x

2
ln(1 + x) +

1− x
2

ln(1− x). (19)

We have to prove that ψ ≥ 0. Clearly ψ(0) = ψ(1) = 0. In contrast to
the method used in the previous section we now prefer to base the analysis
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mainly on the technique of power series expansion. From (19) we find that,
at least for 0 ≤ x < 1,

ψ(x) =
∞∑
ν=2

1

2ν

(
1

2ν − 1
−
(
1− α

)(
1− α

2

)
· · ·
(
1− α

ν − 1

))
x2ν . (20)

Actually (20) also holds for x = 1 but we do not need this fact. The computa-
tion behind this formula is straight forward when noting that the coefficient
ln 2 ·

(
α
ν

)
(−1)ν which occurs in the expansion of the first term in (19) can be

written as − 1
2ν

(1− α)(1− α
2
) · · · (1− α

ν−1
).

We cannot conclude directly from (20) that ψ ≥ 0, as (20) contains negative
terms, but (20) does show that ψ′(0) = 0 and that ψ(x) > 0 for 0 < x < ε
with ε > 0 sufficiently small. For 0 < x < 1, we find from (20) that

ψ′′(x)
1− x2

x2
= 3α− 2−

∞∑
ν=1

(
2− 2α− α

ν + 1

)(
1− α

)
· · ·
(
1− α

ν

)
x2ν ,

thus, still for 0 < x < 1, the equivalence

ψ′′(x) = 0⇔
∞∑
ν=1

(
2− 2α− α

ν + 1

)(
1− α

)
· · ·
(
1− α

ν

)
x2ν = 3α− 2

holds. As all terms in the infinite series occuring here are positive, it is clear
that ψ only has one inflection point in ]0, 1[. Combining with the facts stated
regarding the behaviour of ψ at (or near) the end points, we conclude that
ψ > 0 in ]0, 1[, thus ψ ≥ 0.

4 The Kambo–Kotz expansion

The proof of Theorem 3 will be based on the Kambo–Kotz expansion, cf.
Kambo and Kotz [5] 1, which we shall now discuss. Two distributions P and
Q in M1

+(2) are involved. For these we choose the basic parametrization

P =

(
1− α

2
,
1 + α

2

)
, Q =

(
1 + β

2
,
1− β

2

)
, (21)

and we consider values of the parameters as follows: −1 ≤ α ≤ 1 and 0 ≤
β ≤ 1. We shall also work with another parametrization (ρ, V ) where

ρ =
α

β
, V = |α + β|. (22)

1The result is contained in the proof of Lemma 3 of that paper; there is a minor
numerical error in the statement of this lemma, cf. Krafft, [6]
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Here, V is the total variation V (P,Q), the essential parameter in Pinsker-
type inequalities. We may avoid the inconvenient case β = 0 simply by noting
that this case corresponds to Q = U2 (the uniform distribution (1

2
, 1

2
)) which

will never cause difficulties in view of the simple expansion

D(P‖U2) =
∞∑
ν=1

V 2ν

2ν(2ν − 1)
(23)

with V = V (P,Q) (actually derived in section 3 in view of the identity
D(P‖U2) = ln 2−H(P )).

Fig. 1. Parameter domain for the Kambo-Kotz expansion with indication of
the critical domain (for explanation see further on in the text).

Denote by Ω the subset of the (ρ, V )-plane scetched in Figure 1. To be precise,

Ω = {(−1, 0)} ∪ Ω1 ∪ Ω2 ∪ Ω3 (24)

with

Ω1 = {(ρ, V ) | ρ < −1, 0 < V ≤ 1 + 1/ρ}, (25)

Ω2 = {(ρ, V ) | − 1 < ρ ≤ 1, 0 < V ≤ 1 + ρ}, (26)

Ω3 = {(ρ, V ) | 1 < ρ, 0 < V ≤ 1 + 1/ρ}. (27)

From [5] we have (adapting notation etc. to our setting):

Theorem 5 (Kambo-Kotz expansion). Consider P and Q of the form
(21), assume that β > 0 and define ρ and V by (22). Then (ρ, V ) ∈ Ω and

D(P‖Q) =
∞∑
ν=1

fν(ρ)

2ν(2ν − 1)
V 2ν , (28)
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where fν; ν ≥ 1, are rational funtions defined by

fν(ρ) =
ρ2ν + 2νρ+ 2ν − 1

(ρ+ 1)2ν
; ρ 6= −1. (29)

We note that the value of fν for ρ = −1 is immaterial in (28) as V = 0 when
ρ = −1 hence, with usual conventions, (28) gives the correct value D = 0
in this case too. However, we do find it natural to define f1(−1) = 1 and
fν(−1) =∞ for ν ≥ 2.

The functions fν are essential for the further analysis. We shall refer to them
as the Kambo–Kotz functions. We need the following result:

Lemma 6 (Basic properties of the Kambo–Kotz functions). All
functions fν; ν ≥ 1, are everywhere positive, f1 is the constant function
1 and all other functions fν assume their minimal value at a uniquely
determined point ρν which is the only stationary point of fν. We have
ρ2 = 2, 1 < ρν < 2 for ν ≥ 3 and ρν → 1 as ν →∞.

For ν ≥ 2, fν is strictly increasing in the two intervals ]−∞,−1[ and [2,∞[
and fν is strictly decreasing in ]− 1, 1]. Furthermore, fν is strictly convex in
[1, 2] and, finally, fν(ρ)→ 1 for ρ→ ±∞.

Proof. Clearly, f1 ≡ 1. For the rest of the proof assume that ν ≥ 2. For
ρ ≥ 0, fν(ρ) > 0 by (29) and for ρ < 0, we can use the formula

fν(ρ) = (ρ+ 1)−(2ν−2)

2ν∑
k=2

(−1)k(k − 1)ρ2ν−k (30)

and realize that fν(ρ) > 0 in this case, too.

We need the following formulas:

f ′ν(ρ) = 2ν(ρ+ 1)−(2ν+1)(ρ2ν−1 − (2ν − 1)ρ− (2ν − 2)) (31)

and

f ′′ν (ρ) = 2ν(ρ+ 1)−(2ν+2) · gν(ρ), (32)

with the auxiliary function gν given by

gν(ρ) = −2ρ2ν−1 + (2ν − 1)ρ2ν−2 + 2ν(2ν − 1)ρ+ 4ν2 − 4ν − 1. (33)

By (31), f ′ν > 0 in ]−∞,−1] and f ′ν < 0 in ]−1, 1]. The sign of f ′ν in [1, 2] is the
same as that of ρ2ν−1−(2ν−1)ρ−(2ν−2) and by differentiation and evaluation
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at ρ = 2, we see that f ′ν(ρ) = 0 at a unique point ρ = ρν in ]1, 2]. Furthermore,
ρ2 = 2, 1 < ρν < 2 for ν ≥ 3 and ρν → 1 for ν → ∞. Investigating further
the sign of f ′ν , we find that fν is strictly increasing in [2,∞[. As fν(ρ) → 1
for ρ → ±∞ by (29), we now conclude that fν has the stated monotonicity
behaviour. To prove the convexity assertion, note that gν defined by (33)
determines the sign of f ′′ν . For ν = 2, g2(ρ) = 2(2 − ρ)ρ2 + ρ(12 − ρ) + 7
which is positive in [1, 2]. A similar conclusion can be drawn in case ν = 3
since g3(ρ) = 2ρ4(2 − ρ) + ρ4 + 30ρ + 23. For the general case ν ≥ 4, we
note that gν(1) = 4(ν − 1)(2ν + 1) > 0 and we can then close the proof
by showing that gν is increasing in [1, 2]. Indeed, g′ν = (2ν − 1)hν with
hν(ρ) = −2ρ2ν−2 + (2ν − 2)ρ2ν−3 + 2ν, hence hν(1) = 4(ν − 1) > 0 and
h′ν(ρ) = (2ν − 2)(2ν − 3− 2ρ)ρ2ν−4 which is positive in [1, 2].

In the sequel, we shall write D(ρ, V ) in place of D(P‖Q) with P and Q
parametrized as explained by (21) and (22).

Fig. 2. A typical Kambo-Kotz function shown in normal/logarithmic scale.

Figure 2 illustrates the behaviour of the Kambo–Kotz functions. In order to
illustrate as clearly as possible the nature of these functions, the graph shown
is actually that of the logarithm of one of the Kambo-Kotz functions.

Note that if we extend the domain Ω by the points (±∞, V ) with 0 < V ≤ 1,
then (28) reduces to (23). Therefore, we may consider the case β = 0 as a
singular or limiting case for which (28) also holds.

Motivated by the lemma, we define the critical domain as the set

Ω∗ = {(ρ, V ) ∈ Ω | 1 ≤ ρ ≤ 2}
= {(ρ, V ) ∈ Ω | 1 ≤ ρ ≤ 2, 0 < V < 1 + 1/ρ}. (34)
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We then realize that in the search for lower bounds of D in terms of V we
may restrict the attention to the critical domain. In particular:

Corollary 7. For each ν0 ≥ 1

cmax
ν0

= inf

{
V −ν0

(
D(ρ, V )−

∑
ν<ν0

cmax
ν V ν

)
| (ρ, V ) ∈ Ω∗

}
. (35)

5 A refinement of Pinskers inequality

In this section we prove Theorem 3.

We use notation and results from the previous section. We shall determine
the best constants cmax

ν , ν = 0, 1, . . . , 8 in the inequality D ≥
∑∞

ν=0 cνV
ν , cf.

the explanation in the introductory section. In fact, we shall mainly focus on
the determination of cmax

6 . The reason for this is that the value of cmax
ν for

ν ≤ 4 is known and that it is pretty clear (see analysis below) that cmax
5 =

cmax
7 = 0. Further, the determination of cmax

8 , though more complicated, is
rather similar to that of cmax

6 .

Before we continue, let us briefly indicate that from the Kambo–Kotz expan-
sion and the identities f1 ≡ 1 and

f2(ρ) =
1

3

(
1 +

2(2− ρ)2

(1 + ρ)2

)
(36)

one deduces the results regarding cmax
ν for ν ≤ 4 (in fact for ν ≤ 5).

Now then, let us determine cmax
6 . From the identity

D(ρ, V )− 1

2
V 2 − 1

36
V 4

=
1

18

(
2− ρ
1 + ρ

)2

V 4 +
1

30

ρ6 + 6ρ+ 5

(1 + ρ)6
V 6 +

∞∑
ν=4

fν(ρ)

2ν(2ν − 1)
V 2ν , (37)

we see that cmax
6 ≤ 1/270 (take ρ = 2 and consider small V ’s). In order to

show that cmax
6 ≥ 1/270, we recall (Lemma 6) that each term in the sum∑∞

4 in (37) is non-negative, hence it suffices to show, that

1

18

(
2− ρ
1 + ρ

)2

V −2 +
f3(ρ)

30
+
f4(ρ)

56
V 2 ≥ 1

270
. (38)

Here we could restrict (ρ, V ) to the critical domain Ω∗, but we may also argue
more directly as follows: If ρ ≥ 2, the middle term alone in (38) dominates
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1/270. Then, since for fixed non-negative s and t, the minimal value of sV −2+
tV 2 is 2

√
st, it suffices to show that

f3(ρ)

30
+ 2

√
(2− ρ)2(ρ8 + 8ρ+ 7)

18 · 56 · (1 + ρ)10
≥ 1

270

for ρ < 2, i.e. we must check that

8ρ3 − 6ρ2 + 9ρ− 22 ≤ 45√
7

√
ρ6 − 2ρ5 + 3ρ4 − 4ρ3 + 5ρ2 − 6ρ+ 7

holds (here, factors of 1 + ρ and 2− ρ have been taken out). In fact, even the
square of the left-hand term is dominated by the square of the right-hand
term for all ρ ∈ R. This claim amounts to the inequality

452(ρ6 − 2ρ5 + 3ρ4 − 4ρ3 + 5ρ2 − 6ρ+ 7) ≥ 7(8ρ3 − 6ρ2 + 9ρ− 22)2. (39)

An elementary way to verify (39) runs as follows: Write the equation in the
form

6∑
ν=0

(−1)νaνρ
ν ≥ 0, (40)

and note that, for all ρ ∈ R

6∑
ν=0

(−1)νaνρ
ν ≥ xρ4 +

3∑
ν=0

(−1)νaνρ
ν ≥ yρ2 +

1∑
ν=0

(−1)νaνρ
ν ≥ z,

with

x = a4 −
a2

5

4a6

, y = a2 −
a2

3

4x
, z = a6 −

a2
1

4y

(since a6, x and y are all positive). Since z > 0 (in fact, z ≈ 6949.51), (40)
and therefore also (39) follow. Thus cmax

6 = 1/270.

6 Discussion

Theorem 1:

Emphasis here is on the quite precise upper bound of H(p, q). An explanation
of the origin of the upper bound may not be all that helpful to the reader.
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Basically, the author stumbled over the inequality (in the search for a natural
proof of Theorem 2, cf. below), and has no special use in mind for it. The
reader may take it as a curiosity, an ad-hoc inequality. It is not known if the
inequality has natural generalisations to distributions in M1

+(3), M1
+(4), . . . .

Theorem 2:

This result, again with emphasis on the upper bound, is believed to be of
greater significance. It is discussed, together with generalizations toM1

+(n), in
Harremoës and Topsøe [3]. Applications to statistics (decision theory, Cher-
noff bound) appear promising. The term 4pq in the inequality should best
be thought of as 1 minus the relative measure of roughness introduced in
[3]. The term may, qualitatively, be taken to measure the closeness to the
“flat” uniform distribution (1/2, 1/2). It varies from 0 (for a deterministic
distribution) to 1 (for the uniform distribution).

As stated in the introduction, the exponent 1/ ln 4 ≈ 0.7213 is best possible.
A previous result by Lin [9] establishes the inequality with exponent 1/2, i.e.
H(p, q) ≤ ln 2

√
4pq.

Theorem 2 was stated in [3] but not proved there.

Comparing the logarithmic and the power-type bounds:

The two lower bounds are shown graphically in Figure 3. The power bound
is normally much sharper and it is the best bound, except for distributions
close to a deterministic distribution (max(p, q) >0.9100).

Both upper bounds are quite accurate for all distributions in M1
+(2) but,

again, the power bound is slightly better, except when (p, q) is very close
to a deterministic distribution (max(p, q) >0.9884). Because of the accuracy
of the two upper bounds, a simple graphical presentation together with the
entropy function will not enable us to distinguish between the three functions.
Instead, we have shown in Figure 4 the difference between the two upper
bounds (logarithmic bound minus power-type bound).
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Fig. 3: Lower bounds Fig. 4: Difference of upper bounds

Fig. 5: Ratios regarding lower
bounds

Fig. 6: Ratios regarding upper
bounds

Thus, for both upper and lower bounds, the power–type bound is usually the
best one. However, an attractive feature of the logarithmic bounds is that the
quotient between the entropy function and the ln p ln q function is bounded.
On Figures 5 and 6 we have shown the ratios: entropy to lower bounds, and:
upper bounds to entropy. Note (hardly visible on the graphs in Figure 6),
that for the upper bounds, the ratios shown approaches infinity for the power
bound but has a finite limit (1/ ln 2 ≈ 1.44) for the logarithmic bound when
(p, q) approaches a deterministic distribution.

Other proofs of Theorem 1:

As indicated already, the first proof found by the author was not very sat-
isfactory, and the author asked for more natural proofs, which should also
display the monotonicity property of the function f given by (12). Several
responses were received. The one by Arjomand, Bahramgiri and Rouhani was
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reflected in section 2. Another suggestion came from Iosif Pinelis, Houghton,
Michigan (private communication), who showed that the following general
l’Hospital – type of result may be taken as the basis for a proof:

Lemma. Let f and g be differentiable functions on an interval ]a, b[ such
that f(a+) = g(a+) = 0 or f(b−) = g(b−) = 0, g′ is nonzero and does
not change sign, and f ′/g′ is increasing (decreasing) on (a, b). Then f/g is
increasing (respectively, decreasing) on ]a, b[.

Other proofs have been obtained as response to the authors suggestion to
work with power series expansions. As the feed-back obtained may be of
interest in other connections (dealing with other inequalities or other type
of problems), we shall indicate the considerations involved, though for the
specific problem, the methods discussed above are more elementary and also
more expedient.

Let us parametrize (p, q) = (p, 1− p) by x ∈ [−1, 1] via the formula

p =
1 + x

2
,

and let us first consider the analytic function

ϕ(x) =
1

ln 1+x
2

; |x| < 1.

Let

ϕ(x) =
∞∑
ν=0

γνx
ν ; |x| < 1, (41)

be the Taylor expansion of ϕ and introduce the abbreviation λ = ln 2. One
finds that γ0 = −1/λ and that

f
(1 + x

2

)
=

1

λ
−
∞∑
ν=1

(γ2ν − γ2ν−1)x2ν ; |x| < 1. (42)

Numerical evidence indicates that γ2 ≥ γ4 ≥ γ6 ≥ · · · , that γ1 ≤ γ3 ≤
γ5 ≤ · · · and that both sequences converge to −2. However, it appears that
the natural question to ask concerns the Taylor coefficients of the analytic
function

ψ(x) =
2

1 + x
+

1

ln(1−x
2

)
; |x| < 1 . (43)
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Let us denote these coefficients by βν ; ν ≤ 0, i.e.

ψ(x) =
∞∑
k=0

βkx
k ; |x| < 1 . (44)

The following conjecture is easily seen to imply the desired monotonicity
property of f as well as the special behaviour of the γ’s:

Conjecture 1. The sequence (βν)ν≥0 is decreasing with limit 0.

In fact, this conjecture was settled in the positive, independently, by Christian
Berg, Copenhagen, and by Miklós Laczkovich, Budapest (private communi-
cations). Laczkovich used the residue calculus in a straightforward manner
and Berg appealed to the theory of so-called Pick-functions – a theory which
is of great significance for the study of many inequalities, including matrix
type inequalities. In both cases the result is an integral representation for the
coefficients βν , which immediately implies the conjecture.

It may be worth while to note that the βν ’s can be expressed as combinations
involving certain symmetric functions, thus the settlement of the conjecture
gives information about these functions. What we have in mind is the fol-
lowing: Guided by the advice contained in Henrici [4] we obtain expressions
for the coefficients βν which depend on numbers hν,j defined for ν ≥ 0 and
each j = 0, 1, . . . , ν, by hν,0 = 1 and

hν,j =
∑

1≤i1<···<ij≤ν

(i1i2 · · · ij)−1.

Then, for k ≥ 1,

βk = 2(−1)k − 1

kλ

k∑
ν=1

(−1)νν!

λν
hk−1,ν−1 . (45)

A natural proof of Theorem 2:

Denote by g the function

g(p) =
ln
(
H(p,q)

ln 2

)
ln(4pq)

; 0 ≤ p ≤ 1, (46)

with q = 1−p. This function is defined by continuity in the critical points, i.e.
g(0) = g(1) = 1 and g(1/2) = 1/ ln 4. Clearly, g is symmetric around p = 1/2
and the power-type bounds of Theorem 2 are equivalent to the inequalities

g(1/2) ≤ g(p) ≤ g(1). (47)

15



Our proof (in Section 3) of these inequalities was somewhat ad hoc. Numer-
ical or graphical evidence points to a possible natural proof which will even
establish monotonicity of g in each of the intervals [0, 1

2
] and [1

2
, 1]. The natu-

ral conjecture to propose which implies these empirical facts is the following:

Conjecture 2. The function g is convex.

Last minute input obtained from Iosif Pinelis established the desired mono-
tonicity properties of g. Pinelis’ proof of this fact is elementary, relying once
more on the above l’Hospital type of lemma.

Pinsker type inequalities:

While completing the manuscript, new results were obtained in collaboration
with Alexei Fedotov and Peter Harremoës. These results will be published in
a separate paper. Among other things, a determination in closed form (via
a parametrization) of Vajda’s tight lower bound, cf. [13], has been obtained.
This research also points to some obstacles when studying further terms in
refinements of Pinsker’s inequality. It may be that an extension beyond the
result in Corollary 4 will need new ideas.
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