# Games, Entropy and Composability

Henrik Densing Petersen & Flemming Topsøe
University of Copenhagen
Department of Mathematical Sciences
Presentation for CTnext07, Catania, July 2007

#### Goal

Operational definitions of entropy and related quantities covering the classical as well as non-extensive settings, thereby understanding which entropy measures are relevant for physics

Announcement: Workshop: "Facets of Entropy", Copenhagen, October 24-26, 2007 (if interested, ask FT or Robert Niven).

#### **Overview**

Entropy without games:

- Overall setting
- Listing some properties
- More specifics on structure
- Results for "*f*-entropies", especially on composability

Entropy with games:

- Complexity
- Defining entropy two types of entropy!
- Defining divergence
- MaxEnt via robustness ····
- Not primary focus on entropy -

complexity is what matters!

#### **Conclusions:**

• Which entropy ? – e.g. Tsallis or Rényi? *But:* does the question make sense?

### Entropy without games

Overall setting: probabilities on discrete spaces!

Properties to consider include:

- minimal (0) on  $\delta_i$ 's (deterministic), max on uniform
- continuous (lower semi-cont. in infinite case)
- concave :  $H(mixture) \ge mixture \text{ of } H$
- datareduction inequality : H(coarse) ≤ H(fine)

• MaxEnt-principle should make sense for "natural" preparations (models) – and the nature of the entropy function should facilitate MaxEnt-calculations

• consistency: no feasible state is ignored under inference when you use the MaxEnt principle

- composable:  $H(P \otimes Q) = g(H(P), H(Q))$
- – or even additive):  $H(P \otimes Q) = H(P) + H(Q)$
- acceptable, physically significant interpretation!

"*f*-entropy": Based on generator f which is assumed to be nice convex and satisfy

$$f(0) = f(1) = 0, f'(1) = 1.$$

$$H_f(P) = -\sum f(p_i) \text{ or } H_f(P) = -\sum p_i \tilde{f}(\frac{1}{p_i})$$

- with  $\tilde{f}$  the Csiszár dual of f:  $\tilde{f}(x) = xf(\frac{1}{x})$ . BGS (classical):  $f(x) = x \ln(x)$ ,  $\tilde{f}(x) = \ln(\frac{1}{x})$ , Tsallis family: (via "deformed logarithms"):

$$\mathsf{H}_q^T(P) = \frac{1}{1-q} \left( \sum p_i^q - 1 \right).$$

Well-known:  $H_f$  continuous, concave, satisfies datareduction principle – and MaxEnt? Wait!

Key result: Among *f*-entropies, only Tsallis entropies are composable. For these:

$$\mathsf{H}_{q}^{T}(P \otimes Q) = \mathsf{H}_{q}^{T}(P) + \mathsf{H}_{q}^{T}(Q)$$
  
+ (1 - q)  $\mathsf{H}_{q}^{T}(P) \cdot \mathsf{H}_{q}^{T}(Q) .$ 

### Entropy with games



Natures side: *P* Observers side (you!): *Q* connected by complexity function  $\Phi = \Phi(P, Q)$ .

Assumptions Minimal on diagonal:  $\Phi(P,Q) \ge \Phi(P,P)$ . Vanishes on deterministic dist.:  $\Phi(\delta_i, \delta_i) = 0$ . Examples:

 $\Phi^{BGS} = \sum p_i \ln \frac{1}{q_i}: BGS$  $\Phi^R_q = \frac{1}{1-q} \ln \frac{\sum p_i^q}{\sum p_i^q q_i^{1-q}}: Rényi$ 

 $\Phi_q^T = \frac{1}{1-q} \left( \frac{\sum p_i^q}{\sum p_i^q q_i^{1-q}} - 1 \right): \text{Tsallis}$ 

#### ... continued: Entropy, Divergence, MaxEnt

Entropy = minimal complexity:  $H(P) = \min_Q \Phi(P, Q)$ . Divergence = actual – minimal complexity:  $D(P,Q) = \Phi(P,Q) - H(P) (= \Phi(P,Q) - \Phi(P,P)).$ 

Dual entropy anticipates unknown but deterministic distribution:  $\hat{H}(Q) = \sum q_i \Phi(\delta_i, Q) = \sum q_i D(\delta_i, Q)$ .

MaxEnt-problem : given a preparation  $\mathcal{P}$ , to determine the MaxEnt-distribution and the corresponding MaxEntvalue:  $H_{max} = H_{max}(\mathcal{P}) = \max_{P \in \mathcal{P}} H(P)$ .

#### A highly useful, trivial, but neglected criterion:

If  $Q \in \mathcal{P}$  is robust:  $\Phi(P,Q)$  independent of  $P \in \mathcal{P}$ , say  $\forall P \in \mathcal{P}$  :  $\Phi(P,Q) = h$ , then Q is the MaxEntdistribution and  $H_{max}(\mathcal{P}) = h$ .

*Proof.* Firstly:  $H(Q) = \Phi(Q, Q) = h$ . Secondly: if  $P \neq Q$  and  $P \in \mathcal{P}$ , then  $H(P) < H(P) + D(P,Q) = \Phi(P,Q) = h$ .

The examples (only  $\Phi$  and H)

| name                           | complexity                                                              | function of                              |
|--------------------------------|-------------------------------------------------------------------------|------------------------------------------|
| BGS                            | $\sum p_i \ln rac{1}{q_i}$                                             | $\langle \ln \frac{1}{Q}, P \rangle$     |
| q-Rényi                        | $\frac{1}{1-q} \ln \frac{\sum p_i^q}{\sum p_i^q q_i^{1-q}}$             | $\langle Q^{1-q}, P^{(q)} \rangle$       |
| <i>q</i> -Tsallis¹             | $rac{1}{1-q} \Bigl( rac{\sum p_i^q}{\sum p_i^q q_i^{1-q}} - 1 \Bigr)$ | $\langle Q^{1-q}, P^{(q)} \rangle$       |
| <i>q</i> -Tsallis <sup>2</sup> | $rac{1}{1-q}\sum p_i^q(1-q_i^{1-q})$                                   | $\langle 1 - Q^{1-q}, P^q \rangle$       |
| q-Tsallis <sup>3</sup>         | $\sum \left( q_i^q - \frac{p_i(1 - qq_i^{q-1})}{1 - q} \right)$         | $\sum q_i^q, \langle Q^{q-1}, P \rangle$ |

 $P^{(q)}$ : the *q*-escort distribution:  $i \curvearrowright p_i^q / \sum p_i^q$ .  $P^q$ : the (non-normalized) measure  $i \curvearrowright p_i^q$ .

| name                           | entropy   | dual entropy  |
|--------------------------------|-----------|---------------|
| BGS                            | $H^{BGS}$ | $H^{BGS}$     |
| q-Rényi                        | $H_q^R$   | $H^{BGS}$     |
| <i>q</i> -Tsallis¹             | $H_q^T$   | $H_q^T$       |
| <i>q</i> -Tsallis <sup>2</sup> | $H_q^T$   | $H_{2-q}^{T}$ |
| <i>q</i> -Tsallis <sup>3</sup> | $H_q^T$   | $H_q^T$       |

The entropies: BGS:  $-\sum p_i \ln p_i$ , Rényi:  $\frac{1}{1-q} \ln \sum p_i^q$ , Tsallis:  $\frac{1}{1-q} (\sum p_i^q - 1)$ .

| Property              | Rényi            | Tsallis    |
|-----------------------|------------------|------------|
| consistent inf.       | q < 1 only       | q < 1 only |
| concave               | q < 1, few other | all $q$    |
| composable            | all $q$          | all $q$    |
| additive              | all $q$          | no $q$     |
| interpretation        | hmmm             | hmmm       |
| experimental evidence | hmmm             | hmmm       |

#### $\Phi$ -exponential families etc.

To simplify, assume structure as in Tsallis<sup>3</sup> (the Bregman case):

 $\Phi(P,Q) = \text{fct. of } Q + \langle \hat{Q}, P \rangle$ 

 $\hat{Q}$ : a certain transform of Q. (Problem: Interpretation?)

For functions  $\mathbf{f} = (f_1, \dots, f_k)$ , define the  $\Phi$ -exponential family  $\mathcal{E}$  as the set of distributions Q for which there exist constants  $\lambda_0$  and  $\lambda_1, \dots, \lambda_k$  such that:

$$\widehat{Q} = \lambda_0 + (\lambda_1 f_1 + \dots + \lambda_k f_k)$$

The natural preparations are those of the form

$$\mathcal{P}_{\mathbf{a}} = \{ P | \langle f_1, P \rangle = a_1, \cdots, \langle f_k, P \rangle = a_k \}.$$

¿From robustness criterion we find immediately:

Theorem If  $Q \in \mathcal{E} \cap \mathcal{P}_{\mathbf{a}}$ , then Q is the  $\Phi$ -MaxEnt distribution.

## Conclusions

Recall the key technical result (due to HDP):

Among *f*-entropies, only Tsallis entropies are composable.

This also covers entropies (like Rényi entropy) which are monotone functions of f-entropies.

Apart from the key result we conclude with some insights gained during the investigations:

#### (*i*) Never more use Lagrange multipliers!

- unless you deal with "ad hoc problem" or use these multipliers as a guide in preliminary investigations.

(*ii*) Be aware of the two types of entropies!

*(iii)* Never consider entropy measures alone! – you must supply with other considerations, at best:

take as point of departure a suitable complexity measure!